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Outline of Presentation

¢ Overview of Industrial Stormwater Treatment
Performance

* Case study of heavy industrial site monitoring and
treatment research

* Additional examples of stormwater monitoring
and sampling

* Ranking methodology to select treatment
locations at large historical industrial site
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Hydrodynamic separators may not meet benchmark (BM) when influent
exceeds BM.

Filtration systems better able to meet BM, but limited data for influents above
BM. Clark 2018

Suspended Sediment: Improving Performance Using
Treatment Trains for Industrial Stormwater Treatment
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Industrial Stormwater Treatment
Conclusions (cont.)

* Understanding of on-site processes necessary to
improve prediction ability of models.

— Particle size association drives effectiveness of sedimentation and
filtration.

— Influent concentrations may be “too clean” to achieve desired percent
removals.

— Device size relative to drainage area size (loading ratio) increases can
improve pollutant removal up to treatment system area that is 5 — 10%
of drainage area.

* Good housekeeping and maintenance is vital to reduce
influent concentrations and improve likelihood of meeting
benchmarks.

Clark 2018

Site Characteristics
> Approximately 21 acres in size (15 acres drain inwards into the
site)
» Heavy industrial land use with several buildings (galvanized

metal roofs), driveways, loading docks, and highly compacted
pervious areas

Site Land Use Information
Total Drainage Area =
(acres):

Streets, parking lots and

5.25
roof areas (acres):
Compacted soil area

8.13
(acres)
Special areas (acres) 0.86
Pond area (acres) 0.72

Eppakayala 2015 -

Site Outfall

Industrial Site Stormwater Monitoring
(Heavy Industrial Site, Southeastern US)

The research was conducted in three stages
» Stage |
= Land use characterization and drainage analysis of the test site
= Continuous hydrologic and water quality monitoring and sample
collection
» Stage ll
= SSC and PSD analyses of influent and effluent samples (pollutant
concentrations based on particle size)
= PSD analyses of sediment samples (pollutant concentrations based
on particle size)

= Soil sample analyses to analyze vertical migration of metals in dry
pond liner, supplemented with water quality fate modeling, to
evaluate their mobility
» Stage lll

= Statistical and graphical analyses to determine the performance of

different treatment control practices "
Eppakayala 2015
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Hydrologic and Water Quality Monitoring

Hydrologic Monitoring

» 1SCO 674 tipping bucket rain gage: Rain depths and
intensities

» 1SCO 4250 area-velocity sensors: Monitor flow rates in the
effluent pipes at pre-treatment unit and dry infiltration
pond

Water Quality Monitoring
» ISCO 674 tipping bucket rain gage: sample trigger
» ISCO 4250 area-velocity sensors: sampling pacing

» 1SCO 6712 automatic samplers: automatic sample collection
(with 20 Liter HDPE Containers)

Eppakayala 2015 o
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Sample and Data Collection Methodology

Continuous monitoring of hydrologic conditions at treatment
devices

* Area velocity flow sensors - to monitor runoff volume and
flow rates

* Auto samplers - for sample collection

Eppakayala 2015 -

Example Precipitation and Flow Data

Seventeen runoff events were monitored with precipitation
ranging from 0.15 to 2.5 inches

May 14, 2014 Rain Event - Precipitation, February 20, 2014 Rain Event - Precipitation,
Flow and Sampling Data Flow and Sampling Data
8 120 -
ipitation : 0.14 in ipitation : 2.50 i
12 100 2.50in
10 - Relative HDD Flow
80
8 By ——Relative HDD Flow
Flow 60 ® HDD Samples
6 # HDD Samples Relative Dry Pond Flow
4 40 ~@-Dry Pond Samples
@ Dry Pond Samples
2 20 -
0 0
5/14/2014 9:36 5/14/2014 15:21 2/20/2014 0:00 2/22/2014 0:00

