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Comparing Two Independent Groups of Data

Parametric tests (data require normality and equal variance)
- Independent Student’s t-test (more power than non-
parametric tests, but only if data distribution requirements
are met)

Non-parametric tests
- Mann-Whitney rank sum test (probability distributions of
the two data sets must be the same and have the same
variances, but do not have to be symmetrical; a moderate
number of “non-detectable” values can be accommodated)

Selection of Statistical Tests Based on Probability
Distribution and Other Characteristics

Comparing Paired Observations of Data

Parametric tests (data require normality and equal variance)
- Paired Student’s t-test (more power than non-parametric
tests but only if data requirements are met)

Non-parametric tests
- Sign test (no data distribution requirements, some missing
data accommodated)
- Friedman’s test (can accommodate a moderate number of
“non-detectable” values, but no missing values are allowed
- Wilcoxon signed rank test (more power than sign test, but
requires symmetrical data distributions) :

Comparing many groups (use multiple comparison
tests, such as the Bonferroni t-test, to identify which
groups are different from the others if the group test

results are significant)

Parametric tests (data require normality and equal variance)

- One-way ANOVA for single factor, but for >2 “locations”
(if 2 “locations, use Student’s t-test)

- Two-way ANOVA for two factors simultaneously at

multiple “locations”

- Three-way ANOVA for three factors simultaneously at

multiple “locations”

- One factor repeated measures ANOVA (same as paired t
test, except that there can be multiple treatments on the
same group)

- Two factor repeated measures ANOVA (can be multiple
treatments on two groups) ¢




Many Groups (cont.)

Many Groups (cont.) Nominal observations of frequencies (used when counts are
recorded in contingency tables)
Non-parametric tests: - Chi-square (X?) test (use if more than two groups or

) categories, or if the number of observations per cell in a
- Kurskal-Wallis ANOVA on ranks (use when samples 2X2 table are > 5)

are from non-normal populations or the samples do not

have equal variances). - Fisher Exact test (use when the expected number of

) observations is <5 in any cell of a 2X2 table).
- Friedman repeated measures ANOVA on ranks (use

when paired observations are available in many groups). - McNamar’s test (use for a “paired” contingency table, such

as when the same individual or site is examined both
before and after treatment)

Example 1-way ANOVA 1-way ANOVA

Site A Site C

78 153

Is at least one member of a group significantly a5 a7

different from the other members?
Complement analysis with group box-whisker plot X oo

This doesn’t identify which one(s) is(are) >4 432

different. 24 43

If a significant member, should be able to 164

recognize from box-whisker plot and with
Bonferroni T-test (multiple pair-wise

) Are any of these sites different from the others?
comparisons).




One-Way ANOVA Example Box and

Whisker Plot ANOVA Single Factor (using Excel)
500 SUMMARY
Groups Count Sum Average Variance
L Column 1 264 52.8 407.7
-.g 200 Column 2 176  58.66667  340.3333
'§ Column 3 1124 1873333 19161.87
g 20+ Column 4 196 39.2 427.7
g . Column 5 69 17.25  128.9167
S | s B
i 2 : 4 5

Site Locations

Example 2-way ANOVA

AN\ [0)V/.Y

Source of

Variation SS df MS F P-value
Between

Groups 98255 4 24564 4.41 0.0116
Within

Groups 100218 18 5567

Want to investigate the differences between
different data strata. In this example, both rain
depth and season are being investigated
together.

Are the variations between groups more
important than the variations within the groups?
What about interactions between different
variables?

ANOVA requires normally distributed data. In
most stormwater cases, log-transformed values
need to be used.

Total 198473 22

With a p = 0.012, at least one site is significantly
different from the others. Observing the box and
whisker plot, it is likely that sites A, B, and D form one

group, while C and E are likely two other groups. !




The rain group factor and the season factor are both highly
significant. The prior 2-way ANOVA found that the
interaction term was not significant; the ANOVA was
therefore re-run without that term.

