R. Pitt June 17, 2004

Module 3: Regional Rainfall Conditions and Site Hydrology for Construction Site Erosion Evaluations

Introduction: Hydrology for the Design of Construction Erosion Controls Factors Affecting Runoff Local Rainfall Conditions Relevant to Construction Site Erosion and Sediment Control Design Typical Birmingham Rain Conditions Erosion Yields for Different Alabama Rain Categories Intensity, Duration and Frequency (IDF) Information for Rains Used to Design Erosion Controls Selection of Design Storms for Varying Risks and Project Durations Methods of Determining Runoff Use of the SCS (NRCS) TR-55 Method for Construction Site Hydrology Evaluations General Description of TR-55 for Small Watersheds Selection of the Curve Number Soil Characteristics Time of Concentration Calculations Sheetflow Shallow Concentrated Flow Channel Flow Example Travel Time Calculation Tabular Hydrograph Method Example Tabular Hydrograph Calculation Tabular Hydrograph Example for Urban Watershed Example use of WinTR55 Program Description Model Overview Capabilities and Limitations Model Input Processes Example WinTR-55 Setup and Operation Example Applications to Construction Sites Design Storms for Different Site Controls Runoff Water Depth Important Internet Links References Appendix 3-A. Tabular Hydrograph Unit Discharges (from TR-55, SCS 1986) Appendix 3-B. Rainfall Distribution for the US (from TR-55, SCS, and TP-40)

Introduction: Hydrology for the Design of Construction Erosion Controls

This chapter provides an overview of hydrology analysis techniques appropriate for the design of construction site erosion controls. The NRCS's TR-55 procedure will be used in this chapter, as it provides most of the needed information and is generally applicable to conditions found on most construction sites.

The reference list contains the URL for an on-line copy of TR-55, *Urban Hydrology for Small Watersheds* by the US Dept. of Agric./Soil Conservation Service (now NRCS) (1986). Recently, a Windows version of TR-55 (WinTR55) has become available (beta version) that can be used to greatly simplify these calculations, and that appropriate URL is also given. TR-55 provides a good set of tools to determine a number of hydrology parameters needed for effective design of construction site erosion controls. The following list shows typical controls and the types of hydrology information needed for complete evaluations and design (later chapters will review and present examples of how this information is used in these designs):

- Mulches water velocities and water depth
- · Ditch liners water velocities and water depth
- Slope down shoots peak flow rates
- · Diversion dikes and swales peak flow rates
- · Filter fabric fences water velocities and hydrographs
- Sediment ponds water volume and hydrographs

Factors Affecting Runoff

Rainfall

The extent of the storm, and the distribution of rainfall during the storm, are two major factors which affect the peak rate of runoff. The storm distribution can be thought of as a measure of how the rate of rainfall (intensity) varies within a given time interval. If a certain amount of precipitation was measured in a given 24-hour period, this precipitation may have occurred over the entire 24-hour period or in just one hour. The duration of the rain (and the peak intensity) directly affect the runoff rates.

The size of the storm is often described by the length of time over which precipitation occurs, the total amount of precipitation occurring and how often this same storm might be expected to occur (frequency). Thus, a 10-year, 24-hour storm can be thought of as a storm producing the amount of rain in 24 hours with a 10% chance of occurrence in any given year.

Antecedent Moisture Content

The runoff from a given storm is affected by the existing soil moisture content resulting from the precipitation preceding the event of interest (defined as a five day period by the NRCS). This has a much smaller effect in areas having mostly paved surfaces. On construction sites, this factor can be important.

• Surface Cover

The type of cover and its condition affects the runoff volume through its influence on the infiltration rate of soil. Bare soil at a construction site generates more runoff than forested or grass land for a given soil type. As a site develops, paving areas reduces the surface storage and infiltration capacity of the area and thus increases the amount of runoff.

The foliage and its litter maintain the soils infiltration potential by preventing the sealing of the soil surface from the impact of the raindrops. Some of the raindrops are retained on the surface of the foliage, increasing their chance of being evaporated back to the atmosphere. Some of the intercepted moisture is so long draining from the plant down to the soil that it is withheld from the initial period of runoff. Foliage also transpires moisture into the atmosphere thereby creating a moisture deficiency in the soil which must be replaced by rainfall before runoff occurs. Vegetation, including its ground litter, forms numerous barriers along the path of the water flowing over the surface of the land which slows the water down and reduces its peak rate of runoff.

Soils

In general, the higher the rate of infiltration, the lower the quantity of stormwater runoff. Fine textured soils, such as clay, produce a higher rate of runoff than do coarse textured soils, such as sand. In addition, compacted soils also produce much more runoff than natural soils (Pitt, *et al.* 1999). Sites having clay soils are much more susceptible to compaction problems than most other soils.

• Time of Concentration

The time of concentration (Tc) is the longest time needed for runoff to originate from the complete project site. The time of concentration effects the peak and shape of the hydrograph. With land clearing and subsequent development, the drainage efficiency usually dramatically increases, with associated much greater peak runoff values that occur earlier in the storm. In addition, land development (and soil compaction) decease the infiltration capacity of the site, further increasing the runoff volume, and peak rate of runoff.

Local Rainfall Conditions Relevant to Construction Site Erosion and Sediment Control Design

The following discussion is an example assessment of typical Alabama rain conditions to determine the frequency of highly erosive rains and the relative importance of various rains in generating construction site erosion yields. Figures 3-1 through 3-3 show the general variations of rain conditions over Alabama. These figures were prepared by Pitt and Durrans (1995) as part of a research project for the Alabama Dept. of Transportation. These analyses used data from the 1976 and 1977 rain period. These two years were determined to be representative of the average conditions from 1948 through 1994 based on total rain depth and the monthly distribution of rains. These data were obtained from EarthInfo (Golden, CO) CD-ROMS which are archives of the official NOAA data. Figure 3-1 is a contour map of the total annual rain depth, based on analyses at more than 120 rain gage stations located in Alabama and in surrounding states. There is little variability in rain conditions over most of the state (50 to 56 inches per year). The northwestern corner has less rain (down to about 46 inches), while the rain depth increases substantially moving towards the gulf coast (as high as 66 inches per year). There are usually a few more than 100 separate rain events per year in Alabama, defined using a minimum of 6 hours for the interevent period, with the smallest rains being 0.01 inches and the largest approaching 10 inches. Figure 3-2 presents the percentages of these annual rains having at least 0.25, 1.00, 2.5, and 5.00 inches. Few, if any, of the rains are likely greater than 5 inches in the central and northern portions of the state. Figure 3-3 shows the percentages of all storm interevent periods that are at least 3 and 15 days. Most interevent periods are about 3 days throughout the state, but few last as long as 2 weeks, especially near the gulf coast.

Figure 3-1. Annual rainfall variations over Alabama (Pitt and Durrans 1995).

PROBABILITY OF RAIN DEPTH 0.25" OR GREATER

PROBABILITY OF RAIN DEPTH 1.00" OR GREATER

2 9

PROBABILITY OF RAIN DEPTH 5.00" OR GREATER

Figure 3-2. Probabilities of individual rain storms having various rain depths in Alabama (Pitt and Durrans 1995).

Figure 3-3. Rain storm interevent periods for Alabama (Pitt and Durrans 1995).

Table 2.4. Dimpingham Dain Danth Distributions (suggests for 4075 and 4076)

Typical Birmingham Rain Conditions

Monthly rain depths from 1955 to 1986 were examined to identify a single rain year that had total depths and rain distributions similar to the long-term average conditions. The years 1975 and 1976 were found to both have similar rain conditions that were close to these average conditions. Individual events in these years were identified using hourly rain records for descriptive statistical summaries. A rain event was defined as a series of hourly observations containing no more than six adjacent hours having no rain. This definition has been commonly used in many urban runoff studies as it produces discrete runoff hydrographs. The six hour period of no rain also almost always allows urban streams to return to near baseflow conditions. Tables 3-1 and 3-2 summarize these rains.

Rain depth range (inches)	Interevent period (days)	Annual number of rains in range (out of 100 rains per year)	Total rain in range (inches)	% of annual rain in range	Accumulative % of rain in range
0 to 0.5	4	62	15.5	25	25
0.5 to 1.0	10	19	14.3	23	48
1.0 to 1.5	21	9	11.3	17	65
1.5 to 2.0	41	3	5.3	8	73
2.0 to 2.5	56	3	6.8	10	83
2.5 to 3.0	122	2	5.5	8	91
3.0 to 3.5	183	1	3.5	3	94
3.5 to 4.0	365	1	3.8	6	100

Table 3-2. Birmi	ngham Runoff Vo	olume Distributio	ons for Typica	I Construction S	ite
			A/ 6 66		

Rain depth range (inches)	Volumetric runoff coefficient (Rv)	Annual runoff in range (inches)	% of runoff in range	Accumulative % of runoff in range
0 to 0.5	0.27	4.2	19	19
0.5 to 1.0	0.34	4.9	22	41
1.0 to 1.5	0.36	4.1	17	58
1.5 to 2.0	0.39	2.0	9	67
2.0 to 2.5	0.41	2.8	11	78
2.5 to 3.0	0.44	2.4	10	88
3.0 to 3.5	0.45	1.5	4	92
3.5 to 4.0	0.48	1.8	8	100
Total, or weighted average:	0.36	23.7	100	

Table 3-1 lists the expected rainfall distribution for typical Birmingham conditions. There are about 100 individual rains per year in Birmingham, ranging from 0.01 to about 4 inches in depth. Most of the rains are less than 0.5 inches in depth, but more than one-half of the total annual rain depth is associated with rains greater than one inch. Rain interevent periods are important when determining the periods of time that bare ground may remain unprotected at construction sites. The interevent periods shown on this table are for all rains greater than the minimum rain in the range. As an example, rains greater than 2 inches occur about every 56 days, while rains greater than 0.5 inch occur about every 10 days.

Table 3-2 summarizes the runoff quantities that may be expected for each rain depth class, for a typical construction site area. More than half of the runoff from this area is associated with rains less than 1.5 inches in depth. Less than 20 percent of the runoff is associated with rains greater 2.5 inches in depth. Only rains greater than about 1.25 inches will contribute runoff quantities greater than 0.5 inches, a commonly used detention criterion contained in runoff control

ordinances. The first 0.5 inch of runoff from all rains therefore includes all rains smaller than about 1.25 inches, plus portions of larger rains. The remaining runoff, after the first 0.5 inch, totals about 5.5 inches for typical construction areas using the 1975 and 1976 Birmingham rains.

Erosion Yields for Different Alabama Rain Categories

It is possible to estimate the relative erosion contributions of different rains, as shown in Tables 3-17 through 3-21. Thronson (1973) presented the following equation to estimate the erosion potential for individual rains, when complete intensity information is not available:

where P is the rain depth, in inches, and dur is the rain duration, in hours. This equation was proposed for the original SCS type II rain category which was applicable for the complete US, except for the extreme west coast. Long-term rain series data for Huntsville, Birmingham, Tuscaloosa, Montgomery, and Mobile were extracted from EarthInfo CD-ROMS (Golden, CO) and processed in SLAMM (<u>www.winslamm.com</u>) to combine the hourly data into individual rain records. Each rain was defined as having at least a 6 hour dry interevent period. About 50 years of data were available for each city, although some of the records were incomplete. The number of events evaluated for each city ranged from about 2500 to 5200 separate rains. The calculations were made for each of 12 rain categories and the total annual R was estimated by multiplying the partial R for each category by the number of events in each category. The calculated annual R values for these 5 cities were slightly larger (differences of 6 to 34%) than the published annual R values. The main reason for these differences is that the published annual R values are median values for many separate years, while the R values used here were averaged values, which would be larger. The calculated R values for each category were therefore adjusted to indicate the approximate portion of the total annual R associated with the different rain categories.

The larger rains contribute most of the erosion potential for Alabama conditions. For all of these cities, except Mobile, the rain depth associated with the median of the annual R is about 2 inches, while it is about 2.5 inches for Mobile. About 5% of the annual rains are therefore responsible for about half of the annual erosion potential. Because of the long rain record used here, these rain series include several rare events, including the "50-year" event. It may be impractical to design erosion controls that can effectively withstand these very large events. Except for Mobile, rains greater than 4 inches occur less than once a year in most parts of the state. If a "typical" rain year was examined, the effects of these very large rains would be somewhat diminished. When the 1976 rain year for Birmingham was examined (a typical year for local rains), for example, the rain depth associated with the median erosion potential was reduced to about 1.75 inches.

Rain range (inches)	Mid Point Rain (inches)	Duration (hours)	Intensity (in/hr)	range category	% of rains in category	Thronson R	% of annual R in category	Accumulative % of total R
0.01 to 0.05	0.03	3	0.01	22.5	26.0	0.1	0.0	0.0
0.06 to 0.10	0.08	7	0.01	8.1	9.4	0.2	0.1	0.1
0.11 to 0.25	0.18	8	0.02	13.3	15.4	1.7	0.6	0.6
0.26 to 0.50	0.38	10	0.04	13.9	16.0	8.1	2.7	3.3
0.51 to 0.75	0.63	12	0.05	9.3	10.8	15.2	5.1	8.4
0.76 to 1.00	0.88	14	0.06	5.7	6.6	18.0	6.0	14.4
1.01 to 1.50	1.26	16	0.08	6.6	7.6	43.0	14.3	28.7
1.51 to 2.00	1.76	18	0.10	3.2	3.8	41.9	14.0	42.7
2.01 to 2.50	2.26	20	0.11	1.6	1.9	34.2	11.4	54.1
2.51 to 3.00	2.76	24	0.12	0.8	0.9	24.9	8.3	62.4
3.01 to 4.00	3.5	30	0.12	0.8	0.9	35.2	11.7	74.2
over 4.01	5.27	36	0.15	0.7	0.9	77.5	25.8	100.0
4425 events	51.1 vears	12.03 in max rain	Totals:	86.5	100.0	300.0	100.0	

Table 3-17. Erosion Potential Analysis for Huntsville Rains Occurring from 1958 through 1999

Table 3-18. Erosion Potential Analysis for Birmingham Rains Occurring from 1948 through 1999

Rain range (inches)	Mid Point Rain (inches)	Duration (hours)	Intensity (in/hr)	range category	% of rains in category	Thronson R	% of annual R in category	Accumulative % of total R
0.01 to 0.05	0.03	3	0.01	22.9	20.7	0.1	0.0	0.0
0.06 to 0.10	0.08	7	0.01	17.4	15.8	0.4	0.1	0.1
0.11 to 0.25	0.18	8	0.02	17.3	15.6	2.4	0.7	0.8
0.26 to 0.50	0.38	10	0.04	19.5	17.6	12.4	3.5	4.4
0.51 to 0.75	0.63	12	0.05	9.4	8.5	16.6	4.8	9.1
0.76 to 1.00	0.88	14	0.06	8.3	7.5	28.6	8.2	17.3
1.01 to 1.50	1.26	16	0.08	7.9	7.2	56.4	16.1	33.4
1.51 to 2.00	1.76	18	0.10	3.8	3.5	53.9	15.4	48.8
2.01 to 2.50	2.26	20	0.11	1.6	1.5	38.0	10.9	59.7
2.51 to 3.00	2.76	24	0.12	0.8	0.7	26.3	7.5	67.2
3.01 to 4.00	3.5	30	0.12	1.1	1.0	57.0	16.3	83.5
over 4.01	5.67	36	0.16	0.4	0.4	57.9	16.5	100.0
4583 events	41.5 years	13.58 in. max rain	Totals:	110.5	100.0	350.0	100.0	