Eppakayala 2015 &
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Initial 20LBottle
Compisits Samiplé
Handling and Filtered by 1,180 ym
Water Quality !
An a Iyses Cone Splitter
1 fiter subsample 1 liter
SSC and Duplicate subsample T —
(UA Lab)
Shipped for
PSD Metals and
nutrients l
Coulter Counter for Analysis ——
3250 pm particle (PSH) |
size range (UA Lab)
105 ym
PSD
Metals
Dt cop
fraction for 0.45-3 Total N
pm, 3-250 pm, and Total P
250-1180 pm
particle size ranges
by filtering (UA .
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Observations from Influent Water Quality Analyses

» Heavy metals were present in all the samples collected during the
monitoring period (except arsenic was only detected in six of the
seventeen sampled events)

Iron and aluminum exhibited higher concentrations compared to
other metals

Only copper and zinc were detected in the filtered samples for all
of the monitored events

The high concentrations of the metals at the site were associated
with exposed metal materials stored on the site

The literature indicated that different factors such as the nature of
the industrial activity, seasonality of precipitation, and amount of
exposed material on site and hydrologic transport efficiencies of
eroded materials, all affect the characteristics of the chemical
runoff constituents from industrial facilities

» This study examined these factors potentially affecting site water
quality and treatability

YV VYV V V

Eppakayala 2015 °
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Multivariate Analyses

> Study the relationships between different hydrologic and
water quality parameters involved in the study and to predict
group memberships

= Pearson Correlation Analyses: To determine simple
associations between different pairs of parameters

= Cluster Analyses: To examine more complex associations
between different parameters

= Principal Component Analyses: To identify groupings of
parameters with similar characteristics to explain the
variability in the data

Eppakayala 2015 Y
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Relationships among hydrologic
parameters and suspended sediment
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Peak 5 min Rain Intensity (in/hr)
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Pearson Correlation Analyses
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Relationships among SSC and other
pollutants
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» SSC was highly correlated with all the metal constituents
> All the metals were strongly correlated with each other

» COD, Total N and Total P didn’t show any positive
correlations with any other parameters or constituents
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Similarity

Cluster Analyses

Dendrogram of all the parameters
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Influent Particle Size Distributions

Influent PSD's
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Particle Size (um)
» Median particle sizes ranged between 7.5 to 45 um, with
an average median particle size of 21 um

» About 80+ % of the suspended sediment is distributed in
the particle size range of 3 and 120 um

Eppakayala 2015 &

Principal Component Analyses
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Pollutant Associations with Particulates

Samples

Cumulative Concentration ( mg/L)
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Performance Evaluation of Particulates by Site
Stormwater Controls

» The small particle size (0.45 to 3 um) distributions did not indicate any significant
concentration differences for the hydrodynamic device or the dry infiltrating pond. The
plots’ 95% confidence intervals overlap over much of the concentration range

» The larger particle size range (30 to 60 um example shown here) indicated
concentration differences for both the hydrodynamic device and the pond

Probability Plot for Particle Size 0.45.3 um
Lognomal - 95% C1

[

Probability Plot b r Particle Size 30-60 pm
a

Lognomal- 95%
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Stormwater Controls
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Performance Evaluation of Particulates by Site

» The HDD removed about 21% of the total particulate loading for all the sampled storms,
with increasing removals for particle sizes greater than 30 um

» The dry infiltration pond removed about 92% of the total particulate mass loading, and
about a 62% reduction in SSC. Effective reductions occurred for particles as small as 3 um

» The average median particle size of the HDD influent samples was about 20 um, reducing
to about 12 um for both the HDD effluent and pond effluent samples
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Performance Evaluation of Particulates by Site
Stormwater Controls
% 15 § - [ = . \\\
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Performance Line Plots for S5 Concentration for Particle Size 30-60 m
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Statistically Significant Moderate and High Removals of
Stormwater Pollutant Mass in Overall Treatment System
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Constituent Removals (Percentage
- reduction)
Constituent Remo\{als (Percentage EEIAINES 928
reduction)

Total M 76.
COD Mass 923 otal As Mass 69
SS Mass 95.0 Total Cd Mass 90.8
0.45-3 um SS Mass  [75.7 Total Cu Mass 94.8
3-12 pum SS Mass 92.0 Dissolved Cu Mass 62.6
12-30 um SS Mass 94.2 Total Fe Mass 94.0
30-60 um SS Mass 96.3 Total Pb Mass 942
60-120 pm SS Mass  |95.7