PE2 total cases
AMOYA

Arnalysis of “ariance For LTSS
ko Selector

Source df Sums of Squares Mean Square F-ratio Prob
Const 1 631,183 631,183 3993 .4 4 B.e6a1
Fap 3 06.20683 2.89569 13.28 i B.e081
S=n 3 463382 1.54434 9.772 4 B.0aa1
Error 235 48,2994 8. 155837

Total 261 58.5297
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Cosfficients
Coefficients of: LTSS on Ssn

Level of Ssn Coefficient std. err. t Ratio prob

FA -8.17a1 B.684282 =3.974 I B.884 1
=1 887331 B.84331 1.644 B 1813
su 6173 B.84421 4 B26G io@.868 1
‘' T -8.82211 8. 8485 —2.852 B.84 13

Expected Cell Means

Expected Cell Means of: LTSS on S=n
Level of Ssn Expected Cell Mean Cell Count

F@a 1.329 &7
SP 1.37 o4
=1} 1.673 1]

1.412 21

WI
} FPost Hoc Tests

Only Fall and Summer are significant (maybe winter also).
Therefore, lots of potential subgroups.

Coefficients
Coefficients of: LTSS on Pgp

Level of Pgp Coefficient std. err. t Ratio prob
1 —H. 2382 B 85357 -5.195 1B 8861
z —8.\BE37E2 B.84 182 —@ . B9844 B.9286
3 @. 1966 @ Bdaas 4.91 i B.EEE
4 B. 1374 B.856864 2.2 B.887 1
Expected Cell Means
Expected Cell Means of: LTSS on Pgp
Level of Pgp Expected Cell HMean Cell Count
1 1.165 25
z 1.491 26
3 1.692 184
4 1.632 47
2 Scheffe| Post Hoo Tests
The first, third, and fourth rain categories are significant.
14
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Further analyses resulted in only two main groups of the data, as

show on this probability plot:

Percent

Lognormal Probability Plot for TSS (mg/L) By Final groups

ML Estimates

100

TSS mg/L

1000

Remaining

suU234
SP.3.4

Goodness of Fit
AD*
2725
0.456
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Model Building

e |f you can’t see it, it is likely not there.... (or
certainly not very important, even if you
have lots of data that make statistically
significant results more likely than the
usual handful of available data)

Plots of concentrations vs. rain depth typically show random patterns.

10¢
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-
.

Fecal Coliforms (colonies/100mL)
.

Total Phosphorus (mg/L)
Total Zinc (uglL)

Precipitation Depth (in) Precipitation Depth (in)

10000

1000

100

Total Lead (ug/L)
>

0.1 4
0 - 0 1 T T T T T T /\l T T T T T
e X H D P P P ® & & & & O
) ) ) ) ] ) ) o & \) Q Q Q
&) &) &) &) &) &) & &) &) & Q Q Q Q'
S S N xS N S o o8 S N R GER G
AT QT QT QT YR

19

18

Model building/equation fitting (these are
parametric tests and the data must satisfy
various assumptions regarding behavior of the
residuals)

Linear equation fitting (statistically-based models)

- Simple linear regression (y=b0+b1x, with a single
independent variable, the slope term, and an intercept. It is
possible to simplify even further if the intercept term is not
significant).

- Multiple linear regression The equation is a multi-
dimensional plane describing the data).




- Stepwise regression (a method generally used with
multiple linear regression to assist in identifying the significant
terms to use in the model.)

- Polynomial regression (y=b0+b1x'+b2x2+b3x3+...+bkx¥,
having one independent variable describing a curve through the
data).

Model Building Steps

Re-examine the hypothesis of cause and effect (an original
component of the experimental design previously conducted and
was the basis for the selected sampling activities).

2) Prepare preliminary examinations of the data, as described
previously (most significantly, prepare scatter plots and grouped
box/whisker plots).

3) Conduct comparison tests to identify significant groupings of data.
As an example, if seasonal factors are significant, then cause and
effect may vary for different times of the year.

4) Conduct correlation matrix analyses to identify simple relationships
between parameters. Again, if significant groupings were
identified, the data should be separated into these groupings for
separate analyses, in addition to an overall analysis. 23

Non-linear equation fitting (generally developed from
theoretical considerations, usually through the solution of a
partial differential equation)

- Nonlinear regression (a nonlinear equation in the
form: y=b*, where x is the independent variable. Solved by
iteration to minimize the residual sum of squares: Newton-
Rast).

Modeling Building (cont.)