Table 3-19. Erosion Potential Analysis for Tuscaloosa Rains Occurring from 1958 through 1999

			Average	myear m				
Rain range	Mid Point		Intensity	range	% of rains		% of annual R	Accumulative %
(inches)	Rain (inches)	Duration (hours)	(in/hr)	category	in category	Thronson R	in category	of total R

0.01 to 0.05	0.03	3	0.01	6.9	11.8	0.0	0.0	0.0
0.06 to 0.10	0.08	7	0.01	10.3	17.5	0.4	0.1	0.1
0.11 to 0.25	0.18	8	0.02	9.4	16.0	1.9	0.5	0.6
0.26 to 0.50	0.38	10	0.04	10.3	17.5	9.8	2.6	3.2
0.51 to 0.75	0.63	12	0.05	6.3	10.7	16.7	4.5	7.7
0.76 to 1.00	0.88	14	0.06	4.5	7.7	23.3	6.2	13.9
1.01 to 1.50	1.26	16	0.08	5.2	8.9	55.8	14.9	28.8
1.51 to 2.00	1.76	18	0.10	2.6	4.5	55.2	14.7	43.5
2.01 to 2.50	2.26	20	0.11	1.4	2.4	48.3	12.9	56.4
2.51 to 3.00	2.76	24	0.12	0.7	1.2	35.6	9.5	65.9
3.01 to 4.00	3.5	30	0.12	0.6	1.1	47.1	12.6	78.4
over 4.01	5.33	36	0.15	0.5	0.8	80.8	21.6	100.0
2535 events	43.2 years	11.76 in. max rain	Totals:	58.7	100.0	375.0	100.0	

Table 3-20. Erosion Potential Analysis for Montgomery Rains Occurring from 1948 through 1999 Average #/year in

Rain range (inches)	Mid Point Rain (inches)	Duration (hours)	Intensity (in/hr)	range category	% of rains in category	Thronson R	% of annual R in category	Accumulative % of total R
0.01 to 0.05	0.03	3	0.01	25.1	25.2	0.1	0.0	0.0
0.06 to 0.10	0.08	7	0.01	9.6	9.7	0.2	0.1	0.1
0.11 to 0.25	0.18	8	0.02	16.9	17.0	2.2	0.6	0.7
0.26 to 0.50	0.38	10	0.04	15.8	15.9	9.6	2.7	3.4
0.51 to 0.75	0.63	12	0.05	9.5	9.6	16.2	4.5	7.9
0.76 to 1.00	0.88	14	0.06	6.2	6.2	20.4	5.7	13.6
1.01 to 1.50	1.26	16	0.08	7.8	7.9	53.6	14.9	28.5
1.51 to 2.00	1.76	18	0.10	3.7	3.7	50.4	14.0	42.6
2.01 to 2.50	2.26	20	0.11	2.0	2.0	43.7	12.2	54.7
2.51 to 3.00	2.76	24	0.12	1.0	1.0	32.7	9.1	63.8
3.01 to 4.00	3.5	30	0.12	1.0	1.0	48.7	13.6	77.4
over 4.01	5.49	36	0.15	0.7	0.7	81.1	22.6	100.0
5121 events	51.5 years	10.96 in. max rain	Totals:	99.4	100.0	359.0	100.0	

Table 3-21. Erosion Potential Analysis for Mobile Rains Occurring from 1948 through 1999

Rain range (inches)	Mid Point Rain (inches)	Duration (hours)	Intensity (in/hr)	range category	% of rains in category	Thronson R	% of annual R in category	Accumulative % of total R
0.01 to 0.05	0.03	3	0.01	30.5	26.0	0.1	0.0	0.0
0.06 to 0.10	0.08	7	0.01	12.5	10.7	0.4	0.1	0.1
0.11 to 0.25	0.18	8	0.02	19.1	16.4	3.0	0.4	0.5
0.26 to 0.50	0.38	10	0.04	17.3	14.8	12.8	1.9	2.4
0.51 to 0.75	0.63	12	0.05	10.6	9.0	21.7	3.2	5.7
0.76 to 1.00	0.88	14	0.06	6.9	5.9	27.6	4.1	9.8
1.01 to 1.50	1.26	16	0.08	8.4	7.2	69.5	10.3	20.1
1.51 to 2.00	1.76	18	0.10	4.4	3.8	72.4	10.8	30.8
2.01 to 2.50	2.26	20	0.11	2.9	2.5	78.9	11.7	42.6
2.51 to 3.00	2.76	24	0.12	1.5	1.3	58.4	8.7	51.2
3.01 to 4.00	3.5	30	0.12	1.5	1.3	86.2	12.8	64.0
over 4.01	6.03	36	0.17	1.4	1.2	242.0	36.0	100.0
5239 events	44.7 years	11.81 in. max rain	Totals:	117.0	100.0	673.0	100.0	

Table 3-22 shows the variation of these large rains for the 1948 through 1999 rain period for Birmingham (41.5 years of data due to some missing data periods). From 1 to 8 (an average of 4.1) of these rains occur each year, but no obvious pattern is indicated. Table 3-23 examines these highly erosive rains for each month of the year, for this same Birmingham rain period. May through November appears to have fewer of these rains, however, September had the largest number of any month.

3-22. Number of Large Rains (>2 inches) per Year for Birmingham.

year	#/year	year	#/year	year	#/year
48	4	62	4	76	7
49	2	63	6	77	8
50	7	64	8	88	3
51	6	65	2	89	2
52	2	66	5	90	3
53	4	67	6	91	3
54	3	68	5	92	5
55	1	69	6	93	1
56	3	70	5	94	4
57	8	71	4	95	4

58	2	72	3	96	5
59	2	73	5	97	1
60	1	74	3	98	6
61	6	75	5	99	2
total:	172	min	1	st dev	2.0
average	4.1	max	8	COV	2.0

Table 3-23. Birmingham Rains by Month

	2.00 to 2.50	2.51 to 3.00	3.01 to 4.00	over 4.01	total
January	7	2	4	4	17
February	7	2	4	1	14
March	9	5	5	2	21
April	5	1	5	1	12
May	7	4	4	1	16
June	6	0	5	0	11
July	5	2	2	2	11
August	4	5	1	1	11
September	9	7	5	1	22
October	0	3	5	1	9
November	8	1	1	1	11
December	6	2	6	3	17
Total for 41.5 years of record	73	34	47	18	172
Average (#/year):	1.8	0.8	1.1	0.4	4.1

Intensity, Duration and Frequency (IDF) Information for Rains Used to Design Erosion Controls

As noted above, rains having high intensities typically contribute the highest erosion yields. Individual rains that may occur in any month can contribute excessive erosion losses. Very rare rains, occurring at most only once every year and usually much less frequently, typically receive the most attention for flooding and drainage studies. When these rare rains do occur, great erosion yields will occur and most erosion and sediment control devices will fail. As an example, Figure 3-4 shows the peak rain intensities for short rain durations and long return periods for Birmingham, AL. Rains having average intensities of almost 3 inches per hour lasting for 30 minutes are expected to occur with a 50 percent probability every year. Five minute peak rain intensities (inches per hour also occur with a probability of at least 50 percent every year. Table3-3 lists the approximate rain depths (inches) and average rain intensities (inches per hour) associated with rain, durations from 1 to 24 hours and return frequencies of 1 to 100 years for Birmingham. Also shown on this table are three maximum probable events, associated with 6, 12, and 24 hour rain durations. It would be very difficult to design effective erosion and sediment control practices that can withstand the high runoff rates than may occur during many of these "design storm" events.

Figure 3-4. Intensity, duration, and frequency (IDF) curve for Birmingham, AL

Duration (hours)	Probability (P, % occurrence per vear)	Frequency (1/P, years)	Rain Depth (inches)	Rain Intensity (inches per hour)
1	100	1	15	15
2	100	1	1.0	1.0
3	100	1	2.1	0.7
6	100	1	2.5	0.4
12	100	1	3.0	0.3
24	100	1	3.5	0.1
1	20	5	2.3	2.3
2	20	5	2.8	1.4
3	20	5	3.1	1.0
6	20	5	3.8	0.6
12	20	5	4.5	0.4
24	20	5	5.3	0.2
1	10	10	2.6	2.6
2	10	10	3.3	1.7
3	10	10	3.5	1.2
6	10	10	4.3	0.7
12	10	10	5.1	0.4
24	10	10	6.0	0.3
1	4	25	3.1	3.1
2	4	25	3.6	1.8
3	4	25	4.0	1.3
6	4	25	5.0	0.8
12	4	25	6.0	0.5
24	4	25	6.9	0.3
1	2	50	3.4	3.4
2	2	50	4.0	2.0
3	2	50	4.4	1.5
6	2	50	5.5	0.9
12	2	50	6.6	0.6
24	2	50	7.6	0.3
1	1	100	3.8	3.8
2	1	100	4.4	2.2
3	1	100	4.9	1.6
6	1	100	6.0	1.0
12	1	100	7.2	0.6
24	1	100	8.4	0.4
6	Maximum probable e	event	31	5.2
12	Maximum probable e	event	37	3.1
24	Maximum probable e	event	42	1.8

Table 3-3. Rare Birmingham Rain Conditions

Appendix 3B contains rainfall distribution maps for the whole country.

The Alabama Rainfall Atlas is available at: http://www.bama.ua.edu/~rain/. This web site, prepared by Dr. Rocky Durrans of the University of Alabama for the Alabama Dept. of Transportation, calculates and presents IDF curves for any location in the state of Alabama. IDF equation coefficients were calculated based on long term rain records for many state locations. This web site then interpolates the coefficients for any location on the state map and presents graphical and tabular IDF information. The IDF information is presented for 2 to 500 year rains and for 5 minutes to 48 hours durations. The web site will also produce SCS design hyetographs. Figure 3-6 is the main map that is displayed for the Atlas. The user simply clicks the mouse anywhere an IDF calculation is desired, and selects if a map or table (or both) is desired. In most cases, the "partial duration" option is probably desired in order to be more consistent with historical NOAA IDF curves (not a significant difference for the large, rare, rains, but more of an effect on the smaller events). These IDF curves are likely to vary from the "official" older NOAA IDF curves as they are obtained from more recent data (the Alabama Rainfall Atlas values seem to be slightly smaller than the NOAA values). The bottom button is then clicked to accept the choices and the desired outputs are produced. Figure 3-7 is an example for Mobile, AL, showing both an IDF graph and a table. This is a preliminary product and the "print" options indicated are not yet functioning. However, it is possible to use a simple print screen utility to capture the calculated IDF information.

Figure 3-6. Opening map for the Alabama Rainfall Atlas.

Figure 3-7. IFD information produced by the Alabama Rainfall Atlas for Mobile, AL.

Figures 3-8 and 3-9 refer to the SCS rain distribution types that are commonly used in urban drainage design. The cumulative rain distribution in Figure 3-8 shows how the rain intensities vary throughout this hypothetical event. The slope of this curve, averaged over the time of concentration (described later) is the rain intensity that corresponds to the value on the IDF curve. Figure 3-9 shows which of these rain types are applicable for different southeastern US areas. Most of the US uses type II rains, but the gulf coast and eastern seaboard use type III rains. Type I and IA are used in some parts of the western states.

Figure 3-8. Cumulative distribution curves for different SCS rain types.

Figure 3-9. SCS rain distribution types for southeastern US (NRCS 2002b)

Appendix 3B includes a map showing the rainfall distribution types for the country.

Selection of Design Storms for Varying Risks and Project Durations

The selection of appropriate control practices must consider potentially high runoff flow rates corresponding to relatively large rains. As an example, the use of filter fences is not recommended in channels that drain large areas. Filter fences are most suitable for controlling sheet flows originating from relatively small

areas. More robust sediment control practices, such as wet detention ponds, are needed for treating runoff from large areas. Similarly, the use of unreinforced mulches can only be used on flat slopes with small contributing areas. The following paragraphs describe how to select an appropriate "design storm" based on acceptable failure rates and exposure periods.

The following equation (from McGhee 1991) can be used to calculate the probability that a rain having a return period of "n" years, will occur at least once in the next "y" years:

Figure 3-10 is a plot (McGhee 1991) illustrating this relationship, but modified to show the probability of an event not being exceeded during the design period. As an example, one needs to be certain, with a 90% probability that a failure would not occur during a 5-year project period (the exposure period, or T_d). A storm having a 50 year return period (T) would be the appropriate design storm frequency for this condition.

Figure 3-10. Probability of design storm (design return period) not being exceeded during the project life (design period) (from McGhee 1991).

Obviously, if failure could possibly lead to serious property damage or loss of life, then the probability of an event that may cause such failure not occurring during the project design life will need to be very large. Similarly, if only minor inconvenience will be associated with a failure, then the probability of that event not occurring during the design period can be much less. Table 3-4 illustrates several examples for a typical construction period of one year. The design storms could therefore vary greatly for different elements on the same project site. A filter fence failure may not be very serious if the site runoff is also being captured by a downstream sediment pond. However, the failure of the pond could cause much greater problems. Similarly, the slope along a filled embankment near a building foundation could cause structural failure if massive erosion occurred on the slope. In these cases and for a one year construction period, the filter fence may be designed using a 1.9 year design storm (acceptable failure probability of 50% in the one year period), the pond may require a 10 year design storm (acceptable failure probability of 50% in the one year design storm (acceptable failure probability of <5% in the one year period).

Table 3-4. Design Storm Return Periods	Associated with Different Probability	y Levels for a 1-year Construction Period
--	---------------------------------------	---

Probability of storm not being exceeded in a one year (T _d on Fig 2.5) construction period	Design storm return period (T on Fig 2.5)		
50%	1.9 year		
75%	6.5		
90%	10		
95%	20		

Methods of Determining Runoff

Many different methods of computing runoff have been developed. Some of the methods and limitations of each are summarized on Table 3-5 and summarized below (from Illinois 1989).

Table 3-5. Selection Criteria for Runoff Calculation Methods (Illinois 1988)

Output Requirements	Drainage Area		Appropriate Method				
Peak Discharge Only	Up to 20 acres	1		3	4	5	
	Up to 2,000 acres		2	3	4	5	
	Up to 5 square miles		2	3		5	
	Up to 20 square miles		2	3		5	
Peak Discharge and Total Runoff	Up to 2,000 acres		2	3	4	5	
Volume	Up to 5 square miles		2	3		5	
	Up to 20 square miles		2	3		5	
Runoff Hydrograph	Up to 5 square miles		2	3		5	
	Up to 20 square miles		2	3		5	

1 Rational Method

2 SCS TR-20 Method

3 SCS TR-55 Tabular Method 4 SCS TR-55 Graphical Peak Discharge Method

5 COE HEC-1 Method

1. The Rational Method is an empirical formula used for computing peak rates of runoff that has been used in urban areas for over 100 years (Q=CiA). It is useful for estimating runoff on relatively small areas such as roof tops, parking lots, or other homogeneous areas. Use of the rational equation should be limited to drainage areas less than 20 acres that do not vary in surface character and do not have branched drainage systems. The most serious drawback of the rational method is that it gives only the peak discharge and provides no information on the time distribution of the storm runoff, disallowing routing of hydrographs through the drainage system or storage structures. Furthermore, the choice of "C" and "Tc" when choosing "i" in the rational method is more an art of judgment than a precise account of the antecedent moisture condition or an aerial distribution of rainfall intensity. Many errors have been reported in the use of the Rational Method, and it cannot be easily verified. Modifications of the rational method have similar limitations. The rational method may be applicable in small, isolated sections of construction sites. The rational method will be used later in this chapter, and in the next chapter, for predicting sheetflow runoff depth needed for shear stress calculations for isolated slopes.