Total Mn Mass 90.4
250-1180 pum SS 98.3
Mass Dissolved Mn Mass 80.8

Total Ni Mass 88.3

Total Zn Mass 92.8

Dissolved Zn Mass 68.9

Eppakayala 2015
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Cu Concentration fmg/L)

Performance Evaluation of Metals and Nutrients by

Site Stormwater Controls

Low reductions of metal concentrations and mass were observed for the HDD and
moderate to high reductions for the dry infiltrating pond

Higher removals in the dry pond can be related to higher reductions of particulate
solids and associated particulate-bound pollutants and the infiltration of stormwater
and associated pollutants

Nonparametric Wilcoxon signed ranked test indicated significant reductions for
concentrations and mass for total Cu, Pb, Zn for the HDD and total Al, Cu, Fe, Pb, Zn
for the dry infiltration pond

No significant reductions were observed for nutrients in either device

Performance Line Plots for Total Copper Concentrations Performance Line Plots for Total Copper Mass
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Sediment Accumulation in the
Hydrodynamic Separator Device

» Sediment grab samples were collected in each of the four chambers of the
HDD. No sediment was found in the fourth chamber (outlet)

» Most of the sediment captured in the chambers was greater than 45 um

» About 80 - 90% of the particles captured in the chambers were larger than
100 pm

=—chamber 1

= cham ber 2

= chamber 3

Percent Associated with Particle Size, or Smaller
"
S

10 100 1000 10000
Partide Size (micrometers)
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Example Relative Particulate Solids Mass
Percentage Distribution by Particle Size
March 4, 2014 Rain Event
Relative Particulate Solids MassPercentage Distribution by Particle size
(0.45 to 1180 um)
§ W HDD Influent
23 = HDD Effluent
g Dry Pond Effuent
0.45to03 3tol12 12to 30 il::‘oi::sue (s::;"z)o 120to 250 250 to 1180 >1180
Eppakayala 2015 o
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Dry Pond Infiltration Characteristics

* Infiltration tests were performed in 6 different locations within the pond
* Observed average infiltration rate was about 5 in/hr

Eocation 6

Location 5

Eppakayala 2015 b
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Infiltration Pond Characteristics

» Higher infiltration rates were observed at locations towards the pond side
slopes and outlet location of the pond

» The saturated infiltration rates ranged from 0.5 in/hr to 39 in/hr with an
average saturation rate of about 17 in/hr

Location -1

60

£U ‘ £=23.91 + (48.75-23.91) * exp (-15.48%) ‘

40

. ‘ £=11.67+ (22.5-11.67) * exp (-9.22%) ‘

Infiltration Rate (in/hr)

20

10

0 5 10 15 20 25 30 35 40 45 50
Time (min)
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Infiltration Pond Performance

» The dry infiltration pond was more
effective in attenuating runoff flows for .
the smaller storm events than the larger
storm events

» Large mass reductions of particulate i
pollutants in the dry pond were associated 2
with both sedimentation and infiltration of
the stormwater through the bottom of the  ..c.. = vimne — ovmine

po nd ‘Example hydrograph of a monitored larger event (2.36 inch rain depth)

» The filtered pollutants were only reduced
through infiltration

Storm Event 4/14/2014 - Hydrographs for Pond inflow and outflow
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Dry Pond Soil Sampling

» Samples were collected within the pond at six locations at different depths:
surface soil (level 1), 4 to 6 inches (level 2), and 1 to 2 feet (level 3)

» The surface soil samples were brownish in color and the samples obtained from
levels 2 and 3 were sandy

» Some of the constituents in the soils were analyzed using two different
methods: Mehlich 3 method (plant availability) and EPA 3050B Acid digestion
method (total concentration)

Eppakayala 2015 >

Distribution of pollutants in vertical soil profiles

» Metal and nutrient concentrations decreased significantly for lower level
samples compared to the surface soils