5) Further examine complex inter-relationships between
parameters by possibly using combinations of hierarchical
cluster analyses, principal component analyses (PCA), and
factor analyses.

6) Compare the apparent relationships observed with the
hypothesized relationships and with information from the
literature. Potential theoretical relationships should be
emphasized.

7) Develop initial models containing the significant factors
affecting the parameter outcomes. Simple apparent
relationships between dependent and independent
parameters should lead to reasonably simple models, while
complex relationships will likely require further work and
more complex models.




Initial Analyses and Plots to Assist
in Model Building

e Simple Correlation Matrices

e Hierarchical Cluster Analyses
¢ Principal Component Analyses (PCA) and

Factor Analyses

Emery (Industrial)
RAINTOT ~ RAINDUR ~ AVEINT  PEAKINT DRYPER RUNTOT RUNDUR AVEDIS PEAKDIS  LAG

RAINTOT 1.000

RAINOUR 053  1.000 Pearson Correlations
AVEINT 0.138 -0.387 1.000

PEAKINT 0.512 -0.039 0.675 1.000

DRYPER 0.169 0.273 -0.096 -0.132 1.000

RUNTOT 0.906 0.562 0.007 0.405 0.075 1.000

RUNDUR 0.501 0.965 -0.348 0.035 0.184 0.556 1.000

AVEDIS 0.709 -0.013 0.480 0.654 -0.095 0.680 -0.026 1.000

PEAKDIS 0.729 0.129 0.372 0.748 0.041 0.699 0.150 0,849 1.000

LAG 6.135 0.220 -0.292 =-0.217 0.052 0.205 0.134 0.098 0.107 1.000

Thistledowns (Residential/Commercial)

RAINTOT ~ RAINDUR  AVEINT  PEAKINT ORYPER RUNTOT  RUNDUR  AVEDIS PEAKDIS LAG

RAINTOT 1.000

RAINDUR 0.553 1.000

AVEINT 0.321 -0.295 1.000

PEAKINT 0.564 -0.104 0.827 1.000

ORYPER 0.281 0.308 ~0.19¢ ~0.122 1.000

RUNTOT 0.903 0.448 0.187 0.551 0.283 1.000

RUNDUR 0.508 0.989 -0.322 -0.148 0.337 0.402 1.000

AVEDIS 0.398 -0.178 0.593 0.817  -0.037 0.585 -0.227 1.000

PEAKDIS 0.600 ~0.051% 0.659 0.917 0.009 0.702  -0.106 0.946 1.00

LAG -0.192 ~0.037 ~0.114 -0.202 -0.122 -0.184 -0.094 -0.138 -0.173 1.000
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Simple Data Associations

- Pearson Correlation (residuals, the distances of the data
points from the regression line, must be normally
distributed. Calculates correlation coefficients between all
possible data variables. Must be supplemented with
scatterplots, or scatter plot matrix, to illustrate these
correlations. Also identifies redundant independent
variables for simplifying models).

- Spearman Rank Order Correlation (a non-parametric
equivalent to the Pearson test).

Complex Data Associations (typically only
available in advanced software packages;
also in MiniTab)

- Hierarchical Cluster Analyses (graphical presentation of
simple and complex inter-relationships. Data should be
standardized to reduce scaling influence. Supplements
simple correlation analyses).

- Principal Component Analyses (identifies groupings of
parameters by factors so that variables within each factor
are more highly correlated with variables in that factor than
with variables in other factors. Useful to identify similar
sites or parameters).
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Regression (cont.)

5) Apply regression procedures to the selected alternative
models.

Regression Analyses

1) Formulate the objectives of the curve-fitting exercise (a
subset of the experimental design previously conducted).

6) Evaluate the regression results by examining the coefficient of
determination (R?) and the results of the analysis of variance
of the model (standard error analyses and p values for
individual equation parameters and overall model).

Prepare preliminary examinations of the data, as described
previously (most significantly, prepare scatterplots and
probability plots of the data, plus correlation evaluations to
examine independence between multiple parameters that
may be included in the models)

7) Conduct an analysis of the residuals (as described below).

Identify candidate and alternative models from the literature
that have been successfully applied for similar problems
(part of the previously conducted experimental design
activities in order to identify which parameters to measure,
or to modify or control).