2. The SCS-TR-20 computer program utilizes hydrologic soil and cover runoff curve numbers to determine runoff volumes and unit hydrographs to determine peak rates of discharge and combined hydrographs. Factors needed to use the method are the 24-hour rainfall amount, a given rainfall distribution, runoff curve numbers, time of concentration, travel time, and drainage area. This procedure probably should not be used for drainage areas less than 50 acres or more than 20 square miles. It is very useful for larger drainage basins, especially when there are a series of structures or several tributaries to be studied. Recently, a preliminary Windows version of TR-20 has become available, making the method easier to use.

3. The SCS TR-55 Tabular hydrograph is an approximation of the more detailed SCS TR-20 method. The Tabular Method divides the watershed into subareas, computes an outflow hydrograph for each, and then combines and routes each subarea hydrograph to the outlet. It is especially useful for measuring the effects of changing land use in a part of a watershed. It can also be used to determine the effects of hydraulic structures and combinations of structures, including channel modifications, at different locations in a watershed. The Tabular Method should not be used when large changes in the curve number occur among subareas within a watershed and when runoff volumes are less than about 1.5 inches for curve numbers less than 60. For most watershed conditions, however, this procedure is adequate to determine the effects of urbanization on peak rates of discharge for subareas up to approximately 20 square miles in size. The recent preliminary Windows version of TR-55 has many improvements and is much easier to use than the older manual method or the original computer version. It is applicable for many conditions at construction sites and will be described later in this chapter.

4. The SCS TR-55 Graphical Method calculates peak discharge using an assumed unit hydrograph and an evaluation of the soils, slope, and surface cover characteristics of the watershed. The assumed unit hydrograph is based on design considerations rather than meteorological factors. Correction factors for swampy or ponding conditions can be used. This method is a component of the older TR-55 procedures and is not included in the new Windows version of TR-55. It is not a very suitable tool, as it has most of the same limitations as the rational method (specifically no hydrograph routing capabilities).

5. The COE-HEC 1 provides similar evaluation as the SCS TR-20. It is a rainfall-runoff model that can be calibrated to gauge records. Like TR-20, it can be used on both simple and complex watersheds. Several years ago, the older HEC-1 was superseded by the HEC-HMS (Hydrologic Modeling System) that is a Windows based program and much easier to use. Because of its complexity, it is not a very suitable tool for use at most construction sites. However, if complex conditions exist, like at some highway sites where relatively large streams are crossed by the construction activities, its use may be warranted.

Use of the SCS (NRCS) TR-55 Method for Construction Site Hydrology Evaluations

General Description of TR-55 for Small Watersheds

The complete User Guide for TR-55 (1986 version) can be downloaded from:

http://www.wcc.nrcs.usda.gov/water/quality/common/tr55/tr55.pdf. According to the NRCS (2002), Technical Release 55 (TR-55) Urban Hydrology for Small Watersheds was first issued in January 1975 as a simplified procedure to calculate the storm runoff volume, peak rate of discharge, hydrographs and storage volumes required for storm water management structures (SCS 1975). This initial version involved manual methods and assumed the Type II rainfall distribution for all calculations. In June 1986, major revisions were made in TR-55 by adding three additional rainfall distributions (Type I, IA and III) and programming the computations. Time of concentration was estimated by splitting the hydraulic flow path into separate flow phases (SCS 1986). This 1986 version is the last non-computerized version and has been widely used for drainage design in urban areas.

Even though the manual version of TR-55 is currently being phased out, its use may still be of interest when examining construction sites. In addition, the User Guide for TR-55 (SCS 1986) contains a more through description of the basic processes included in the model. A later discussion presents a description and example of the Windows version of the program.

Only the following site characteristics are needed to use TR-55: drainage area, curve number (CN), and time of concentration (Tc). With this information, it is possible to develop a hydrograph for a specific design storm. If in a complex drainage area, the watershed can be subdivided into subwatersheds for routing the flows through the system. The following paragraphs describe the elements of TR-55 that are of most interest for use on construction sites, and present examples for its use.

Selection of the Curve Number

The first part of using TR-55 is to select the curve number. The curve number is simply the single parameter that relates runoff to rainfall. This is illustrated in Figure 3-11. The following equation shows how the CN is used to calculated the runoff depth, Q in inches, from the precipitation depth, P in inches, and the curve number, CN:

$$Q = \frac{\left[P - 0.2\left(\frac{1000}{CN} - 10\right)\right]^2}{P + 0.8\left(\frac{1000}{CN} - 10\right)}$$

Figure 3-11. Basic SCS rainfall-runoff relationship for different CN values (SCS 1986).

Tables 3-6 and 3-7 are used to select the most appropriate curve numbers for an area. For construction sites, Table 3-6 shows that newly graded areas have curve numbers ranging from 77 for A type soils to 94 for D type soils. These are relatively high compared to typical pre-development conditions (woods ranging from 30 to 77), reflecting the increase in runoff volume during the period of construction, and the associated increased runoff rate.

Table 3-6. Typical Curve Number Values for Urban Areas (SCS 1986)

Average percent Impervious area 2' A B C DCover type and hydrologic conditionImpervious area 2' A B C DFully developed urban areas (vegetation established)Open space (lawns, parks, golf courses, cemeterles, etc.)?: Por condition (grass cover 50% to 70% at Good condition (grass cover > 75%) Bar coulding right-of-way).68 99 99 9979 98 98 9899 99 98Pave d parking lots, roofs, driveways, etc. (excluding right-of-way).98 998 98 98 98 98 998 <br< th=""><th> Cover description</th><th></th><th></th><th>Curve n hydrologic</th><th>mbers for soil group</th><th></th></br<>	Cover description			Curve n hydrologic	mbers for soil group	
Cover type and hydrologic condition impervious area 2' A B C D Fully developed urban areas (vegetation established) 0		Average percent				
Fully developed urban areas (vegetation established) Open space (lawns, parks, golf courses, cemeteries, etc.) 3 : Poor condition (grass cover < 50%) 68 79 86 89 Fair condition (grass cover < 50%) 49 60 79 84 Good condition (grass cover > 75%) 39 61 74 80 Impervious areas: 98 98 98 98 98 Streets and roads: 98 98 98 98 98 Paved parking lots, roofs, drive ways, etc. 98 9	Cover type and hydrologic condition	mpervious area 2′	Α	В	с	D
Open space (lawns, parks, golf courses, cemeteries, etc.)*: 68 79 86 89 Poor condition (grass cover 506) 49 69 70 84 Good condition (grass cover 506 to 706) 49 60 70 84 Good condition (grass cover > 756) 39 61 74 80 Inpervious areas: 39 61 74 80 Streets and roads: 98 98 98 98 98 Paved; curbs and storm sewers (excluding right-of-way) 98 98 98 98 Dirt (including right-of-way) 83 89 92 93 Gravel (including right-of-way) 72 82 87 89 Western desert turban areas 77 85 89 91 91 94 96<	Fully developed urban areas (vegetation established)					
Poor condition (grass cover 50%) 68 79 86 89 Pair condition (grass cover 50% to 75%) 49 60 79 84 Good condition (grass cover > 75%) 39 61 74 80 Impervious areas: 39 61 74 80 Streets and roads: 98 98 98 98 98 98 Paved, curbs and storm sewers (excluding right-of-way) 98 <td>Open space (lawns, parks, golf courses, cemeteries, etc.)?:</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Open space (lawns, parks, golf courses, cemeteries, etc.)?:					
Pair condition (grass cover 50% to 70%)	Poor condition (grass cover < 50%)		68	79	86	89
Good condition (grass cover > 75%)39617490Inpervious areas:Paved parking lots, roofs, driveways, etc.98989898Paved, curbs and storm sewers (excluding right-of-way)98989898Paved, curbs and storm sewers (excluding right-of-way)98989898Paved, curbs and storm sewers (excluding right-of-way)98989898Paved, open ditches (including right-of-way)83899293Gravel (including right-of-way)83899293Dirt (including right-of-way)76858991Dirt (including right-of-way)72828789Natural desert landscaping (impervious areas only) #63778588Artifieid desert landscaping (impervious areas only) #96969696Urban districts9696969696Commercial and business8589929495I sa cer e less (town houses)657785909214 acre386175833713361 2 acre2051657785912 acres20516577829194Developing urban areasNewly graded areas (pervious areas only, no vegetation) #77869194Ideate text bot 0 col <td>Fair condition (grass cover 50% to 75%)</td> <td></td> <td>49</td> <td>69</td> <td>79</td> <td>84</td>	Fair condition (grass cover 50% to 75%)		49	69	79	84
Impervious areas: Paved parking lots, roofs, driveways, etc. 98 98 98 98 98 Streets and roads: Paved, curbs and storm sewers (excluding right-of-way) 98	Good condition (grass cover > 75%)		39	61	74	80
Paved parking lots, roofs, driveways, etc. 98 98 98 98 98 (excluding right-of-way) 98 98 98 98 98 Paved; curbs and storm sewers (excluding right-of-way) 98 98 98 98 Paved; curbs and storm sewers (excluding right-of-way) 98 98 98 98 Paved; open ditches (including right-of-way) 83 89 92 93 Gravel (including right-of-way) 76 85 89 91 Dirt (including right-of-way) 72 82 87 89 Western desert turban arceas: 83 77 85 88 Natural desert landscaping (impervious areas only) 4' 63 77 85 89 Commercial and busines: 85 89 92 94 95 Commercial and busines: 85 89 92 94 95 1/8 acre 96 96 96 96 96 96 1/8 acre 98 91 93 93 93 93 1/8 acre 98 91 <	Impervious areas:					
(excluding right-of-way)989898989898Streets and roads:Paved; curbs and storm sewers (excluding right-of-way)9898989898Paved; curbs and storm sewers (excluding right-of-way)989898989898Paved; curbs and storm sewers (excluding right-of-way)989898989898Paved; curbs and storm sewers (excluding right-of-way)989898989898Paved; open ditches (including right-of-way)83899293Gravel (including right-of-way)72828789Natural desert landscaping (pervious areas only) \checkmark 63778588Natural desert landscaping (inpervious weed barrier, desert shrub with 1-to 2-inch sand or gravel nuclch and basin borders)96969696Urban districts969696969696Commercial and business8589929495I/S acre or less (town houses)65778590921/A acre38617583871/3 acre20516577821/2 acre2051657782Developing urban areas2051657782Newly graded areas (pervious areas only, no vegetation) \checkmark 77869194Idle lands (CN's are determined using cover types949	Paved parking lots, roofs, driveways, etc.					
Streits and roads: 98 99 93 93 93 96 91 92 92 91 91 91 91 91 91 91 91 91 91 91	(excluding right-of-way)		98	98	98	98
Paved, curbs and storm severs (excluding right-of-way) 98 91 93 77 85 89 91 Natural desert landscaping (pervious areas only) III	Streets and roads:					
right-of-way) 98 91 91 94 95 <td>Paved: curbs and storm sewers (excluding</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Paved: curbs and storm sewers (excluding					
Paved: open ditches (including right-of-way) 83 89 92 93 Gravel (including right-of-way) 76 85 89 91 Dirt (including right-of-way) 72 82 87 89 Western desert urban areas: 72 82 87 89 Natural desert landscaping (pervious areas only) \checkmark 63 77 85 88 Artificial desert landscaping (pervious areas only) \checkmark 63 77 85 88 Artificial desert landscaping (pervious areas only) \checkmark 63 77 85 89 desert standscaping (pervious areas only) \checkmark 63 77 85 89 desert standscaping (pervious areas only) \checkmark 63 77 85 90 for and string orders) 96 96 96 96 96 Commercial and business 85 89 92 94 95 I S acre or less (town houses) 65 77 85 90 92 I A acre 20 51 68 72 81 86 I 2 acre 20 51 68	right-of-way)		98	98	98	98
Gravel (Including right of way) 76 85 89 91 Dirt (Including right of way) 72 82 87 89 Western desert undscaping (pervious areas only) \mathscr{L} 63 77 85 88 Natural desert landscaping (Inervious weed barrier, desert shrub with 1- to 2-inch sand or gravel nulch and basin borders) 96 96 96 96 Commercial and business 85 89 92 94 95 Industrial 72 81 89 91 93 Residential districts by average tot size: 72 81 89 92 1/3 acre 30 57 75 80 92 1/4 acre 38 61 75 83 87 1/2 acre 30 57 72 81 86 1/2 acre 20 51 68 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Developing urban areas 12 46 65 77 <	Payed: open ditches (including right-of-way)		83	89	92	93
Dirt (including right-of-way) 72 82 87 89 Western desert landscaping (pervious areas only) 63 77 85 88 Artificial desert landscaping (inpervious weed barrier, desert shundscaping (inpervious areas only, no vegetation) \mathbb{Z}^{\prime} 96 96 96 96 Viewly graded areas (pervious areas only, no vegetation) \mathbb{Z}^{\prime} 77 86 91 94 Idle lands (CN's are determined using cover types areater shundscaping (inpervious deve types) 77 86 91 94	Gravel (including right-of-way)		76	85	89	91
Western desert urban areas: 63 77 85 88 Natural desert landscaping (pervious areas only) # 63 77 85 88 Artificial desert landscaping (inpervious weed barrier, desert shrub with 1- to 2-inch sand or gravel nulch and basin borders). 96 <	Dirt (including right-of-way)		72	82	87	89
Natural desert landscoping (pervious areas only) # 63 77 85 88 Artificial desert landscoping (impervious weed barrier, desert shrub with 1: 02 inch same of gravel mulch and basin borders) 96	Western desert urban areas:				φ.	
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) 96 96 96 96 and basin borders) 96 96 96 96 96 Urban districts: 96 96 96 96 Commercial and business 85 89 92 94 95 Industrial 72 81 88 91 93 Residential districts by average lot size: 72 81 88 91 93 1/8 acre 38 61 75 83 87 13 86 17 83 81 12 86 12 86 12 86 12 86 77 82 91 94 24 25 54 70 80 85 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 86 12 12 <t< td=""><td>Natural desert landscaping (pervious areas only) #</td><td></td><td>63</td><td>77</td><td>85</td><td>88</td></t<>	Natural desert landscaping (pervious areas only) #		63	77	85	88
desert shrub with 1- to 2-inch sand or gravel mulch and bosin borders). 96 96 96 96 Urban districts: 96 96 96 96 96 Commercial and business 85 89 92 94 95 Industrial 72 81 88 91 93 Residential districts by average lot size: 72 81 86 91 93 1/8 acre or less (town houses) 65 77 85 90 92 94 95 1/8 acre or less (town houses) 65 77 85 90 92 94 95 91 94 1/2 acre 38 61 75 83 87 91 94 1/2 acre 20 51 65 77 82 94 85 1 acre 20 51 65 77 82 94 84 2 acres 12 46 65 77 82 94 94 Developing urban areas 77 86 91 94 94 94 94	Artificial desert landscaping (impervious weed barrier.				00	
and basin borders) 96 96 96 96 Urban districts: 0 96 96 96 Commercial and business 85 89 92 94 95 Industrial 72 81 88 91 93 Residential districts by average lot size: 72 81 88 91 93 1/8 acre or less (town houses) 65 77 85 90 92 1/4 acre 38 61 75 83 87 1/2 acre 39 57 72 81 86 1/2 acre 20 51 68 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) \$/ 77 86 91 94 Idle bands (CN's are determined using cover types 77 86 91 94	desert shrub with 1- to 2-inch sand or gravel mulch					
Urban districts: 0 0 0 0 0 Commercial and business 85 89 92 94 95 Industrial 72 81 88 91 93 Residential districts by average lot size: 72 81 88 91 93 1/3 acre 38 61 75 83 87 13 86 12 1	and basin borders)		96	96	96	96
Newly graded areas (pervious areas only, no vegetation) ½ 25 54 92 94 95 Industrial 72 81 88 91 93 Isster or less (town houses) 65 77 85 90 92 1/4 acre 38 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 30 57 72 81 86 1/2 acre 20 51 65 77 82 Developing urban areas 12 46 65 77 82 Developing urban areas 77 86 91 94	Urban districts		00	20	20	00
Industrial 72 81 88 91 93 Residential districts by average lot size: 65 77 85 90 92 1/4 acre 38 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 30 57 72 81 86 1/2 acre 25 54 70 90 85 1/2 acre 20 51 66 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) 2/ 77 86 91 94 Idle lands (CN's are determined using cover types 77 86 91 94	Commercial and business	85	89	02	0.4	95
Residential districts by average lot size: 12 61 65 77 85 90 92 1/4 acre	Industrial	72	81	88	91	03
1/8 acre or less (town houses). 65 77 85 90 92 1/4 acre 38 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 30 57 72 81 86 1/2 acre 25 54 70 90 85 1 acre 20 51 68 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) \$2'	Residential districts by average lot size:			00	~	
1/4 acre 38 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 20 51 68 79 84 1/2 acre 20 51 68 79 84 2 acres 20 51 65 77 82 Developing urban areas 12 46 65 77 82 Developing urban areas 77 86 91 94 Idle lands (CN's are determined using cover types 77 86 91 94	1/8 acre or less (town houses)	65	77	85	90	02
1/3 acre 30 57 72 81 86 1/2 acre 25 54 70 80 85 1 acre 20 51 68 79 84 2 acres 20 51 65 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) \$/ 77 86 91 94 Idle bands (CN's are determined using cover types 77 86 91 94	1/4 acre	38	61	75	83	87
1/2 acre 25 54 70 80 85 1 acre 20 51 68 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) 2/ 77 86 91 94 Idle lands (CN's are determined using cover types 90 91 94	1/3 arra	30	57	72	81	86
1 acre 20 51 68 79 84 2 acres 20 51 68 79 84 2 acres 12 46 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) ¥ 77 86 91 94 Idle lands (CN's are determined using cover types areation there is table 0.00 60 60 60 60 60 61 61 61 61 61 61 61 61 62 61 62 62 62 62 63 61 62 62 62 62 62 62 62 62 63 61 94	1/2 acra	25	54	70	80	85
2 acres 20 65 77 82 Developing urban areas 12 46 65 77 82 Newly graded areas (pervious areas only, no vegetation) ½ 77 86 91 94 Idle lands (CN's are determined using cover types 77 86 91 94	laara	20	51	68	70	84
Developing urban areas Developing urban areas Newly graded areas (pervious areas only, no vegetation)	2 aaras	12	46	85	77	82
Developing urban areas Newly graded areas (pervious areas only, no vegetation)≱⁄77 86 91 94 Idle lands (CN's are determined using cover types	2 act (3	10	40	00		06
Newly graded areas (pervious areas only, no vegetation) 5/	Developing urban areas					
(pervious areas only, no vegetation) 2/ 77 86 91 94 Idle lands (CN's are determined using cover types dirable to be be below 0 000	Newly graded areas					
Idle lands (CN's are determined using cover types	(pervious areas only, no vegetation)≌′		77	86	91	94
about a the case to table (1,0,0)	Idle lands (CN's are determined using cover types					
EINTINE TO TROPO IN TROM 2000	cimilar to those in table 2.2a)					