» Particulate pollutants are likely trapped near the surface due to filtering by
the soil

» The higher organic matter and CEC in the surface soils also likely play an
important role in adsorption of filtered metals near the surface soils

Copper (EPA Acid Digestion Method) Iron (EPA Acid Digestion Method)
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Multivariate Analyses of Soil Contaminant
Data

Identify the relationships between different soil parameters
and pollutant concentrations and predict group memberships

» Pearson Correlation Analyses: To determine simple linear
associations between different pairs of parameters

» Cluster Analyses: To examine more complex relationships
between different parameters

» Principal Component Analyses: To identify groupings of
parameters with similar characteristics to explain the
variability in the data

Eppakayala 2015 v
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Relationships among different soil parameters

» Strong correlations were observed between different metal concentrations retained in
the soil

» All the parameters in the study showed weak correlations with pH

» CEC and organic matter content showed strong correlations with potassium, calcium,
magnesium, nitrogen, carbon and the metal concentrations

z 2 B 1400
3 5 y=2.5x+47 3 1200 —192 _*
2 R? = 0.60 £ 000 2099 ]
S . . * =

15 S
& * e g 80
5 10 * £ 60 +
S g 400
3 5 2
- § 200
R s °
8 o 2 4 6 8 ) 20 40 60 80

% Organic Matter Ni Concentration (mg/Kg)
8
g 100 g5 o
= y =120x s
B o ose g .
= LS g 5
§ 600 5
H £
£ a0 ® 3 -
g / 2 .
H *
g o * i * £3 *
2 owe 0 » e A IR DN
0 2 4 6 8 4 5 6 7 8
% Organic Matter Soil pH

Eppakayala 2015 -

39

Pearson Correlation Analyses of Soil
Contaminant Data

Variables

Soil pH % Org Vin
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Migration of Pollutants in Vadose Zone under Dry
Pond

» The SESOIL model was used to predict the migration potential of the filtered
constituents in the vadose zone underneath the dry pond

» SESOIL uses soil, chemical, and meteorological values as input information

» The monitored effluent from HDD was used to describe the pollutant loads
available for infiltration and were loaded into the model as a monthly load (mass
per unit area)

» Rainfall hydrologic parameters were selected from SESOIL’s climatic database

» Soil parameters were selected from SESOILs soil database and site
measurements

» The pollutants modeled were filtered copper, filtered zinc, filtered iron, filtered
manganese, and nitrate

Parameter Site Values
pH 7
% Organic matter 3
Intrinsic 108 cm?
permeability
Bulk density 1.7 g/cm?
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Migration of Pollutants in Vadose Zone under Dry Pond

» The migration depths of metals stayed under 1.5 m for a simulation
period of 50 years, ignoring site runoff entering the pond, which is well
above the water table for the study site although nitrate reached the
maximum simulated depth within about 3 years

» The additional site runoff may increase these depths by about 10 times,
potentially reaching the water table after 50 years of operation

» The mobility for the metals, while low, was ranked as follows: Zn > Mn >

Cu>Fe
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Variations in pollutant migration with different

site conditions — Full Factorial Analyses

» Full factorial analyses were performed for zinc to examine the
effects of rainfall, intrinsic permeability, organic matter content,
and their interactions on migration depth

» High and low values for rainfall and soil parameters were selected
from the NRCS database included in SESOIL, and the high and low
values for zinc were selected from the NSQD data base for
residential and industrial land uses

Factor High (+) Low (-)

Zinc concentration (ug/L) (A) |500 50

0

ears
Mass Cate s contaminane depth plots for Nitwate
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Rainfall (cm/yr) (B) 154 (West Palm Beach, FL) |19.9 (Phoenix, AZ)

Intrinsic permeability (cm?) (C) |1.00E-07 1.00E-10
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Variations in pollutant migration with different site
conditions — Full Factorial Analyses

» Rainfall and intrinsic permeability were the most important factors, while
concentration, and their interactions, also showed significant effects on zinc
migration in the vadose zone

» No significant effect was associated with organic matter content

Normal Plot of the Effects on zinc migration
(response is Zinc, Alpha = 0.05)
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Variations in pollutant migration with different
site conditions — Response Surface Analyses