8) Evaluate the results and select the most appropriate model(s).

9) If not satisfied, it may be necessary to examine alternative
models, especially based on data patterns (through cluster
analyses and principal component analyses) and re-
examinations and modification of the theoretical basis of
existing models. Statistical based models can be developed

Evaluate the data to ensure that regression is applicable and
make suitable data transformations.

31 32

using step-wise regression routines.
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MCTT PERFORMANCE DATA - UNFILTERED SAMPLES
Total Suspended Solids

)
8388
i

Regression Example with ANOVA

(mon)

ol
g
L

Total Suspended Solids
8 &8 88
L

e Performance of TSS control of the Multi-
Chamber Treatment Train (MCTT)

°
I

§1W—

{m]

e Examining overall treatment effects with 1]
regression and associated plots with 3 \%\\ B

T T 4
! N OV E Inlet CatchBasin  Setting Chamber  Sand-peat  Outlet

CatchBasin ~ Setlng  Sand-peat  MCTT
Chamber Chamber Chamber Overall

Concentration Difference =
1-sided P Value 0.1543 0.0010 -0.1191 0.0002
Min. Percent Reduction =157 -800 -500 25

Max. Percent Reduction 88 100 4as 100
Median Percent Reduction 17 91 -400 83
Std. Dev. of Percent Reduction 65 257 240 22
COV of Percent Reduction 7.4 19 -15 0.28
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Total Suspended Solids mg/L MCTT Performance - Total Suspended Solids mg/L
INLET OUTLET
60
1 137 55 .
Data plotted in real ®
2 7 3 50 { space, emphasizing
3 8 6 unusual conditions (this
a4 38 8 44 unusual data value can
=
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cause; likely due to scour
6 16 4 o 301 . . e
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-3 75 6 207 example analyses)
9 77 <2. 10
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MCTT Performance - Total Suspended Solids mg/L
100
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ﬁ 100 100
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* 0 1 2 3 ! o 1 2
Sampling Location Sampling Location
1 T T
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Inlet - mg/L
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\
Detected

Effluent
12 12

Influent

Observations 12

Mean
Median

StDev

SE Mean
Minimum
Maximum
Q1

Q3

Cummulative Percentage

MCTT Performance - Probability Plot

MCTT Performance - Probability Plot

@0oooo o o
.

. ® inlet
o Outiet

Cummulative Percentage

. ® Iniet
o Outiet

TSS mg/L

TSS mg/L

1000
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Dependent wariable is: LOGOUTLET . .
Mo Selector Residual Analyses of Regression
R =sguared = 13.6% R sguared foadjusted? = V.28
5= 84332 with 12 -2 = 10 degrees of freedom Models
Source Sum of Squares df Mean Square F-ratio the residuals must be mdependent
Regression  ©.347354 i B.347554 1.85 the residuals have zero mean
Re=idual 1.87625 18 A. 187625

the residuals have a constant variance (S?)
Yariable Coefficient s.e. of Coeff t-ratio prob X . .
Canstant 88333752 B 4576 R o B.0464 the residuals have a normal distribution
LOGIMLET  ©.421692 A.23897 1.36 B.2632 (required for making F-tests)

Lousy overall R? and insignificant P values for both constant and
slope terms. Re-ran without intercept term (forcing the regression
through the zero), but slope term was still not significant.
Therefore, no regression relationship and the effluent is a constant
value (with some uncertainty) [and with one unusual value].
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Plots to Check Residuals

Check for normality of the residuals (preferably by
constructing a probability plot and having the
residuals form a straight line,

plot the residuals against the predicted values,

plot the residuals against the predictor variables,
and

plot the residuals against time in the order the
measurements were made.