Average runoff condition, and I₄ = 0.23.
 The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 58, and pervious areas are considered equivalent to open space in good hydrologic condition. (N's for other combinations of conditions range be computed using figure 23 or 24.
 CN's shown are equivalent to those of pasture. Composite CN's may be computed using figure 23 or 24.

⁵ CN's shown are equivalent to these of permission permission of the computed using figures 2.3 or 2.4 based on the impervious area percentage (CN = 65) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.
⁶ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2.3 or 2.4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 3-7. Typical Curve Number Values for Pasture, Grassland, and Woods (SCS 1986)

Soil Characteristics

The hydrologic soil groups (HSG) shown on the curve number tables greatly affect the selected curve number for a specific cover type or landuse type. The following are the descriptions for the four soil categories, as given by the SCS (1986):

"Group A soils have low runoff potential and high infiltration rates, even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sands or gravels and have a high rate of water transmission (greater than 0.30 in/hr).

Group B soils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils, with moderately fine to moderately coarser textures. These soils have a moderate rate of water transmission (0.15 to 0.30 in/hr).

Group C soils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine textures. These soils have a low rate of water transmission (0.05 to 0.15 in/hr).

Group D soils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly imperious material. These soils have a very low rate of water transmission (0 to 0.05 in/hr)."

The transmission rates noted above are the rates that water moves within the soil and is controlled by the soil profile. These are not the same as the water infiltration rates which are the rates that water enters the soil at the soil surface and are therefore controlled by surface conditions. For undisturbed natural conditions, the soil characteristics are usually obtained from local county soil maps that are available from the county USDA offices for all areas of the US. Consider the following example from a local county soil survey. Figure 3-11b is a small section of the soil survey map for the Cripple Creek Church area, adjacent to Cripple Creek and North River, in Tuscaloosa County, AL. The maps are also aerial photographs (usually several decades old) that show the presence of woods, agricultural operations, and land development features, along with waterways. The large numbers (15 and 22) are the sections numbers. These sections are located in R. 10 W. and T. 18 S. The small numbers (21, 23, and 33) refer to the soil scientists in the preparation of these maps, so they are not absolutely accurate for small areas. They were able to extend the likely areas associated with each soil type based on surface features and using aerial photographs. As an example, soil 21 (Montevallo) are generally in the bottom lands along the creeks. Table 3-7b lists some of the characteristics of these soils pertaining to erosion and runoff considerations, while Table 3-7c shows detailed particle-size information for samples obtained at different depths for Smithdale soil (the only one of these 3 with this information given in the soil survey) and Table 3-7d lists some potential problems that may be encountered if the site is to be used for building development.

Figure 3-11b. Cripple Creek Church, Tuscaloosa County, AL, soil survey.

Table 3-7b. Soil Survey Characteristics for Area Near Cripple Creek Church, Tuscaloosa County, AL

Soil number (name) and depth	Hydrologic Soil Group	Depth to Bedrock (inches)	Permeability (in/hr)	Erosion Factor, k	Tolerable Soil Loss, T (tons/ac/yr)	Organic Matter (%)	
21 (Montevallo)	D	10-20			2	0.5-2	
0-7			0.6-2.0	0.37			
7-12			0.6-2.0	0.32			
12-20							
23 (Nauvoo)	В	40-60			3	0.5-2	
0-17			2.0-6.0	0.28			
17-35			0.6-2.0	0.32			
35-41			0.6-2.0	0.32			
41-60							
33 (Smithdale)	В	>60			5	0.5-2	
0-5			2.0-6.0	0.28			
5-42			0.6-2.0	0.24			
42-72			2.0-6.0	0.28			

Table 3-7c. Particle-Size Distribution for Smithdale Soil (percent in size category, less than 2 mm)

Sample Number	Depth (inches)	Horizon	Clay (<0.002 mm)	Silt (0.002 – 0.05 mm)	Sand (0.05 – 2.0 m)	Cation Exchange Capacity (meq/100 mL)
S77AL-125-11-1	0-5	Ар	2.8	29.2	68.0	3.65
S77AL-125-11-2	5-20	B21t	22.2	34.9	42.9	9.02
S77AL-125-11-3	20-42	B22t	20.2	29.1	50.7	5.36
S77AL-125-11-4	42-52	B23t	12.3	26.5	61.2	4.06
S77AL-125-11-5	52-72	B2t	21.2	12.8	66.0	3.52

Table 3-7d. Building Site Development Limitations

Soil	Shallow Excavations	Local Streets and Roads	Dwellings with	Lawns and Landscaping
			Basements	
21 (Montevallo)	Severe (depth to rock, slope)	Severe (slope)	Severe (depth to rock,	Severe (droughty, slope,
			slope)	thin soil layer)
23 (Nauvoo)	Slight	Moderate (low strength)	Slight	Slight
33 (Smithdale)	Moderate (slope)	Moderate (slope)	Moderate (slope)	Moderate (slope)

The information summarized on these tables is only a small fraction of the tremendous amount of information in the soil surveys. Unfortunately, not all of this information can be used for developed areas, or for areas undergoing development. Soils are dramatically altered during construction projects. These changes range from stripping off the topsoil and compacting the remaining soil, to removing large amounts of native soils in cut operations, to bringing in large amounts of new material if fill is needed. The surface soils exposed to potential erosion and which affects the amount of runoff at the site can therefore vary for different construction phases.

Therefore, it is important to determine the native soils on the proposed construction site (an overlay of soil types is usually required for most erosion control plans). Widely varying soil characteristics on the site should be especially noted. Descriptions of how the soils (and topography) will be affected and changed are also needed. The excavations and fills during different construction phases should be described by the depth of material to be removed, or brought in, and the resulting surface soils. The SCS (1986) notes that due to urbanization, the soil profile may be considerably altered and the soil survey data may not be applicable for final surface soil conditions. They recommend that the hydrologic soil group be estimated based on the soil texture. They provide the following list to estimate the soil groups, based on texture, provided that significant compaction has not occurred:

HSG	Soil Textures
A	Sand, loamy sand, or sandy loam
В	Silt, silt loam or loam
С	Sandy clay loam
D	Clay loam, silty clay loam, sandy clay, silty clay, or clay

Figure 3-11c shows the standard USDA soil triangle with the hydrologic soil groups marked, based on the above categories. Soil compaction can have severe effects on the runoff potential of soils and needs to be considered. Table 3-7e shows the results of controlled laboratory tests measuring the water transmission rates for different soil mixtures with varying levels of compaction. Also shown are the effects of duration for some of the test conditions. In all cases, except for the clay loam, the uncompacted soils behaved as predicted and as shown on the USDA soil triangle, Figure 3-11c. Clay loam had a unexpectedly high water transmission rate for the uncompacted soil. In all cases, except for 100% sand, compaction resulted in significantly reduced water transmission rates, resulting in a different HSG than if uncompacted. All severely compacted soils, except for 100% sands, are in the D category. Sands remain in the A category for all compaction conditions. During the tests, the transmission rates for sands dropped significantly, but still remained in the HSG A category.

Figure 3-11c. USDA standard soil triangle, with hydrologic soil groups for disturbed soils.

Table 3-7e. Laboratory Water Transmission Tests for Various Soil Textures and Densities (densities and observed infiltration rates for different durations) (Pitt, et al. 2002)

uulullelle) (l'ill, et ui	2002/		
	Hand Compaction	Standard Compaction	Modified Compaction
Sand (100% sand)	Density: 1.36 g/cc (ideal for roots)	Density: 1.71 g/cc (may affect roots)	Density: 1.70 g/cc (may affect roots)
	0 to 1.6 hrs: A	0 to 2.7 hrs: A	0 to 2.7 hrs: A
Silt (100% silt)	Density: 1.36 g/cc (close to ideal for	Density: 1.52 g/cc (may affect roots)	Density: 1.75 g/cc (will likely restrict
	roots)		roots)
	0 to 35 hrs: B	0 to 48 hrs: D	0 to 48 hrs: D
Clay (100% clay)	Density: 1.45 g/cc (may affect roots)	Density: 1.62 g/cc (will likely restrict	Density: 1.88 g/cc (will likely restrict
• • •	,	roots)	roots)
	0 to 48 hrs: D	0 to 100 hrs: D	0 to 100 hrs: D
Sandy Loam (70%	Density: 1.44 g/cc (close to ideal for	Density: 1.88 g/cc (will likely restrict	Density: 2.04 g/cc (will likely restrict
sand, 20% silt, 10%	roots)	roots)	roots)
clay)		0 to 3.82 hrs: A	0 to 175 hores D
	0 to 7.5 hrs: A	3.82 to 24.32 hrs: B	0 to 175 hrs: D
Silty Loam (70% silt,	Density: 1.40 g/cc (may affect roots)	Density: 1.64 g/cc (will likely restrict	Density: 1.98 g/cc (will likely restrict
20% sand, 10%	,	roots)	roots)
clay)	0 to 7.22 hrs: B		
•	7.22 to 47 hrs: C	0 to 144 nrs: D	0 to 144 nrs: D
Clay Loam (40% silt,	Density: 1.48 g/cc (may affect roots)	Density: 1.66 g/cc (will likely restrict	Density: 1.95 g/cc (will likely restrict
30% sand, 30%	, ,	roots)	roots)
clay)	0 to 6.1 hrs: A	0 to 93 hrs: D	0 to 93 hrs: D

Time of Concentration Calculations

The time of concentration needs to be determined for each subwatershed in the study area. It is usually necessary to investigate several candidate flow paths in order to be relatively certain of the one that takes the longest time to reach the end of the subwatershed area. There are many different time of concentration formulas typically presented in hydrology textbooks, usually for different conditions and locations. The SCS/NRCS method has become relatively common recently and it is necessary to use this method when using TR-55 (and TR-20). This method separates the flow path into three segments: sheetflow, shallow concentrated flow, and channel flow. In some cases, especially for small sites, only sheetflow and possibly shallow concentrated flow may be evident. The candidate flow paths are drawn on a site topographic map, usually originate on the subwatershed boundary, and proceeding all the way to the bottom of the subwatershed. Sheetflow is usually the first element considered and normally is assumed to last for a maximum of 300ft, using a kinematic solution to Manning's equation. Some states limit its' use to even shorter lengths. The flow path is then assumed to occur as shallow concentrated flow, until a designated channel on the topographic map is reached (usually taken as a designated creek or stream on a USGS quadrangle map). When several candidate flow paths are evaluated, the one with the longest travel time is assumed to represent the time of concentration for the subwatershed. If a rain lasts for that time period, runoff will therefore occur from the complete area, resulting in maximum runoff rates.

The following discussions show how the travel times are calcualted for each flow path element.

Sheetflow

The following equation (a kinematic solution to the Manning's equation) is used in the SCS procedures to calculate the travel time along the sheetflow path segment:

Where:

 $T_t = travel time (hr)$ n = Manning roughness coefficient (for sheet flow) L = flow length (ft) (maximum of 300 ft.) $P_2 = 2$ -year, 24-hour rainfall depth (in), and

s = slope of hydraulic grade line (land slope, ft/ft)

The sheetflow Manning's n roughness coefficient values are different from the channel lining roughness coefficients. Table 3-8 lists these sheetflow values. These are all greater than the channel lining n values for the rougher surfaces, due to the shallow nature of the flows. As an example, a common channel lining n value for grass is 0.024, while the sheetflow n value for grass is 0.24, or 10 times higher. The grass has a much greater effect on flow when the flow is shallow than when the flow is deep. However, the smooth surface sheetflow n values (0.011) are very similar to the values that would be used for these surfaces in channels. This is because these smooth surfaces have a minimal effect on shallow and deeper flows due to their relatively low roughness heights. An important factor for construction sites is the roughness coefficient of 0.011 for bare soils, compared to cultivated soils (with mulch covers of >20%) of 0.17, and dense grasses of 0.24. Natural woods can have n coefficients of 0.4 to 0.8, depending on the height of the underbrush. Figure 3-12 includes graphs that can be used to estimate the travel time for different sheetflow conditions, calculated using the above SCS sheetflow formula, using a P2 value of 4.2 inches (appropriate for Birmingham, AL). If the P2 ratio is not 4.2 inches, the Figure 3-12 values can be adjusted using the above sheetflow equation.