Maximum Penetration Depth, 50 ug/L Zn (cm/50 yrs) Maximum Penetration Depth, 500 ug/L Zn (cm/50 yrs)
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Heavy Industrial Site Monitoring Conclusions

Pre-treatment hydrodynamic devices are effective in removing larger particles,

but less effective for smaller particles

= PSD analyses indicated the average median particle size of the HDD influent samples
was about 20 um, while the effluent sample median particle size was about 12 um,
indicating preferential removal of the larger particles

=  Wilcoxon signed rank tests only indicated significant removals for concentrations and
mass for SSC and for particle sizes greater than 12 um

= Median particle size of the sediment captured in the HDD was about 250 um, with 90%
of the sediment mass greater than 45 um

The dry infiltration pond was very effective in reducing the runoff volumes for

monitored storm events, along with associated pollutant mass reductions, and

with small to moderate pollutant concentration reductions

= The pond hydrographs indicated high runoff reductions for smaller storm events
compared to the larger storm events

=  Wilcoxon signed rank tests showed statistically significant reductions for concentrations
and masses for particle sizes greater than 3 um, COD, and unfiltered heavy metals

= Medium to high removals were observed for heavy metal concentrations (>45%) and
high removals for masses of the metals (>90%)

Eppakayala 2015 »
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Sampling Plan for Stormwater Control Effectiveness at Cincinnati Zoo

Heavy Industrial Site Monitoring Conclusions
(cont.)

Influent sample analyses showed that suspended sediment concentrations
(SSC), COD, nutrients, and heavy metals were commonly found in the runoff,
some at potentially problematic levels

A full factorial analyses on median particle size, SSC, and metals to examine the
effects of rain depth, peak rain intensity, and the their interactions showed no
significant effects in relation of these factors, and their interactions to the
pollutant concentrations

Concentration variations of pollutants in the pond indicated increased surface
concentrations in areas along the main flow pathway and where the water
pooled

Infiltrating stormwater could reach the water table from <3 years (nitrates) to
50 years (metals)

Eppakayala 2015 -
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The prior land cover of the Cincinnati Zoo consisted of various paved
areas (including parking lot and exhibit areas), open space areas,
and steep wooded hillsides.

Stormwater runoff originally flowed in a northeastern direction into
catchbasins and storm sewers which were directly rerouted to the
Mitchell Avenue Regulator combined sewer system upstream from
combined sewer overflow (CSO) 482.

Retro-fitted controls included:

Replacement of pavement with pervious pavers and enhanced turf and
vegetation

Bioretention areas and tree wells

— Rainwater harvesting, storage and reuse system

— Storm sewer separation and roof leader collection

Talebi and Pitt 2013
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Asphalt Removal

Talebi and Pitt 2013
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49

Stormwater Beneficial Uses

Irrigation; (4,240,000 gallons annually)
— The Zoo is a heavy irrigator (close to 2"/week) due to high display
quality. The industry standard is 1"/week. Within the Africa Savannah
project there is 4 acres of irrigated area.

Providing water for filling Swan Lake; (10 months each year and will
be able at accept 8,000,000 gallons annually)

— Swan Lake has a surface area of 50,000 sf. It is generally at the highest
elevation of the Zoo and actually receives very little surface water. The
lake is was filled with a 2" domestic water line. The pond requires 6-9"
of make-up water 12 months out of the year.

Providing water for the bear ponds; (5,230,000 gallons each year)
— The existing bear moat requires between 400,000 to 500,000 gallons
of "make-up" domestic. water on a monthly basis. This translates to
13,350 to 16,600 ft3 per week. The Zoo constructed a pump and
filtration system that directs 10 gpm of water to the moat (24/7).

Talebi and Pitt 2013
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Flow sensor a

nd sampling locations
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X Water quality sampler
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Area-velocity flow swnsor

Talebiand Pitt 2013
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Area-velocity flow sensor in 12 inch
pipe

A small weep hole (3/8inch
diameter) to sllow complete
drainage to prevent AV

sensor from having freezing
water in winter.