Desired pattern (random band of residuals):

(@

Fanning out of residuals indicated need for log transformation:

®)

Slope implies a higher level of polynomial needed:

©

Curve indicates a data squared transformati
(@

47

Histogram of residuals (and/or probability plot):

X

I W N G A W , [ A L 2 S ST M . |
@  _5 =5 0 5 10
Residuals vs predicted values:
X
2 x
2 I x
0 L | | |
2 x10 20 30 . 40 50 [
-6 X %
-10
Residuals vs. order of data collection:
X
F ) )
I I I I O N S |
X 3 4 5 6 7 ¥ 9 10 I 12 Time order
X
X

From Draper and Smith, 1981
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Analyses for Data Trends

Data Trends (cont.)
- Graphical methods (simple plots of concentrations versus
time of data collection). - Sen’s estimator of slope (a nonparametric test based
on ranks closely related to the Mann- Kendall test. It is not
- Regression methods (perform a least-squares linear sensitive to extreme values and can tolerate missing data).
regression on the data plot and examine ANOVA for the regression
to determine if the slope term is significant. Can be misleading due - Seasonal Kendall test (preferred over regression
to cyclic data, correlated data, and data that are not normally methods if the data are skewed, serially correlated, or cyclic.
distributed). Can be used for data sets having missing values, tied values,
censored values, or single or multiple data observations in
- Mann-Kendall test (a nonparametric test that can handle each time period. Data correlations and dependence also
missing data and trends at multiple stations. Short-term cycles and affect this test and must be considered in the analysis).
other data relationships affect this test and must be corrected).

Trends in Metal EMC Trend in Denver Metropolitan Area
At Wood Center Residential Land Use

Toto Suspenced.
|

Solids mg/L

Suspended Solids

W 1981
B 19% W 1980-1981

0 1992-1993

Total Copper ug/L

Total Zinc uglL —

Total Lead ug/L

Copper

Zinc

Lead

|

L=

0 100 200 300 400 500 50 100 150 200 250 300 350

WI DNR data and slide Concentration, ug/L - , Concentration
Flood Hazard News, Vol. 23 No.1
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Trend in Denver Metropolitan Area
Commercial Land Use

Total Suspended
Solids mg/L

W 1980-1981
[1992-1993

T

l [

Total Lead ug/L w

I |
0 50 100 150 200 250 300 350

Total Copper ug/L

F

=

Concentration
Flood Hazard News, Vol. 23 No.1
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10000

1000

100

Total Lead (ug/L)
=)

-
1

Residential Land Use Lead Concentrations

° oo
Concentration plots vs. time indicate possible trends. Lead has
historically dropped significantly from the earliest stormwater

«

Transparency (m)
T

o
&
T

0 50 MOnth 1;0
_a— South _+ North ___Trend (.1 m/yr)

Secchi disk trends by season and year in Lake Ronningesjon, Sweden
(m), showing initial steep improvement then leveling off (Pitt 1995)

0.1 4
studies to the present due to increased use of unleaded
gasoline (simple regression trend line shown).
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Secchi disk trends by season
and year in Lake
- ROnningesjon, Sweden (m)
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(Pitt 1995)
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23 Factorial Experiment (temperature,

Model Building Example: UV light, and humidity)
Complex Modeling of Bacteria I .

Warn (90° F)

Used 4 large

Varm (90° F 3
H Dry (~30% RH) Moisi(~83% incubators
Survival Data | R ted into

. _compartments for

. . UV Shielded UV Shielded ) ) '
e Factorial experiments ;qt conditions.

ed dog feces

e Multi-point trend analyses ‘ ','\sﬁxrry on concrete
Cool (40°F) Cool (40°F) ‘ blocks. Later

Dry (38% RH) Moist(~85% RH) - experiments
added nutrients
to experimental
design for survival
in soil.

UV Shielded UV Shielded

6002°82°60
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E coli Models Compared All Treatments, Enterococci

Individual Treatments Modeled by 2
Segmented Regression with Unknown
Breakpoints

o
o
i

MLE=Min SSE [Hudson’66]
Unstationarity of MLE at T(obs) [Feder, 75]

Grid-search method for edited and identified
models [Lerman,’80)

s, 9
o

”r
-
5]
8
N
5
8
w
8
8
»
8

ILog(CFU/mltnaI)
B O M
<%
v <
\

Lg(MPN/Initial)

Sequential Search - sup(Ft) test [Bai and ss L L § 3
Perron,’98] - < “ Y

-4.5

Warm, moist, and-dark conditions resultecLinslowg;sLdeerease in
populations (and no initial breakpoint). Significant re-growth
observed for all other conditions after several days.
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Multiple linear regression (each segment) of
environmental factors on rate constant k




Material Exposure Metal
Release Rate Modeling Example

e Many clustered laboratory analyses, data
analyses tools, and chemical modeling
evaluations.