Table 3-8. Sheetflow Manning's Equation Roughness Coefficients (SCS 1986)

Surface Description	Sheetflow Roughness Factor, n
Smooth surfaces (concrete, asphalt, gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤ 20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grass ¹	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods ²	
Light underbrush	0.40
Dense underbrush	0.80
1	

¹ includes species such as weeping lovegrass, bluegrass, buffalo grass, blue gama grass, and native grass mixtures 2 When selecting n for woods, consider cover to a height of about 0.1 ft. This is the

only part of the plant cover that will obstruct sheet flow

Í		
	Cultivated soils: residue cover ≤ 20%	Cultivated soils: residue cover > 20%

Figure 3-12. Sheetflow travel times.

Grass: short grass prairie	Grass, dense (weeping lovegrass, bluegrass, buffalo grass, blue gama grass, and native grass
	mixtures

Figure 3-12. Sheetflow travel times (cont).

Woods light underbrush (considering cover to	Woods: dense underbrush (considering cover to
height of about 0.4 ft)	height of about 0.1 ft)
neight of about 0.1 it)	

Figure 3-12. Sheetflow travel times (cont).

Shallow Concentrated Flow

After a maximum of 300 ft., sheetflow usually becomes shallow concentrated flow which is characterized by much narrower flow paths and faster flows. The following equations are used to calculate the velocities of this flow segment, based on the nature of the surface (paved or unpaved). Figure 3-13 contains graphical solutions for these equations.

(Unpaved)

(Paved)

Where:

V = average velocity (ft/s), and

s = slope of hydraulic grade line (watercourse slope, ft/ft)

These two equations are based on a solution of the Manning equation with different assumptions for n (Manning roughness coefficient) and R (hydraulic radius, ft). For unpaved areas, n is 0.05 and R is 0.4 ft; for paved areas, n is 0.025 and R is 0.2 ft. The travel time associated with the shallow concentrated flow segment is calculated using this velocity and the flow path length.

Figure 3-13 . Shallow concentrated flow velocities (SCS 1986).

Channel Flow

If the flow path includes a designated channel shown on a USGS quadrangle map, the Manning's equation is used to calculate the velocity in the channel reach. The travel time in the reach is then calculated using this channel-full velocity and the length of the channel.

Where:

 $\begin{array}{l} V = average \ velocity \ (ft/s), and \\ r = hydraulic \ radius \ (ft) \ and \ is \ equal \ to \ a/p_w \\ a = cross \ sectional \ flow \ area \ (ft^2) \end{array}$

- p_w = wetted perimeter (ft)
- s = slope of hydraulic grade line (channel slope, ft/ft)
- n = Manning roughness coefficient (for open channel flow)

This is the conventional Manning's equation, and appropriate channel lining n coefficients are used.

Example Travel Time Calculation

The TR-55 User Guide (SCS 1986) includes the following example. Figure 3-14 shows a watershed in Dyer County, which is located in northwestern Tennessee. The problem is to compute Tc at the outlet of the watershed (point D). The 2-year 24-hour rainfall depth is 3.6 inches. All three types of flow occur from the hydraulically most distant point (A) to the point of interest (D). To compute Tc, first determine Tt for each segment from the following information:

Segment AB: Sheetflow; dense grass; slope (s) = 0.01 ft/ft; and length (L) = 100 ft. Segment BC: Shallow concentrated flow; unpaved; s = 0.01 ft/ft; and L = 1400 ft. Segment CD: Channel flow; Manning's n = 0.05; flow area (a) = 27 ft²; wetted perimeter (pw) = 28.2 ft; s = 0.005 ft/ft; and L=7300ft.

Figure 3-14. Watershed for TR-55 Tt calculation example (SCS 1986).

Figure 3-15 is the SCS worksheet showing the calculations for the above problem. In this case, each flow segment is comprised of a single condition of slope and cover. In many cases, the individual flow segments may need to be broken up into subunits to represent different slopes or roughness coefficients. The travel times for each of the segments are added. For the sheetflow segment, however, the travel length must still be less than 300 ft. in total, not for each calculation interval. Worksheet 3 has two columns to facilitate two segments for each portion. Additional segments may be needed. In this example, the total travel time for this flow path from A to D is 1.53 hours, with almost 1 hour associated with the channel flow time. For small sites, including most construction sites, the sheetflow segment will likely comprise the largest portion of the total flow time.

Again, in order to determine the time of concentration for the watershed, several different candidate flow paths are usually needed to be evaluated and the one with the longest travel time is used as the time of concentration. This may not be the path with the longest travel distance, but may be a shorter path affected by shallower slopes and rougher covers.

Figure 3-15. Calculation example for travel time problem (SCS 1986).

Tabular Hydrograph Method

The SCS TR-55 tabular hydrograph method (SCS 1986) can be used to develop a hydrograph for each subwatershed area than can then be routed through the downstream project segments. This method will also produce the total runoff volume and the peak flow rate. This method is not used in the new WinTR-55; this computerized version uses the more complete routing procedures from TR-20. However, the following is still presented as an optional method and to

illustrate the sensitivity of Tc and CN selections. Appendix 3A includes all of the tabular hydrograph tables that can be used to calculate hydrographs for all locations in the US.

Example Tabular Hydrograph Calculation

The following example is from the TR-55 manual (SCS 1986) and illustrates how the Tc, CN, and other site characteristics are used to develop and route hydrographs for a complex watershed.

This example computes the 25-year frequency peak discharge at the downstream end of subarea 7 shown in Figure 3-16. This example is for present conditions and uses the worksheets presented in SCS (1986). Calculate the present condition CN, Tc, and Tt for each subarea, using the procedures in TR-55 chapters 2 and 3. These values are entered on worksheet 5a (Figure 3-17). Then, the tabular hydrograph tables are used to determine the normalized hydrograph for downstream locations.

The hydrograph tables are presented in SCS (1986) according to rain type (there are sections of tables for types I, Ia, II, and III rain distributions). The first step is to find the table section pertaining to the rain distribution for the study area. In this case, the area has type II rains. The type II rain hydrograph tables are further grouped according to the Tc for the subarea, ranging from 0.1 to 2 hours. In the case for subarea #1, the Tc is 1.5 hours, so pg 5-37 from SCS (1986) is used (Table 3-9). Each page is further divided into three segments, corresponding to Ia/P ratios of 0.10, 0.30, and 0.50. The Ia is the initial abstractions for the area (not to be confused with rain distribution type Ia) and are a direct function of the CN value. These are given in the User Guide (SCS table 5-1), and on Table 3-16b. The P is the total rain depth being evaluated. The top set of values are used for Ia/P ratios of ≤ 0.2 , the middle set for ratios from 0.2 to 0.4, while the bottom set is used for ratios of > 0.4 (interpolation is not used; WinTR-55 and TR-20 calculate more precise values based on actual site conditions). In this case, the #1 subarea Ia/P is 0.18, so the top set of values are used. Finally, each segment has 12 lines representing different travel times from the bottom of the subwatershed area to the location of interest. The largest unit peak runoff rate values (csm/in, or cubic feet per second of runoff per square mile of drainage area, per inch of direct runoff) on each line start close to 12 hours for the top segment, representing routing of the hydrographs as they travel downstream. For the #1 subarea, the Tt is 2.5 hours. Therefore, the line near the bottom of the top segment, representing 2.5 hours, is used. The values in the table represent normalized hydrographs and are multiplied by AmQ (the factor of the watershed area, in mi² and the direct runoff in inches) to obtain the flow values in traditional units of ft³/sec, or cfs. These final cfs values are written on worksheet 5b (Tabl

q = qt(AmQ) = (274)(0.70) = 192 cfs

Once all the prerouted subarea hydrographs have been tabulated on worksheet 5b, they are summed to obtain the composite hydrograph. The resulting 25-year frequency peak discharge is 720 cfs at 14.3 hr, as shown on Table 3-10.

Figure 3-16. Example watershed for tabular hydrograph calculations (SCS 1986).

Table 3-16b.	I _a Values	for Runoff	Curve	Numbers	(SCS	1986)
--------------	-----------------------	------------	-------	---------	------	-------

Curve Number	l _a (inch)	Curve Number	l _a (inch)	Curve Number	l _a (inch)
40	3.000	60	1.333	80	0.500
41	2.878	61	1.279	81	0.469
42	2.762	62	1.226	82	0.439
43	2.651	63	1.175	83	0.410
44	2.545	64	1.125	84	0.381
45	2.444	65	1.077	85	0.353
46	2.348	66	1.030	86	0.326
47	2.255	67	0.985	87	0.299
48	2.167	68	0.941	88	0.273
49	2.082	69	0.899	89	0.247
50	2.000	70	0.857	90	0.222
51	1.922	71	0.817	91	0.198
52	1.846	72	0.778	92	0.174
53	1.774	73	0.740	93	0.151
54	1.704	74	0.703	94	0.128
55	1.636	75	0.667	95	0.105
56	1.571	76	0.632	96	0.083
57	1.509	77	0.597	97	0.062
58	1.448	78	0.564	98	0.041
59	1.390	79	0.532		

Figure 3-17. Worksheet 5a for showing basic watershed data (SCS 1986).

Table 3-9. Tabular Hydrograph Table for Example Problem (SCS 1986, pg 5-37)

Table 3-10. Worksheet 5b for Example Hydrograph Calculation (SCS 1986)

Tabular Hydrograph Example for Urban Watershed

The following example is for a typical urban watershed, having four subareas that are quite different in their development characteristics. The following lists the procedure for evaluating this area:

1) subdivide the watershed into relatively homogeneous subareas (as shown in Figure 3-18)

Figure 3-18. Relatively homogeneous subareas in example urban watershed.

2) calculate the drainage for each subarea:

Ι	0.10 mi ²
II	0.08
III	0.6
IV	0.32
Total:	1.12

3) calculate the time of concentration (Tc) for each subarea (TR-55 chapter 3):

Ι	0.2 hrs
II	0.1
III	0.3
IV	0.1

4) calculate the travel time (Tt) from each subarea discharge location to the location of interest (outlet of total watershed in this example) (TR-55 chapter 3):

I	0.1 hrs
II	0.05
III	0.05
IV	0

5) select the curve number (CN) for each subarea:

Ι	Strip commercial, all directly connected	CN = 97
II	Medium density residential area, grass swales	CN = 46
III	Medium density residential area, curbs and gutters	CN = 72
IV	Low density residential area, grass swales	CN = 40

6) rainfall distribution: Type II for all areas

7) 24-hour rainfall depth for storm: 4.1 inches

8) calculate total runoff (inches) from CN and rain depth (from SCS fig. 2-1)

Ι	CN = 97	P = 4.1 in.	Q = 3.8 in.
II	CN = 46	P = 4.1 in.	Q = 0.25
III	CN = 72	P = 4.1 in.	Q = 1.5
IV	CN = 40	P = 4.1 in.	Q = 0.06

9) determine Ia for each subarea (assumes Ia = 0.2 S) (SCS table 5-1):

Ι	CN = 97	Ia = 0.062 in.
II	CN = 46	Ia = 2.348 in.
III	CN = 72	Ia = 0.778 in.
IV	CN = 40	Ia = 3.000 in.

10) calculate the ratio of Ia to P

Ι	Ia/P = 0.062/4.1 = 0.015
II	Ia/P = 2.348/4.1 = 0.57
III	Ia/P = 0.778/4.1 = 0.19
IV	Ia/P = 3.000/4.1 = 0.73

11) use worksheets SCS 5a and 5b to summarize above data and to calculate the composite hydrograph. These are shown in Tables 3-11 and 3-12.

Table 3-11. SCS Worksheet 5a for Urban Example

Table 3-12. SCS Worksheet 5b for Urban Example

The peak flow is seen to be 910 cfs, occurring at 12.3 hours. Figure 3-19 is a plot of the 3 main components, plus the total hydrograph. Subarea III contributed most of the peak flow to the total hydrograph, while subareas II and IV contributed insignificant flows. The following chapter section introduces WinTR-55 and presents this same example. The main differences is that WinTR-55 requires a description of the channel as it calculates the travel times and conducts the channel routing using a more precise procedure. In addition, the hydrograph development uses TR-20, instead of the tabular hydrograph method.

Figure 3-19. Plot of individual and composite hydrograph for urban example.

Example use of WinTR55

The following discussion is summarized from the WinTR-55 user guide information, while the example uses the previously described information.

A WinTR-55 work group was formed in the spring of 1998 to modernize and revise TR-55 and the computer software. The current changes included: upgrading the source code to Visual Basic, changing the philosophy of data input, developed a Windows interface and output post-processor, enhanced the hydrograph-generation capability of the software and flood route hydrographs through stream reaches and reservoirs.

The availability and technical capabilities of the personal computer have significantly changed the philosophy of problem-solving for the engineer. Computer availability eliminated the need for TR-55 manual methods, thus the manual portions (graphs and tables) of the user document have been eliminated. The WinTR-55 user manual (NRCS 2002a) covers the procedures used in and the operation of the WinTR-55 computer program. Part 630 of the Natural Resources Conservation Service (NRCS) National Engineering Handbook provides detailed information on NRCS hydrology and is the technical reference for WinTR-55.

Program Description

WinTR-55 is a single-event rainfall-runoff small watershed hydrologic model. The model generates hydrographs from both urban and agricultural areas and at selected points along the stream system. Hydrographs are routed downstream through channels and/or reservoirs. Multiple sub-areas can be modeled within the watershed.

Model Overview

A watershed is composed of subareas (land areas) and reaches (major flow paths in the watershed). Each subarea has a hydrograph generated from the land area based on the land and climate characteristics provided. Reaches can be designated as either channel reaches where hydrographs are routed based on physical reach characteristics or as storage reaches where hydrographs are routed through a reservoir based on temporary storage and outlet characteristics. Hydrographs from sub-areas and reaches are combined as needed to accumulate flow as water moves from the upland areas down through the watershed reach

network. The accumulation of all runoff from the watershed is represented at the watershed outlet. Up to ten sub-areas and ten reaches may be included in the watershed.

WinTR-55 uses the TR-20 (NRCS 2002b) model for all of the hydrograph procedures: generation, channel routing, storage routing, and hydrograph summation. Figure 3-20 is a diagram showing the WinTR-55 model, its relationship to TR-20, and the files associated with the model.

Figure 3-20. WinTR-55 system schematic (NRCS 2002a).

Capabilities and Limitations

WinTR-55 hydrology has the capability to analyze watersheds that meet the criteria listed in Table 3-13:

Table 3-13. WinTR-55 Capabilities & Limitations (NRCS 2002a)

Variable	Limits
Minimum area	No absolute minimum is included in the software. However, carefully examine results from sub-areas less than 1 acre.
Maximum area	25 square miles (6,500 hectares)
Number of Subwatersheds	3-10
Time of concentration for any sub-area	0.1 hour $\leq T_c \leq 10$ hour
Number of reaches	0-10
Types of reaches	Channel or Structure
Reach Routing	Muskingum-Cunge
Structure Routing	Storage-Indication
Structure Types	Pipe or Weir
Structure Trial Sizes	3-3
Rainfall Depth ¹	Default or user-defined
Rainfall Distributions	NRCS Type I, IA, II, III, NM60, NM65, NM70, NM75, or user-defined
Rainfall Duration	24-hour
Dimensionless Unit Hydrograph	Standard peak rate factor 484, or user-defined (e.g. Delmarva—see Example 3)
Antecedent Moisture Condition	2 (average)

¹Although no minimum rain depth is listed by the NRCS in the above table, it must be recognized that the original SCS curve number methods, incorporated in this newer version, are not accurate for small storms. In most cases, larger storms used for drainage design are reasonably well suited to this method. Pitt (1987) and Pitt, *et al.* (2002) showed that rain depths less than 2 or 3 inches can have significant errors when using the CN approach.