Sensor Cable (Note routing) Upstream Pipe

Sensor Mounting Ring
6 I/nﬁhes 6 Inches 12 inches
>

\&r 15T v
L

SRR
TR |

1

M AT

Small dam Area-velocity

(2" height) sensor
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Talebi and Pitt 2013
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Summary of Stormwater Sampling and
Monitoring Efforts at Cincinnati Zoo

Inlet pipes

— 4 inlet automatic water sampler and 4 inlet flow monitor (one for
each pipe)

Outlet pipe
— 1 outlet automatic water sampler and 1 outlet flow monitor

Cistern
— 1 water level recorder in the cistern

— 4 inlet automatic water sampler after filter and before tank
(because we have four inlet pipes)

Therefore, a total of 9 automatic samplers (527k),
5 flow monitors ($17k), and 1 water level recorders ($0.65k) was
be needed at this location.

Talebi and Pitt 2013

Mass Balance Monitoring Components for
Cistern

AV

AV
Inlet Filter

wQ

Stage waQ

recorder

Talebi and Pitt 2013
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Cincinnati State Technical and Community College

v’ The site is located along
Ludlow Avenue east of
the intersection of Ludlow
Avenue and Central
Parkway.

v’ Total Drainage Area: 11.7
acre

v’ Located in two combined
sewer areas. Runoff from
the southern half of
campus flows south into
CSO 12, runoff from the
northern half of campus
flows north into CSO 21.
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Stormwater Sampling and Monitoring Locations
at Large Bioinfiltration System

HORN

] stilling well

X

Water quality sampler

Area-velocity flow swnsor

== |nstrument shefter

ORain gage

Talebi and Pitt 2013
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Monitoring and Sampling Locations at Level
Spreader Infiltration System

NO| PARKIK

® stilling well

D Water quality sampler (WQ)
™ Area-vebocity flow swnsor (AV)

B instrument shelter
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Water Quality Sampler and Flow Meters at
Inlets to Bioinfiltration System

A small weep hole (3/8 inch
A small dam diameter) to allow complete

drainage to prevent AV sensor

from freezing in winter

A small weep hole,
about 3/8 inch

diameter, to drain

water in winter

Excavation for installing

water quality sampler Existing Ground level

Talebi and Pitt 2013
58
Cross-Section of Level Spreader Infiltration
System
o7
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Water quality Influent arsa-velocity (AV) sensorupthe
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sampling

127 solid pipe. A 2" high “dam” or plate is

loeation (one 4inch diameter PVC pipe perforated stilling well Tocated below sensot to ensure>1" water
located in with water level recorder (perforated from bottom over sensor. A small 3/8" weep hole is on the
bottom trench of well to § inches below the sofl surface to botiom of the dam/plate to allow drainage to
only). prevent surface water from directly entering the prevent water freesing sensor

stilling well). These are wrapped withwashed
fiberglass window screening to prevent media

from entering the stilling wells. The top of the Influent water quality sampling
stilling wells extend several inched above the box/tray (below end of pipe in
ground also to pravent surface flows from excavated area, bottom 6 inches
Talebi and Pitt 2013 | enering the subsurface il dieety below imvert of ipe) 0
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Site Ranking Methodology:
Statistical consideration of permit limits,
natural background levels, number of
samples, and exceedance frequency to
identify the best locations for stormwater
controls at an industrial location

Pitt, et al. 2013

Legend
Secondary State or County Highway
—— Primary Limited Access or Interstate

—— Primary US or State Highway
—— Stream

Intermittent Stream

[ Los Angeles County
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Regulation of Santa Susana Field
Laboratory Stormwater

* Stormwater discharges are regulated by the Los
Angeles RWQCB through an individual NPDES
permit

* All outfalls monitored for all runoff producing
events.