Many pipe and gutter
materials (several plastics,
concrete, aluminum,
copper, and galvanized
steel) examined over
several month exposure
periods in different pH and
ionic strength water.

Zinc Mass Release per Surface Area of a Pipe/Gutter
inthe Containers with Bay and River Waters

1000

Mass per Surface Area (mg/m2)

0.001 0.1

Time {(day)

Analysis Components for Model Development

* Time Series plots
e To illustrate metal release with the exposure time.

* Spearman Correlation
 To identify simple relationships between water quality parameters
and contaminants

e Principal Component and Cluster Analysis
¢ To evaluate complex associations between water quality parameters
and contaminant releases and to identify groupings of samples with
similar characteristics

e Full Factorial Analyses

¢ To determine significant factors and their interactions on pollutant
releases

e Empirical models were developed
e to predict pollutant releases for different materials and uses, water
types and exposure times.

¢ Chemical Modeling

¢ To identify different chemical speciation and associations under
different conditions and exposure periods

Spearman Correlation Matrices

Performed:
e On the samples collected during controlled and natural pH tests.

¢ To determine the association between
Pb, Cu, and Zn concentrations
pH
Conductivity
Toxicity of the samples at 5, 15, 25, and 45 min of bacteria exposure
Time of material exposure to the experimental water
For each pipe and gutter material.

Example: Galvanized steel pipe during the natural pH tests

Zn pH Cond. Tox. Tox. Tox. Tox.
5min 15min 25min 45min
Pb -0.175 0.413 -0.406 -0.508 -0.462 -0.462 -0.427
Zn -0.0699  0.000
pH -0.399 -0.399 -0.399 -0.413
Cond. 0.392 0.399 0.399 0.399
Tox. 5min
Tox. 15min
Tox. 25min
Tox. 45min

Time

-0.496

-0.0283

0.000




Cluster Analyses

¢ For each pipe and gutter material using the data for buffered

Principal Components Analyses

and natural pH tests. * PCA was performed for Score Plot
e For the same data that were used to compute the correlation all samples 1 o
RGeS Score plot of the first ; "y “‘A : R‘E;g,"é’;?f
. n . . two Principal " AR SN "o, over
¢ To identify more complex relationships between the : § 1 . < G
Components shows . . M
parameters. groupings of samples 3 4 :
Steel Pipe. Natural pH Test having similar water g l P
. . &
quality characteristics. -5
o
1st PC (toxicity) .
g accounts for 57% of : : T 3 3
k] . . First Component
8 the total variance in

§
©

L o (9(\6 QQ\ » & ({\@
& P
A <

Variables

Detailed Analyses Flow Chart

o Kruskal-Wallis Test

¢ To combine data into similar populations
before the following analyses

¢ Full Factorial Analyses
¢ To identify significant effects of pH, salinity,
and exposure time

e Based on Factorial Analyses results
e Combine into groups

¢ Mann-Whitney Test
¢ To compare the groups

the data.
2nd PC (Pb, Zn, and

Circled group:
Mostly concrete, PVC, HDPE, vinyl, and
aluminum materials under controlled pH
conditi(t()ns

Low loadings of toxicity and metals

time) accounts for
the next 12% of the
total variance.
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Factorial Analyses for Material Exposures

During the first testing stage to estimate the effects of

— Exposure time (short and long)

— pH value (5 and 8)

During the second testing stage to evaluate the effects of
— Exposure time (short and long)

— Salinity (high and low)

The factorial analyses were used to identify the significant
factors and their interactions.

Conducted several series of 22 and 23 Factorial Analyses to
isolate missing conditions that were impossible to obtain
(such as low pH and low conductivity).




Group Box Plot for zinc releases in mg/m? for various gutter
and pipe materials immersed in bay and river waters.

=Zinc releases were the

largest from galvanized steel
materials.

=As the exposure time
increased, the zinc releases
also increased.

= During long exposure
times, there was no
difference between
galvanized pipe and gutter
samples.

Zinc (mg/mA2)

=The box plot for other
materials represents all the

data combined (for bay and i T !
. Con & Plastics P.St.S.
river waters and for short

. Material
and long exposure times).

Zinc releases from galv. steel gutter immersed in
bay water.