Model Input

The various data used in the WinTR-55 procedures are user entered via a series of input windows in the model. A description of each of the input windows follows the figure. Data entry is needed only on the windows that are applicable to the watershed being evaluated.

Minimum Data Requirements. While WinTR-55 can be used for watersheds with up to ten sub-areas and up to ten reaches, the simplest run involves only a single sub-area. Data required for a single sub-area run can be entered on the TR-55 Main Window. These data include: **Identification Data-**User, -State, -County, -Project, and -Subtitle; **Dimensionless Unit Hydrograph**; **Storm Data; Rainfall Distribution**; and **Subarea Data**. The subarea data can be entered directly into the Subarea Entry and Summary table: **Subarea name, subarea description, subarea flows to reach/outlet**, **area**, **runoff curve number** (RCN), and **time of concentration** (T_c). Detailed information for the subarea RCN and T_c can be entered here or on other windows; if detailed information is entered elsewhere the computational results are displayed in this window.

Watershed Subareas and Reaches. To properly route stream flow to the watershed outlet, the user must understand how WinTR-55 relates watershed subareas and stream reaches. Figure 3-21 and Table 3-14 show a typical watershed with multiple sub-areas and reaches.

Figure 3-21. Sample Watershed Schematic (NRCS 2002a)

Table 3-14. Sample Watershed Flows (NRCS 2002a)

<u>Subarea</u>	<u>Flows into</u> Upstream End of	Reach	Flows into
Area I	Reach A	Reach A	Reach C
Area II	Reach C	Reach B	Reach C
Area III	Reach C	Reach C	OUTLET
Area IV	Reach B	Reach D	OUTLET
Area V	Reach C	Reach E	OUTLET
Area VI	Reach E		
Area VII	OUTLET		
Area VIII	OUTLET		
Area IX	Reach D		
Area X	OUTLET		

Reaches define flow paths through the watershed to its outlet. Each subarea and reach contribute flow to the upstream end of a receiving reach or to the Outlet. Accumulated runoff from all sub-areas routed through the watershed reach system, by definition, is flow at the watershed outlet.

Processes

WinTR-55 relies on the TR-20 model for all hydrograph processes. These include: hydrograph generation, combining hydrographs, channel routing, and structure routing. The program now uses a Muskingum-Cunge method of channel routing (Chow, *et al.* 1988; Maidment 1993; Ponce 1989). The storage-indication method (NRCS NEH Part 630, Chapter 17) is used to route structure hydrographs.

Example WinTR-55 Setup and Operation

An application using WinTR-55 and the previously presented urban watershed example, is shown on Figures 3-22 through 3-31. Figures 3-32 and 3-33 are other screens available in WinTR-55 that can be used to aid in the calculation of some of the site data, while Figure 3-34 is used for detention facilities (structures).

Figure 3-22. WinTR-55 opening screen.

Figure 3-23. WinTR-55 small watershed basic information screen.

Figure 3-24. WinTR-55 reach data screen.

Figure 3-25. WinTR-55 reach flow path screen.

Figure 3-26. WinTR-55 reach routing screen.

Figure 3-27. WinTR-55 storm data screen (information automatically determined by location).

Figure 3-28. WinTR-55 event selection/run screen.

Figure 3-29. WinTR-55 calculated hydrograph summary screen.

Figure 3-30. WinTR-55 hydrograph plot screen.

Figure 3-31. WinTR-55 report generation screen.

Figure 3-32. WinTR-55 land use details screen (if data not directly entered).

Figure 3-33. WinTR-55 time of concentration details screen/calculator (if data not directly entered).

Figure 3-34. WinTR-55 structure data screen for detention facilities.

This WinTR-55 example resulted in a peak flow for the 2-yr storm of about 730 cfs, compared to the previously calculated value of 910 cfs. This difference is due to the different routing procedure used, plus the more precise hydrograph development procedure in the updated WinTR-55 version compared to the tabular hydrograph method.

Example Applications to Construction Sites

As indicated previously, there are a number of situations where WinTR-55 (or TR-55) can be used to advantage when evaluating construction sites, including the design of erosion and sediment controls. These may include:

• Determination of flows going away from the site affecting downstream areas. Downstream erosion controls may include filter fencing along the project perimeter, or sediment ponds, depending on flow conditions. These controls must be completed before any on-site construction is started.

• Determination of upland flows coming towards the disturbed areas. These flows must be diverted by swales or dikes, or safely carried through the construction sites. Channel design will be based on the expected flow conditions. These controls must be completed after the downstream controls, and before

any on-site controls are started.

• Determination of on-site flows on slopes going towards filter fencing, sediment ponds, or other controls. Needed to also evaluate shear stress on channels and on slopes.

Figure 3-35 is an example site regional map (drawn on a USGS quadrangle) showing a construction site, and associated upland and downslope drainages. This chapter illustrated how it is possible to easily calculate the runoff characteristics affecting the site and downslope areas for different rain conditions. In addition, detailed site conditions for different project phases can also be evaluated for the design of appropriate erosion and sediment controls.

Figure 3-35. Determination of general upslope and downslope drainage areas from construction site.

Figure 3-36 shows subdrainages for the upslope, downslope, and on-site areas for this example construction site. Table 3-15 summarizes the characteristics of these areas, along with the hydrologic information needs for each area. Most of the site will be cleared and graded, except for the two small areas near the downslope edge. The upslope diversions (for U2 and U3) will carry the upslope water to the main channel. As an example, the diversion length for U2 is 900 ft long and the elevation drop is 70 ft. The channel slope for this diversion is therefore 70/900 = 0.08, or 8%. The runoff from the O1 and O2 on-site areas will be controlled by slope mulches and filter fences, before the runoff drains to the on-site main channel. A sediment pond will be constructed at the downslope property boundary before this main channel leaves the site, receiving runoff from U1, U2, U3, O1, and O2. This table shows 2 different rain depths for some conditions, based on the following discussion and Table 3-17.

Table 3-16 and Figure 3-37 is an example using WinTR55 for this site. This example is for a sediment pond at the downslope boundary. Subareas O3, O4, O5, O6, and O7 are all very small and do not drain to this pond site, but drain towards the perimeter filter fabric fences. The reach data assumed for reach A (the main channel to the outlet) is as follows: 1240 ft. long at 0.04 (4%) slope, n = 0.08, and bottom width = 10 ft. The channel side slopes are 1 to 3. Table 3-16 shows subareas O1 and O2 draining into reach A, but they actually drain directly to the outlet (the pond).

Figure 3-36. Subdrainage areas on and near construction site.

Area Notation	Location	Objective	Area (acres)	Area (Am, mi ²)	Cover n	Average flow path slope	CN (all "C" soils)	la (in.)	Rain depth, P (in.)	la/P	Tc (min)	Tc (hr)
U1	Upslope – direct to on site stream	Hydrograph (to be combined with U2 and U3)	37.4	0.058	0.4	8%	73	0.74	5.5	0.13	29	0.48
U2	Upslope – diversion to on site stream	Peak flow rate and hydrograph (to be combined with U1 and U3)	14.6	0.023	0.4	11.5	73	0.74	5.5	0.13	25	0.42
U3	Upslope – diversion to on site stream	Peak flow rate and hydrograph (to be combined with U1 and U2)	2.4	0.0038	0.4	12.7	73	0.74	5.5	0.13	20.7	0.35
01	On site – drainage to sediment pond and main site stream (also slope protection needed)	Peak flow rate and hydrograph	12.6	0.020	0.011	10	91	0.198	6.6 8.4	0.03 0.02	3.5	0.06
02	On site – drainage to filter fence and main site stream (also slope protection needed)	Peak flow rate and hydrograph	7.1	0.011	0.011	10.5	91	0.198	4.0 6.0	0.05 0.03	1.6	0.03
O3	On site – towards perimeter filter fence (also slope protection needed)	Peak flow rate and hydrograph	6.1	0.0095	0.011	5	91	0.198	4.0 6.0	0.05 0.03	4.1	0.07
O4	On site – towards perimeter filter fence (also slope	Peak flow rate and hydrograph	3.1	0.0048	0.011	6.7	91	0.198	4.0 6.0	0.05 0.03	3.3	0.06
O5	On site – towards perimeter filter fence (also slope protection needed)	Peak flow rate and hydrograph	1.8	0.0028	0.011	11.3	91	0.198	4.0 6.0	0.05 0.03	1.5	0.03
O6	On site – nothing (will remain undisturbed)	na	1.3	0.0020	0.24	6.7	na	na	na	na	na	na
07	On site – nothing (will remain undisturbed)	na	0.3	0.00047	0.24	10	na	na	na	na	na	na

Table 3-15. Upslope and On-Site Subdrainage Area Characteristics for Construction Site and TR-55 Calculations
Area Notation	Location	Direct Runoff, Q (inches)	area-depth (AmQ), (mi ² -inches)	Peak unit area flow rate (csm/in)	Peak discharge (ft ³ /sec)
U1	Upslope – direct to on site stream	2.8	0.16	411	66
U2	Upslope – diversion to on site stream	2.8	0.064	449	29
U3	Upslope – diversion to on site stream	2.8	0.011	449	4.9
01	On site – drainage to sediment pond and main site stream (also slope protection needed)	5.4 7.3	0.11 0.15	662	73 99
02	On site – drainage to filter fence and main site stream (also slope protection needed)	3.0 5.0	0.033 0.055	662	22 36
03	On site – towards perimeter filter fence (also slope protection needed)	3.0 5.0	0.029 0.048	662	19 32
04	On site – towards perimeter filter fence (also slope protection needed)	3.0 5.0	0.014 0.024	662	9.3 16
O5	On site – towards perimeter filter fence (also slope protection needed)	3.0 5.0	0.0084 0.014	662	5.6 9.3
O6	On site – nothing (will remain undisturbed)	na	na	na	na
07	On site – nothing (will remain undisturbed)	na	na	na	na

Table 3-15. Upslope and On-Site Subdrainage Area Characteristics for Construction Site and TR-55 Calculations (cont.)

Table 3-16 WinTR55 Example for Sediment Pond (10-year rain event)

Figure 3-37. Subcatchment and outfall hydrographs for sediment pond location, WinTR55 example.

Design Storms for Different Site Controls

All of the information needed to calculate the expected flows from these upslope and on-site areas is shown on Table 3-17, except for the design storm. The area has a SCS type III rain distribution and the construction period will be one year. The different site features will require different design storms due to the different levels of protection that are appropriate. Table 3-17 lists the features and the (assumed) acceptable failure rates during this one year period, along with the corresponding design storm frequency and associated 24 hr rain total appropriate for the area. The design storms range from 4.0 to 8.4 inches in depth and the times of concentration range from 1.5 to 30 minutes. The design rain intensities could be very large for some of these design elements.

Table 3-17. Acceptable Levels of Protection for Different Site Activities

Site Construction Control	Acceptable Failure Rate during Site Construction Activities	Design Storm Return Period (years)	24-hr Rain Depth Associated with this Design Storm Return Period
Diversion channels	25%	6.5	5.5
Main site channel	5%	20	6.6
Site slopes	10%	10	6.0
Site filter fences	50%	1.9	4.0
Sediment pond	5% and 1%	20 and 100	6.6 and 8.4
Downslope perimeter filter fences	10%	10	6.0

Runoff Water Depth

In some designs (for shear stress calculations in the next chapter), the water depth is also needed for sheetflows. The following equation can be used to calculate the estimated water depth for sheetflow, based on the Manning's equation (R, the hydraulic radius is equal to the flow depth for sheetflow):

where: y is the flow depth (in feet),

q is the unit width flow rate (Q/W, the total flow rate, in ft³/sec, divided by the slope width, in ft.)

n is the sheet flow roughness coefficient, and

s is the slope (as a fraction)

Important Internet Links

Alabama Rainfall Atlas: <u>http://bama.ua.edu/~rain/</u>

WinTR-55 computer program (new windows beta version): http://www.wcc.nrcs.usda.gov/hydro/hydro-tools-models-wintr55.html

TR-55 1986 documentation and early version of TR55 program: http://www.wcc.nrcs.usda.gov/hydro/hydro-tools-models-tr55.html

TR-20 computer program (new windows beta version): http://www.wcc.nrcs.usda.gov/hydro/hydro-tools-models-wintr20.html

National Engineering Handbook, Part 630 HYDROLOGY http://www.nrcs.usda.gov/technical/ENG/neh.html

US Army Corps of Engineers, Hydrologic Management System User Guide (replacement for HEC-1) and River Analysis System User Guide for water surface profile calculations (replacement for HEC-2): http://www.hec.usace.army.mil/

References

Chow, V. T., Maidment, D. R, and Mays, L. W., Applied Hydrology, McGraw-Hill, 586 pages. 1988.

HEC. HEC-RAS User's Manual, Version 2.0. US Army Corps of Engineers, Hydrologic Engineering Center, April 1997.

Illinois. Illinois Procedures and Standards for Urban Soil Erosion and Sedimentation Control. Association of Illinois Soil and Water Conservation Districts, Springfield, IL 62703. 1989.

Maidment, D. R. (ed.), Handbook of Hydrology, McGraw-Hill, 1422 pages. 1993.

McGee, T.J. Water Supply and Sewerage. McGraw-Hill, Inc., New York. 1991.

NRCS. National Engineering Handbook, Part 630 HYDROLOGY, downloaded June 23, 2002 at: http://www.wcc.nrcs.usda.gov/water/quality/common/neh630/4content.html

NRCS. SITES Water Resource Site Analysis Computer Program User's Guide. United States Department of Agriculture, Natural Resources Conservation Service. 469 pp. 2001.

NRCS. *WinTR-55 User Manual*. US Dept. of Agriculture, Natural Resources Conservation Service. Downloaded on June 23, 2002 from: http://www.wcc.nrcs.usda.gov/water/quality/common/tr55/tr55-beta.html Version dated April 23, 2002a.

NRCS. TR-20 System: User Documentation. United States Department of Agriculture, Natural Resources Conservation Service. 105 pp. 2002b (draft). Ponce, V.M., Engineering Hydrology, Prentice Hall, 640 pages. 1989.

Pitt, R. Small Storm Urban Flow and Particulate Washoff Contributions to Outfall Discharges, Ph.D. Dissertation, Civil and Environmental Engineering Department, University of Wisconsin, Madison, WI, November 1987.

Pitt, R. and S.R. Durrans. Drainage of Water from Pavement Structures. Alabama Dept. of Transportation. 253 pgs. September 1995.

Pitt, R., J. Lantrip, R. Harrison, C. Henry, and D. Hue. Infiltration through Disturbed Urban Soils and Compost-Amended Soil Effects on Runoff Quality and Quantity. U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory. EPA 600/R-00/016. Cincinnati, Ohio. 231 pgs. December 1999.

Pitt, R., M. Lilburn, S. Nix, S.R. Durrans, S. Burian, J. Voorhees, and J. Martinson Guidance Manual for Integrated Wet Weather Flow (WWF) Collection and Treatment Systems for Newly Urbanized Areas (New WWF Systems). U.S. Environmental Protection Agency. 612 pgs. 1999.