* Permit includes Numeric Effluent Limits (NELs) for a

wide range of constituents (about 50) including:
— Dioxins (TCDD TEQ): 2.8x10® pg/L
— Total Lead: 5.2 pg/L
— Total Copper: 14 ug/L

Pitt, et al. 2013 &3
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\HW\% (1950-1988)

T~ S [ ventura County
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| Calleguas Creek
23 -
B Los Angeles River L_
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* 2800-acre former federal government rocket
engine testing and energy research facility

o 7 * Owned by the Boeing Company (post-1966)
and the U.S. Government

* Activities currently limited to demolition,
remediation, and restoration

* Expected future use: parkland and open space

Pacific Ocean

Pitt, et al. 2013
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NPDES Regulated Outfall Watersheds
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'Monitoring Locations

O Potential control subarea site
O stormwater background site
O Outfall monitoring site

16 background sites and 68 subareas
monitored during each event producing
flows to help locate additional controls.

65

Stormwater Control Site Ranking Methodology

Historical use of site (including testing of
rocket engines for moon landing missions)

Current site conditions (site sustained
devastating wild fires in 2005 and 2018)

Pitt, et al. 2013
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Overview of Ranking

* Innovative, statistically rigorous approach
* Rank potential control subarea monitoring sites based
on comparisons of:
— Stormwater subarea concentrations with NPDES permit
limits
— Stormwater subarea particulate strengths with stormwater
background particulate strengths
* Monitoring locations were scored based on number
and percent of samples above NPDES permit limits
and/or background
* Locations then ranked based on scores, and top
locations identified

* Process repeated annually

Pitt, et al. 2013 ¢/
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Attachment 1. Summary Flowchart for BMP Site Ranking Analysis Approach

A Assemble potential BMP subarea site
from ISRA and BMP monitoring monitoring results
datasets (concentrations in water, C)

a a ula
concentrations (A)
PS = (total-diss.)/TSS

Calculate PS concentrations (B) NPDES Permit Limits (D)

Compare:
- Potential BMP site PSs (B) with background PSs (A), and
- Potential BMP site concentrations (C) with NPDES permit limits (D)

Determine pollutant-specific
weighting factors (WFs) and max dioxin WFs
based on number of to determine multi- pollutant score. Rank potential
samples and percent above pollutant “score” BMP subarea monitoring sites
both critical thresholds. for each site. by TSS WFs.

Average max metal Rank potential BMP subarea

monitoring sites by multi-

Evaluate highest ranked sites for suitability
of new erosion or treatment controls, while Proceed with new
utilizing best professional judgment to BMP designs and
consider multi-pollutant and TSS scores, construction
status of ISRA soil removal, demolition planning for
recommended sites.

BMP siting analysis to be
repeated annually, along with
evaluation of potential BMP
monitoring locations

plans, existing or planned BMPs, and other
pertinent factors.

67
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Stormwater Control Subarea Ranking Methodology

* Statistical methodology (using binomial
distribution) developed to rank the sites based on
threshold comparisons while accounting for the
number of usable data available at each site

* “Weighting factors” were calculated for each site
for metals (cadmium, copper, and lead), dioxins
(TCDD TEQ and 2,3,7,8-TCDD), and TSS.

* Multi-constituent “score” was produced from metals and
dioxin weighting factors to allow for relative ranking amongst
potential BMP sites.

Pitt, et al. 2013 &
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Basic Approach (example)

< Background
> Permit Limit
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83

|
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Example:

Site A:n=10,m=7 -> Weight, =0.83
SiteB:n=14,m=2 - Weighty =0.01

Based on weight alone, Site A would be
prioritized over Site B.

Total Total Number of Critical Values in Data Set (m)
Number of
Observations 1 @ 3 4 5 6 @ 8 9 10 11 12 13 14
(n) ~
1 50 ] ¥ oy . .
2 50 Singlettail binomia
3 50 87 distribution (as used in
4 31 69 |94 sgme hon-parametric
> ® L L statistical-tests to-identif
6 11 1 |50 |66 |89 |98 Y
7 6 50 |50 |77 |94 significant|differences)
8 4 » [36 [s0 |ea [s6 39
2 25 [50 |50 |75 [Sk [98 |99
10 ) I Mies Jos |99 |99
1 11 |27 [s0 |50 89 |97 [99 |99
12 0 7 |19 [39 |50 |e3s |81 |93 |98 |99 |99
0 |5 |13 |29 |50 [50 |71 |87 |95 |99 [99 |99
14 ) 1 )3 ]9 J21 [40 [50 |61 |79 |91 [97 [99 [99 |99
lo 2 15 (30 |50 |50 |70 |85 |94 [98 |99 |a9
()
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Example: Dioxin (TCDD TEQ)
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10 10" 0" 10® 10