0.0 0.5 10 15 2.0 2.5 3.0 3.5

log (Time, hr)

e ANOVA analyses tested the significance of the slope and

intercept terms and the overall model. Residual analyses
were all acceptable (considéring the few data).
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Fitted Line Plot. Zn.G.St.B Residual Plots for logZn.G.St.B
logZn.G.St.B = 1.435 + 0.4383 logTime |\, .\ o\ habiity Plot of the Residuals Residuals Versus the Fitted Values
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Pb,mg/m?  (COV=0.22)  (COV=0.2) (COV=0.02)  (COV=0.79)

Zn, mg/m? S.: Avg.= 208 (COV = 0.65)

Model Building with Linear Regression

Objective:

e To predict metal releases from the exposure times for all test
conditions.

The regression requirements (normally distributed, zero
mean, constant variance, independent) revealed that first
order polynomials can be fitted to the log of metal releases
vs. log of time.

Conducted on:

¢ For different pipe and gutter materials under controlled and
natural pH conditions.

e Metals: Cu, Zn, Pb

Model for Galv. Steel Pipe under Natural pH
Conditions

= Quantifying the expected contaminant releases

Constituent Galvanized Steel Pipe. Natural pH Conditions p-value

SB:Avg=04 SR:Avg=0.1 LB:Avg=0.1 LR.:Avg=0.42 0:014(for

Cond.*Time)

Cu, mg/m? ND in bay and river waters

L.: Avg.= 2230 (COV = 0.51) 0.002 (for Time)




Zn Releases. Steel Pipe. Natural pH
log10(zn) = 1.632 +0.5060 log10(Time)

Final Plot of Fitted vs. Observed Values for Zinc Releases

from Steel Pipe under Natural pH Conditions
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Locations of Sub-Area Sampling for Ranking for
Stormwater Controls

Subarea Ranking Methodology

e Statistical methodology (using binomial
distribution) developed to rank the sites based A : e
on threshold comparisons while accounting for o = o B B\ i
the number of usable data available at each site

e “Weighting factors” were calculated for each
site for metals (cadmium, copper, and lead),
dioxins (TCDD TEQ and 2,3,7,8-TCDD), and TSS.

¢ Multi-constituent “score” was produced from metals and
dioxin weighting factors to allow for relative ranking =
amongst potential stormwater control sites. -




Based on weight alone, Site A

Example:

Site A:n=10,m=7 Weight, =0.83
eB:n=14,m=2 Weight,=0

Basic Approach (example)

Example: Dioxin (TCDD TEQ)

Cumulative Prabability (%)
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TCDD TEQ Particulate Strength (mg/kg)

* Background subareas
occasionally exceed
NPDES permit limit

greater than at outfalls
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Potential BMP
subarea (Co-
locations)

Description

BMP Status

Total Total Number of Critical Values in Data Set (m)
Number of
Observations | 1 3 4 5 6 8 9 |10 | 11 | 12 | 13 | 14 <Background
o L | | > Permit Limit i ]
(n) = 95 | R =
1 50 M 90 1 / -
1
2 50 80 J e 1 h
3 50 87 g <be kg.rf",.”fj |
= 70 4 <PZimit L.t I -
4 31 69 |94 £ T T ! e Rarbermi
Z | > Background
5 19 50 |81 |97 g I > Permit Limit
6 11 50 (66 |89 |98 S Lt
[ ) o
7 6 50 |50 |77 |94 © =
= =
8 4 36 |50 |64 |86 99 = g e Background
= E
- = . 2 A BMP subarea
2 25 50 50 7S _ | 98 99 E 30+ E: T ®  CM upgradient -
10 ) I Y EDERENE 3 " s, o ISRA upgradient
4 -~ B Outfall 008 B
1 1 27 50 30 83 57 i) 39 > Background =] : O Outfall 009
12 0 7 19 |39 |5 |63 |81 |93 |98 |99 |99 10 < Permit Limit | =\ — = CurrentNPDES Permit Limit [~
0 |5 |13 [29 |50 [50 [71 |87 [95 |99 [99 |oo 33 q = ENEEEEE | — ackgrowndbest e is
T T T T
14 ) M1 )3 ]9 [a1 [40 |50 |61 [79 |91 [97 [99 |99 |99 0.01 0.1 1.0 10 100 1000
0 2 6 15 |30 |50 |50 |70 |85 |94 |98 |99 |99 POC (units)