Pitt, R, S. Chen, and S. Clark. "Compacted urban soils effects on infiltration and bioretention stormwater control designs." Global Solutions for Urban

Drainage; 91UCD. CD-ROM Proceedings of the 9th International Urban Drainage Conference, edited by E.W. Strecker and W.C. Huber., Sept 8-13, 2002, Portland, OR. Sponsored by the ASCE, Reston, VA, and the International Water Association, London. 2002.

SCS. Urban Hydrology for Small Watersheds. Technical Release 55, US Department of Agriculture, Soil Conservation Service. 91 pp. 1975.

SCS (now NRCS). Urban Hydrology for Small Watersheds. US Dept. of Agric., Soil Conservation Service. 156 pgs. 1986.

SCS. *Time of Concentration*, Hydrology Technical Note No. N4. United States Department of Agriculture, Soil Conservation Service, Northeast National Technical Center. 12 pp. 1986.

Thronson, R.E. Comparative Costs of Erosion and Sediment Control, Construction Activities. U.S. Environmental Protection Agency. EPA430/9-73-016. Washington, D.C. 1973.

Welle, P.I., Woodward, D. E., Fox Moody, H., A Dimensionless Unit Hydrograph for the Delmarva Peninsula, Paper No. 80-2013, ASAE 1980 Summer Meeting, 18 pp. 1980.

Appendix 3-A. Tabular Hydrograph Unit Discharges (from TR-55, SCS 1986)

TIME (hr)9	.0	9.3	9.6	9.9	0.0	0.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	11.0	HYDRO 11.2	GRAP	H TIN	ME(H0 11.8	URS)	12.3	12.6	13.0	3.5	4.0	4.5	15.0	15.5	16.0	7.0	8.0	0.0	24
****	**	1A/	P =	0.1	·*	+	+	+	+	•••	+	+	• •	* TC	- 0.	4 HF		* *	***	***	+	+	+	+		+	+	IA/P	- 0	.10	• •	
0.0 2 .10 2 .20 1 .30 1	320.8	31 29 26 24	42 40 34 33	66 61 47 45	96 84 56 53	157 133 75 67	250 211 114 98	310 277 178 152	304 295 244 213	244 261 278 257	186 211 267 263	149 170 230 241	122 138 190 207	89 98 128 143	73 78 93 102	64 66 75 80	59 60 65 68	56 56 59 61	53 54 56 57	49 50 52 52	46 47 48 49	43 43 44 45	39 39 40 41	35 35 36 37	31 31 32 32	29 29 30 30	29 29 29 29	28 28 28 28	26 26 27 27	25 25 25 25	21 21 21 21 21	2
.40 1 .50 1 .75 1 1.0 1	5 2 0	21 20 16 12	28 27 21 16	38 36 29 21	43 41 32 24	49 46 35 26	61 56 39 29	86 76 46 32	130 112 57 36	185 161 77 40	233 209 108 48	253 238 147 61	245 243 184 83	188 201 220 147	132 146 200 202	97 106 157 212	77 82 118 178	66 69 91 138	60 61 74 105	55 55 61 75	51 51 55 62	46 47 50 54	42 42 45 47	38 38 40 43	34 34 36 39	30 31 32 35	29 29 30 31	28 29 29 29	27 27 27 28	25 25 26 26	22 22 22 23	
1.5 2.0 2.5 3.0	8532	9643	11 864	14 10 7 5	16 10 8 6	17 11 8 6	19 12 9 7	21 13 9 7	23 14 10 8	25 15 11 8	28 17 12 9	31 18 13 9	35 20 14 10	50 25 16 11	83 31 20 13	134 42 24 16	179 64 30 19	193 102 42 23	177 144 63 30	131 179 114 51	92 163 160 90	65 111 170 148	53 70 107 161	47 55 70 104	42 48 54 69	38 43 47 54	34 39 43 47	31 35 38 42	29 30 31 34	27 28 29 29	24 25 25 26	
		IA/	P =	0.3									**	* TC	- 0.	4 HF		*										IA/P	- 0	.30		
0.0 .10 .20 .30	00000	0 0 0	0000	3000	14 2 2 1	48 10 7 5	115 35 26 19	184 89 68 52	192 152 124 100	178 179 161 140	148 178 172 162	127 158 163 162	111 137 146 151	88 105 113 120	77 85 90 96	70 75 78 81	66 69 70 72	64 65 66 67	62 63 64 64	59 60 61 61	56 58 59	54 55 55 55	50 51 52 52	46 47 47 48	41 42 43 43	40 40 40 41	40 40 40	39 39 39 39	38 38 38 38	36 36 37 37	32 32 33 33	
.40 .50 .75 1.0	00000	0 0 0	00000	00000	00000	1 1 0 0	4300	14 10 1 0	39 29 4 0	80 63 13 2	120 101 31 7	148 132 58 18	158 152 87 36	142 145 130 86	114 120 138 125	92 97 123 134	79 82 103 122	71 73 87 104	67 68 77 88	63 63 68 73	60 63 66	57 57 59 61	53 53 55 57	49 50 51 53	45 45 47 49	41 41 43 45	40 40 41 41	40 40 40 40	38 38 39 39	37 37 37 38	33 33 34 34	
1.5 2.0 2.5 3.0 + ···	0000+-	0 0 0 0 +	0000+	0000+5	0 0 0 0 +	0 0 0 0 0	0 0 0 0	0 0 0 0 +	0 0 0 0 +	0 0 0 0 +	0 0 0 0	0 0 0 0 0 0	10000+*	10 0 0 +	36 1 0 + +	75 6 0 + 4 HS	109 22 2 0 +	124 50 8 0 +	120 83 22 2	100 116 60 14	81 116 97 43 +	68 91 111 89	61 70 88 106	56 61 70 86	53 57 61 69	49 53 56 61	44 49 53 56	41 45 48 52	40 40 42 44	38 39 39 40 +	35 36 37 37 • +	
0.0 .10 .20 .30	+ 0 0 0 0 0	0 0 0 0	+ 0 0 0 0	- + 0 0 0 0	0 0 0 0	+ 0 0 0 0	0 0 0 0	+ 2 0 0 0	+8200	17 6 1 0	27 13 4 1	34 22 10 3	40 30 18 8	44 40 33 22	47 45 41 35	49 47 45 42	+ 50 49 48 46	51 50 49 48	51 51 51 51 50	51 51 51 51 51	51 51 51 51 51	51 51 51 51	51 51 51 51 51	51 51 51 51	50 50 50 51	50 50 50 50	49 50 50 50	49 49 49 49	49 49 49 49	48 48 49 49	46 46 46 47	-
.40 .50 .75 1.0	0000	0 0 0	00000	00000	0 0 0	0 0 0 0	00000	0000	0000	0 0 0 0	1 0 0 0	2 0 0 0	6 2 1 0	19 9 5 0	32 23 14 1	40 34 26 5	45 41 35 14	47 45 42 25	49 48 46 35	51 50 49 44	51 51 50 48	51 51 51 50	51 51 51 51	51 51 51 51	51 51 51 51	50 50 50 51	50 50 50	49 49 50 50	49 49 49 49	49 49 49	47 47 47 48	
1.5 2.0 2.5 3.0	00000	0 0 0	0000	00000	00000	0000	000000	0000	0000	00000	00000	0 0 0	000000	00000	0000	0000	2 0 0	6 0 0 0	13 2 0	27 9 1 0	39 21 6 1	47 36 19 8	50 47 37 25	51 50 47 40	51 51 50 48	51 51 51 50	51 51 51	50 51 51 51	49 50 50	49 49 40 50	48 48 48 49	

2	
10-V	
FTR-55,	
Second	
Ed	
, June	
1996)	

TRVL TIME (hr)	7.0	7.3	7.6	7.9	8.	0	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	9.0	9.2	9.4	9.6	9.8 9.8	JRS) 0.0	10.3	10.6	11.0	11.5	12.0	2.5	13.0	3.5	4.0	15.0	16.0	8.0	22
		IA	/P =	0.	10									**	TC.	- 1.	25 HF	2 * *	*		+								IA/P	- 0	.10		
0.0 .10 .20 .30	17 16 15 14	21 19 19 17	24 23 22 20	25	32222	3985	37 31 30 27	43 35 33 29	52 41 38 32	61 48 45 36	71 57 53 42	81 66 62 49	89 76 71 58	95 85 80 67	100 96 93 84	94 99 97 95	86 92 93 96	78 84 86 91	71 76 78 84	64 69 71 76	57 60 62 66	51 54 55 58	46 47 48 50	42 43 43 44	39 40 40 41	35 36 37 38	34 34 35	33 34 34 34	33 33 33 33	31 31 31 31	30 30 30 30	28 28 28 28	
.40 .50 .75 1.0	13 12 10 8	16 15 13 10	20 18 16 13	21 21 20	2222	5 3 1 7	26 24 22 19	28 25 23 20	31 27 25 21	34 29 27 22	39 33 29 23	46 37 32 25	54 43 36 27	62 50 42 29	80 67 55 37	92 83 71 49	96 93 84 63	93 95 93 78	86 91 93 88	78 84 88 92	68 73 78 88	59 63 68 78	51 54 57 65	45 46 49 53	41 42 43 46	38 39 40 42	35 36 37 39	34 34 34 36	33 33 34 34	31 32 32 33	30 30 31 31	28 28 28 29	
1.5 2.0 2.5 3.0	5210	7 4 2 1	9631	12	1	3953	14 10 6 3	15 10 6 4	16 11 7 4	17 12 8 5	18 13 8 5	19 14 9 6	20 15 10 7	22 16 11 7	25 19 13 9	29 21 15 11	36 24 17 12	47 29 19 14	60 36 22 17	73 45 26 19	87 64 35 23	89 80 49 31	79 87 72 47	64 77 85 73	53 63 78 84	46 52 65 76	42 46 53 63	38 41 46 53	36 38 42 46	33 34 36 38	32 32 33 34	29 30 30 31	
		IA	/P -	0.	30	+ -			+					* *	TC	- 1.	25 HF	2 * *	*		+	+	*	+				+	IA/P	- 0	.30		
0.0 .10 .20 .30	0000	0 0 0 0	+ 0 0 0 0		+ -)))	+ - 0 0 0 0	1 0 0	3 1 1 1	+ 6 22 1	10 5 4 3	15 8 7 5	22 13 11 9	28 19 16 14	34 25 22 19	43 36 34 31	48 45 43 40	51 49 48 46	51 51 50 49	51 50 50 50	49 50 50 50	47 48 48 48	45 46 46	44 44 44 45	43 43 43 43	42 42 42 42	40 40 41 41	40 40 40 40	40 40 40 40	40 40 40 40	40 40 40 40	40 40 40 40	39 39 39 39	
.40 .50 .75 1.0	0 0 0	0 0 0	000000000000000000000000000000000000000			00000	00000	0000	1 1 0 0	2200	4 4 1 0	8 6 2 0	12 10 3 1	17 14 6 2	28 25 13 6	38 36 23 14	45 43 33 23	49 48 41 32	50 50 46 40	50 50 49 46	49 49 50 49	47 47 48 49	45 46 47	43 43 44 45	42 42 43 43	41 41 42 42	40 40 40 41	40 40 40	40 40 40	40 40 40	40 40 40 40	39 39 39 39	
1.5 2.0 2.5 3.0	0 0 0	0000	00000)	0000	0000	0000	0 0 0	0000	0 0 0 0	0 0 0 0	00000	0000	1 0 0 0	2000	6 1 0 0	13 3 0 0	21 6 1 0	30 12 3 0	41 23 8 2	47 35 18 6	49 45 33 17	47 48 45 34	45 47 48 45	43 45 46 48	42 43 44 46	41 42 43 44	40 41 42 43	40 40 40 41	40 40 40 40	39 40 40 40	
	.*	IA	/P =	. O.	50	**	- + -	***	***	** **	**	+	· •		TC	- 1.	25 HF	* * *	* * *	**	***	+	*	***	** +	• •	***	***	IA/P	- 0	.50	• •	
0.0 .10 .20 .30	0 0 0 0	0 0 0 0	+0		+ -	+ - 0 0 0 0	+00000	+0000	0 0 0 0	0000	0 0 0 0	0 0 0 0	0 0 0 0	- + 0 0 0 0	0 0 0 0	+0000	0 0 0 0	1 0 0 0	3 1 1 0	+ 5321	9753	14 11 9 7	19 17 15 13	24 23 21 19	28 27 26 25	31 30 29 29	33 32 32 31	37 36 35 34	39 38 38 37	42 42 41 41	42 42 42 42	42 42 42 42	
.40 .50 .75 1.0	0000	0 0 0	00000			00000	0 0 0	0000	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0000	0 0 0	0000	0 0 0 0	0 0 0 0	0 0 0 0	0000	2 1 1 0	5 3 2 1	11 8 7 4	17 15 13 11	23 22 20 17	28 26 25 23	30 30 29 27	33 32 31 30	36 35 34 33	40 40 39 38	42 42 42 42	42 42 42 42	
1.5 2.0 2.5 3.0	00000	0000	00000			00000	0000	0000	00000	00000	00000	00000	0000	0000	0000	00000	0 0 0	0 0 0	0000	0000	0000	00000	1 0 0	5100	11 6 2 0	18 12 6 2	23 18 13 6	28 24 19	30 28 24	36 33 31 28	40 39 37 33	42 42 42 42	