TCDD TEQ (ug/L) _ *°

Pitt, et al. 2013

¢ Background subareas
occasionally exceed NPDES
permit limit

¢ Water concentrations and
particulate strengths at
potential control subareas
generally greater than at outfalls

o

1008 (afler Oct. 2008)
11009 (botora Oct. 2009)
o (after Oct. 2008)
— = Currant NPDES Porn

v~ iy
107 LS 98.0
'E:,? 90.0
g‘ 80.0
S 700
g 60.0
& 500
g 400
ki 30.0
2 200 -
E
3
o 100
504°
20
10 T T
" 10 100 10 107 10 10 10 10 107

TCDD TEQ Particulate Strength (mg/kg)

72

11/21/2023

1Q



Example 2012/2013 Ranking Results

! Rank fr Rank fr
Potential BMP Approximate Multi- n::xim:: h::m“':z Total Number
Rank | Subarea (Co- Description BMP Status Upgradient | Constituent | "'l - of Events
focations) Drainage Area (ac) | Score weighting | welghting | S2mPled
Addressed by current
1 1LBMP0002* Road runoff to CM-9 BMP; Influent site 25 0.95 1° 6 9
N evempooos | | Addressed by current s ot - B 7
(a2swo001)* FLupstreamwest | ewip; influent site -
ELV culvert infet
3 | EvEMPO001-A® | (helipad road and ey | W e 2ddressed by 25 067 175 7 5
. BMP; discontinued
ditch, composite)
4| evempoooy'® | "eliPad (pre-sandbag | Addressed by current o e 155 o 0
berms)
, | 20L2/13EVdrEnsge |y ressed by
55 | evempooos ditch (pre-ELV-1C o 1 02 21 s 2
SRA)
CV9 downstream-
""D‘:f':ﬁ:'a;’“:i BMP site has since
55 | A1SW0009-A > P! been improved (old 164 063 a 21 1
removal, pre-fiter P
ste)
Fabric over weir
boards)
7 EVBMP0004® 2012/13 Lower Will be addressed by 18 062 2 315 3
Helipad Road
8 | apempopor® | AshPleculvert miet/ NA 3 060 s 21 2
road runoff
Cower ot 22" Addressed by current
9 1LBMP0001° BMP and planned 23 057 23 8 16
stormdrain outlet :
building demolition
B1BMPO00S
10 (B1SW0015, | B-1 media filter north A:i;iﬁi::::{“::t 37 053 29 2 6
518MP0004-5) :
Lowerlotsheetflow | 1 ed by current
145 | LPBMPOOOLA (post-gravel bag s recomties 51 050 375 3 6
| woolsey Canyon nosd | Addressed by current
145 | Biswooo? e BMP; Infiuent site; 13 050 10 21 2
discontinued i
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41 to 87% load reduction addressed by controls
recommended to treat 11% of the total 009 drainage area
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Example of Some of the Distributed Stormwater
Controls at the Santa Susana Field Laboratory

Pitt, et al. 2013 75

Water Quality Improvements with Site
Distributed Controls

* Demonstrated by increasing ranks (decreasing importance)
comparing influent and effluent.

O Influent M Effluent

45

>

i
w
vl

| Better water qual
=
wv

cMm1 CcM9 B1* Biofilter
Stormwater Control Examples

Pitt, et al. 2013 7
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Conclusions

Industrial stormwater can be highly contaminated
with metals and organics

Because of highly variable stormwater quality,
many samples are needed to characterize
industrial area stormwater and to develop the
most effective management plan

Treatment trains using both sedimentation and
filtration have been shown to be very robust

Need to identify the most significant sources of
contaminants on a site for control
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