Approximate
Upgradient
Drainage Area (ac)

Multi- Rankirom | Rank from | o) ey

Maximum Maximum

. of Events

Score Metal Dioxin sampled
Weighting | Weighting 2

Constituent

EVBMPO00S®

2012/13 ELV drainage
ditch (pre-ELV-1C
1SRA)

Will be addressed by

% -__./‘/' + ‘Addressed by current

2 0.0 = "' . ILBMP0002” Road runoff to CM-9 BMP; Influent site 6
2 Water concentrations

3 t EVBMP0003 L upstresm west Addressed by current R
£ Y e 1 {A25w0001 - BMP; Influent site

£ e and particulate strengths AT

2 A BMP S . EVBMP0001-A” | (helipad road and ELV B‘W_E;m’:if:m"

= - at potential treatment eh,compose) g

E v ab | Helipad (pre-sandbag | Addressed by current

3 EVBMP0O02 berms)

3 subareas generally

A15W0009-A

CM-9 downstream-
underdrain outlet
(post-A1LF asphalt
removal, pre-filter
fabric over weir
boards)

BMP site has since
been improved (old
site)

EVBMP000a”

2012/13 Lower
Helipad Road

Will be addressed by
BMP

APBMP0001°

‘Ashpile culvert inlet/
road runoff

NA

1LBMP000L"

Lower lot 24"
stormdrain outlet

‘Addressed by current
B8MP and planned
building demalition

BBMPO004

(815W0015
818MP0004-5)

B-1 media filter north

Addressed by current
BMP; Influent site

Lower ot sheetflow
(post-gravel bag
berms)

Addressed by current
BMP; discontinued

Waolsey Canyon Road
runoff

‘Addressed by current
BMP; Influent site;
discontinued
I




Detention Bioswale

Water Quality Improvements

Total Total Total
Solids inf Solids efl Solids % reduc
mg/L mg/L

Demonstrated by ranks, comparing influ and effluent. éﬁiﬁ?

Limited to sites with at least 2 samples. ——
2 3/11/16

@ Influent O Effluent 4/9/16
5/6/16

T

RO 12/30/16

1/7/17

1/12/17

1/20/17

2/3/17

2/17/17

1/9/18

3/2/18

Better water quality

B1* Biofilter
Site Monitored

Regression Analysis: log efl versus log inf
[Analysis of Variance

A . - Source DF Adj SS Adj MS F-Value
SIgn TeSt' 1 Of 16' p = Regressi 1 0.00556 0.005559 0.04
. log inf 1 0.00556 0.005559 0.04
Error 14 1.90224 0.135874
Total 15 1.90779

Model Summary

| S R-sq R-sq(adj) R-sq(pred)
T/15/1510123/15 1/31/16 S/10/16 8/18/1611/26/16 3/6/17 6/14/17 9/22/17 12/31/17 4/10/18 /1918, 0.36861 0.29% 0.00% 0.00%
“Total Suspended Solids inf “Total Suspended Solids efl Coefficients
Expon. (Total Suspended Solids inf) Expon. (Total Suspended Solids efl) Coef SE Coef T-Value P-Value
0.928 0.405 2.29 0.038
Probability Plot of log inf, log efl -0.05 0.246 0.2 0.843
Normal - 95% CI : :
. o Regression Equation Residual Plots for log efl
Total Suspended Solids efl vs inf o Lot logefl = 0.928 - Normal Probability Plot Versus Fits
- loc N ” .
e S 10 0.050 logi d —
600 03563 16 0805 0025
08479 03566 16 0246 0.71 nf : & 3 . -
Regression not 1A . .
significant; effluen -l
constant value i f/\ A
2’ 0 / \ K
iz i \/ \/\ /‘/
] \
O RO
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Conclusions

e Statistical tools need to be selected based
on data characteristics (presence of non-
detected values, data distributions,
redundancy, objectives, etc.)

e A stepped approach is needed, from
exploratory data analyses, to multivariate
analyses, and to model building

* Residual analyses are required to confirm
correct tool selection and utility of results