	E	xhib	it 5	-II:	Tal	oula	r hy	dro	gra	ph	unit	disch	arge	es (c	sm/i	in) 1	for	typ	e II	rain	ıfal	l dis	stril	buti	on-	-co	ntin	ued		
TRVL TIME (hr)11	.0	3 11.6 + + IA/P =	11.9 +	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	13. 12.8 * * * 1	-HYDR 0 13.2 C = 0	0GRAP 13.4	13.6	13.8	14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5	18.0	19.0	20.0	2.0	26.0
0.0 1 .10 1 .20 1 .30 1	7 2.	+ + 3 32 2 30 9 25 8 24	- + 57 51 38 35	94 80 47 43	170 140 69 60	308 252 116 97	467 395 207 170	529 484 332 278	507 499 434 382	402 434 477 446	297 343 449 448	226 14 265 16 378 23 401 27	96 2 108 3 149 0 171	74 80 101 114	61 65 77 83	+ 53 55 66	47 49 53 56	41 42 45 46	36 36 39 40	+ 32 33 34 34	29 29 30 31	26 26 27 27	23 23 24 24	21 21 22 22	20 20 20 20	19 19 19 19	16 16 17 17	14 14 14 15	12 12 12 12	
.40 1 .50 1 .75 1	2 1 1 1 9 1 7 9	5 21 5 20 1 14 9 12	29 28 19 16	33 31 21 17	40 37 24 19	53 48 27 21	83 71 31 24	141 118 37 27	233 194 49 32	332 286 74 40	408 367 118 55	434 36 412 37 182 31 83 18	243 271 374 309	157 178 328 359	107 119 244 322	79 86 169 245	64 68 117 172	51 53 76 102	43 44 56 68	36 37 43 49	32 32 35 38	28 29 31 32	25 25 28 29	22 23 25 26	21 21 22 23	20 20 21 21	17 17 18 19	15 15 16	12 12 12 12	
1.5 2.0 2.5 3.0	5	7 8 4 6 3 4 1 2 + + IA/P =	11 7 5 3 - + 0.3	12 5 3 - +	13 8 6 4 +	14964+	15 10 7 4 +	17 10 7 5	19 11 8 5	21 12 9 6	23 14 9 6 +	27 4 15 14 10 1 7 4	89 23 2 15 3 9 4 + 0	175 35 18 11 +	269 65 24 13 +	322 123 36 16 •••	309 202 66 20	225 297 150 37	140 280 244 86	77 181 278 198	49 88 171 263	38 52 87 182	32 39 52 96	29 33 39 56	25 29 33 40	23 26 29 33 1A/F	20 21 23 26	17 19 20 21 +	13 14 15 16 +	10
0.0 .10 .20 .30		+ + 0 0 0 0 0 0 0 0	- + 1 0 0	9 1 1 0	53 6 4 0	157 37 26 3	314 117 87 19	433 248 194 64	439 372 313 151	379 416 382 259	299 391 388 341	237 159 330 214 349 24 372 31	118 150 167 223	95 113 122 156	81 92 97 117	71 79 82 94	65 70 72 80	56 60 62 67	50 53 54 58	46 47 48 50	42 43 43 45	38 39 39 41	34 35 35 36	31 32 32 33	30 30 30 31	28 29 29 29	25 26 26 26	222 222 223	19 19 19 19	
.40 .50 .75 1.0		0 0 0 0 0 0	0 0 0	00000	0 0 0	2000	13 1 1 0	47 9 4 0	116 34 14 0	211 89 41 2	298 170 89 7	354 320 255 34 152 27 22 90	8 245 303 305 305 212	172 225 268 295	127 161 207 285	100 120 155 237	83 96 118 181	69 76 87 120	59 64 70 88	51 54 57 67	45 47 48 53	41 42 44 46	37 38 39 42	33 34 35 38	31 31 32 34	29 30 30 31	26 27 27 28	23 24 24 25	19 19 19 19	
1.5 2.0 2.5 3.0		0 0 0 0 0 0 0 0 + + IA/P =	0.5	0 0 0 0 +	0 0 0 0 +	0 0 0 0	0 0 0 0 0 +	0 0 0 0 +	0 0 0 0	0 0 0 0	0 0 0 0 +	0 0 0 + + + + 1	5 30 0 0 0 0 0 0 0 0 0 0 0 0	95 3 0 5 Hi	183 18 1 0 +	249 59 5 0 +	265 125 21 1	217 221 84 13 +	152 245 174 56	96 182 230 157 +	66 105 172 217 +	53 69 103 163	46 54 69 101	41 47 54 68	37 42 46 53	34 38 42 46 .+ IA/F	30 32 34 37 - +	26 28 30 31 +	20 22 23 25 +	16
0.0 .10 .20 .30		+ + 0 0 0 0 0 0 0 0	. + 0 0 0 0	0 0 0 0	2000	26 1 1 0	89 18 12 1	170 65 47 8	217 135 106 34	229 190 162 82	200 216 198 135	179 14 205 17 203 17 177 19	4 119 0 137 3 145 4 168	104 115 121 139	93 101 105 117	85 91 94 102	78 83 85 92	70 74 76 80	64 67 68 71	59 61 61 63	55 56 57 58	51 52 52 54	46 47 48 49	43 44 44 45	41 42 42 43	40 40 40 41	36 36 37 37	32 32 32 33	28 28 28 28	
.40 .50 .75 1.0			00000	0 0 0 0	0 0 0 0	0000	0 0 0 0	6 4 1 0	25 18 7 0	63 48 22 1	111 90 47 3	155 189 133 18- 80 14 11 5	174 177 169 112	146 152 164 155	122 128 144 166	106 110 124 154	94 97 108 134	82 84 91 109	73 74 79 91	64 65 68 76	58 59 61 65	54 55 56 59	50 50 51 54	45 45 47 49	43 43 44 45	41 41 42 43	37 38 38 39	33 33 34 35	28 28 28 28	0000
1.5 2.0 2.5 3.3			0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0		50 4 0 0	97 18 0 +	136 47 3 0	154 86 11 1	145 134 44 7 +	121 146 95 29	95 125 140 86	75 94 127 135	64 75 97 122	58 64 77 95	54 58 65 76	49 53 58 65	45 49 54 58	41 42 45 49	37 39 41 43	29 31 33 35 +	10 21 26 27

(210-VI-TR-55, Second Ed., June 1986)

5-88

(hr)	11.0	11.3	11.6	1.9	12.0	12.1	12.2	12.3	2.4	12.5	2.6	12.7	12.8	3.0	HYDRO 13.2	DGRAP	13.6	ME(H0 13.8	URS) 14.0	14.3	14.6	15.0	15.5	16.0	16.5	17.0	17.5	18.0	19.0	20.0	22.0	26.0
	+ •	+ IA	/P =	0.1	0 +	+	+	+	+	•• +	+	+		TC	- 1	5 HF	* *	* *	** +	+	+	+	+	+	+	+	+	IA/P	- +	.10	- +	
0.0 .10 .20 .30	+9887	11 10 10 9	15 13 13 12	21 18 17 16	25 20 19 18	31 23 22 21	41 28 26 24	58 37 33 30	82 51 45 40	112 72 63 55	147 98 87 76	184 131 116 103	216 166 149 134	255 226 212 197	275 265 259 244	236 254 259 255	198 226 233 238	159 187 197 206	129 151 160 169	98 113 119 125	76 86 90 95	57 63 66 68	43 46 48 49	35 37 38 38	30 31 32 32	25 26 27 27	23 23 24 24	21 21 22 22	18 19 19 19	16 16 16 17	12 13 13 13	
.40 .50 .75	7654	8 8 7 5	11 10 8 7	14 13 11 8	15 15 12 9	17 16 13 10	19 18 14 11	23 21 16 12	28 26 18 13	36 33 21 14	49 43 25 16	67 59 32 18	91 80 42 22	151 136 76 34	208 194 125 59	247 238 179 101	252 249 222 152	230 235 240 201	196 204 233 236	146 154 193 230	109 115 148 193	77 81 102 135	54 56 67 86	41 42 48 59	34 34 38 44	29 29 32 35	25 25 27 30	22 23 24 26	19 20 20 21	17 17 18 18	13 13 13 14	and a second
1.5 2.0 2.5 3.0	3 1 1 0	4 2 1 0	5321+	6421	6432+	7 5 3 2 +	85324	8642+	9643+	10 7 4 3	11 7 5 3	12 8 5 3	13 9 6 4	16 10 7 5	22 12 8 5 +- +	34 16 9 6	58 22 11 8 +	95 34 14 9	141 56 18 11	203 110 34 16	226 172 69 27	197 218 141 66	131 187 210 149	84 126 190 204	58 82 133 181	43 57 87 128	35 43 60 85	29 34 58	23 25 30 35	20 21 23 25	15 16 17 18	10
0.0 .10 .20 .30	+ 0 0 0 0	IA 0 0 0 0	/P = 0 0 0	0.3	0 -+ 0 0 0 0	+ 1 0 0 0	+ 6 1 0 0	15 4 1 1	31 12 3 2	53 25 9 7	80 43 19 15	112 68 35 29	144 97 57 48	193 157 114 100	= 1 225 198 168 155	5 HF 208 219 201 193	186 203 213 210	* 157 178 196 200	134 151 171 177	108 120 135 140	89 98 108 113	70 77 84 87	56 60 64 66	48 50 53 54	42 44 46 46	37 38 40 41	34 35 36 36	IA/P 31 32 33 33	28 28 29 29	.30 25 25 26 26	20 20 20 20	
.40 .50 .75	0000	0 0 0	0 0 0	0000	0000	0 0 0	0000	0 0 0 0	2000	5 1 0 0	12 4 2 0	23 9 4 0	39 18 9 1	87 51 30 5	141 101 68 20	184 153 116 49	207 190 160 92	202 205 189 138	182 197 197 175	146 164 179 195	117 131 147 178	89 99 110 137	68 73 80 97	55 58 62 72	47 49 52 57	41 43 45 48	36 38 39 42	33 34 35 37	29 30 30 31	26 26 27 28	20 20 21 21	1
1.5	0 0 0 0	0000	0000	0000	0000	0000	0000	00000	0000	0000	0000	00000	0000	0000	1 0 0	7 0 0 0	21 1 0 0	47 4 0 0	85 13 1 0	145 45 8 1	187 97 31 5	178 162 89 29	133 180 161 98	95 138 174 160	71 99 133 169	57 74 97 129	48 58 72 95	42 49 58 71	34 38 42 48	29 32 34 37	23 25 26 28	1012
		IA	/P -	0.5	0									TO	- 1	5 HF	* * *	*]										IA/P	- 0	.50	1	
.0 .10 .20 .30	0 0 0 0	0000	00000	0000	0 0 0	0000	0000	3 2 0 0	8 6 1 1	16 12 4 3	27 22 10 8	42 35 18 14	59 51 29 24	92 84 60 52	116 110 91 83	128 125 114 108	130 128 126 123	121 123 128 126	112 114 120 122	100 102 108 110	90 91 97 98	78 79 83 85	67 68 71 72	60 61 63 63	55 55 57 57	50 50 52 52	46 46 47 48	43 43 44 44	39 39 40 40	35 35 36 36	29 29 29 29	1444
.40 .50 .75	0 0 0	0 0 0	00000	0000	0000	0000	0000	0 0 0 0	00000	1 0 0 0	2 2 1 0	6 4 2 0	12 9 5 0	31 26 16 3	60 53 36 10	90 83 62 26	112 106 88 49	124 121 108 75	126 125 119 98	116 118 122 118	104 106 112 121	90 91 97 108	75 77 81 90	66 67 69 76	59 60 62 66	54 54 56 59	49 49 51 54	45 46 47 49	41 41 42 43	37 37 38 39	29 29 30 31	11
1.5 2.0 2.5 3.0	0 0 0	0 0 0	0 0 0	00000	0 0 0 0	000000	0 0 0	0 0 0	0000	00000	00000	0 0 0	0000	0000	1 0 0 0	3000	11 1 0 0	25 4 0	45 11 1 0	80 32 4 0	107 63 16 3	118 100 48 15	106 115 94 54	89 104 113 96	75 87 105 111	65 74 89 103	59 65 76 88	53 58 66 75	45 48 53 58	41 42 45 48	32 34 36 38	226
	R	AINFA	LL T	YPE	- 1	1		+			+	+	* * *	TC	- 1	5 HF	* * *		+	+	+		+					SHEET	90	F 10		

Exhibit 5-II: Tabular hydrograph unit discharges (csm/in) for type II rainfall distribution-continued

5-37

(210-VI-TR-55, Second Ed., June 1986)

1.1	
00	

Exhibit 5-II: Tabular hydrograph unit discharges (csm/in) for type II rainfall distribution-continued

1.5	.40 .50 .75 1.0	0.0 .10 .20 .30		1.5 2.0 2.5 3.0	.40 .50 .75 1.0	0.0 .10 .20 .30	3.0	1.5 2.0 2.5	.40 .50 .75 1.0	0.0 .10 .20 .30		TIME (hr)																				
000	0	0 0 0 0	- + -	0000	0 0 0 0	0 0 0	• + •	2 1 0	5543	+7666	**	11.0																				
0	0	0 0 0 0	+	0 0 0	0 0 0	0 0 0	0 1A/F	3 2 1	6664	9 8 8 7	IA/F	11.3 0 11																				
000	0	+00000	: +	00000	00000	00000	+ + + + +	3 2 1	8876	12 10 10 9	; +	1.6																				
000	0	- + 0 0 0	· +	0000	0 0 0	0 0 0	1 0.30 - +	532	11 10 9 7	16 14 13 12	0.10	1.9																				
0	0	0 0 0 0	-+-	0000	0 0 0	0 0 0	-+	532	12 11 10 8	18 15 14 14) +)	2.0																				
0	0	+ 0 0 0 0	-+	00000	0 0 0 0	1 0 0 0	+ +	542	13 13 11 8	21 17 16 15	*	2.1																				
0	0	0 0 0 0	++	0000	0 0 0 0	3000	····‡	643	15 14 12 9	27 20 19 18	****	12.2																				
0	0	+ 1 1 0	+	00000	0 0 0	8 2 2 0	+ +	643	17 16 13 10	36 25 23 21	+	12.3																				
0	0	++ 4 3 2 0	+-	0000	1 0 0	15 6 4 1	+ +	7 5 3	20 18 15 11	49 33 29 27	***	12.4																				
0	1	*8652	• +	00000	2 2 0 0	25 12 10 3	·· +	854	24 22 18 12	64 43 39 35	* *	12.5																				
0	31	13 11 9 4	+	00000	6 4 1 0	38 21 17 7	+	864	31 28 22 14	82 57 51 45	+	12.6																				
ů	62	20 17 14 7	+	0 0 0	11 9 2 0	54 32 27 14	+	9 6 4	41 37 27 16	104 74 66 59	+	12.7																				
õ	10	28 24 21 12		000000	19 16 5 0	74 47 41 23	* *	10 7 5	53 48 35 18	127 94 84 76	* *	12.8																				
1	22	51 45 40 26	··+	000000000000000000000000000000000000000	43 37 15 3	115 85 75 49	3 * T(+	12 8 6	87 78 58 28	171 139 128 117	* 10	13.0																				
5	41 27	73 68 62 46	+	1 0 0	77 68 34 10	148 124 114 86	+ +	16 10 7	128 118 91 46	201 179 169 159	= 2	HYDR 13.2																				
13	62 46	92 87 82 67	+ 0 k	3 0 0 0	113 104 62 24	168 153 146 122	.0 H	23 12 8	167 158 129 74	226 204 198 191	.0 H	06RAI 13.4																				
25	81 67	+ 104 101 98 86	+	10 1 0 0	144 136 96 48	185 169 165 151	+ R * * +	36 16 9	197 190 164 110	208 218 213 211	R * *	PH TI																				
43	96 85 71	111 109 107 100	* +	24 4 0	165 160 127 79	170 180 175 170	:+	57 23 12	209 208 191 147	193 205 207 208	. +	ME(H0 13.8																				
62	106	112 112 112 111 108	+	45 10 1	173 171 152 111	159 168 170 174	***	86 35 16	205 208 202 178	171 188 192 196	+	URS: 14.0																				
87	110	106 107 108 111	+	88 32 4 0	$163 \\ 165 \\ 167 \\ 150$	$ \begin{array}{r} 131 \\ 145 \\ 149 \\ 160 \end{array} $	12 +	137 67 28	180 185 194 201	132 150 157 163	***	14.3																				
103	105 108	97 98 100 104	+	130 68 16 3	$140 \\ 144 \\ 160 \\ 166$	110 120 124 136	18 + +	178 112 52	145 151 167 193	105 118 123 128	+	14.6																				
108	94 98	**************************************	+	161 122 51 15	111 114 132 153	89 96 99 107	+ +	195 169 105	106 111 125 156	79 88 91 95	*	15.0																				
97	81 85 89	75 76 77 80	+	148 157 114 59	85 87 100 118	70 75 76 82	99 +	160 190 170	75 77 87 108	58 63 65 68	+	15.5																				
84	71 74 77	66 67 68 70	+	115 143 153 118	67 69 77 90	57 60 62 66	161	113 154 185	55 57 63 76	45 48 49 51		16.0																				
73	63 66	60 60 61 63	+	88 113 144 150	55 56 62 71	49 51 52 54	180	79 110 149	43 44 48 56	36 38 39 40	***	16.5																				
65	57 59	54 55 55 57	+	70 87 116 140	47 48 52 58	42 44 45 47	152 +	58 78 107	35 36 38 43	30 32 33 33	***	17.0																				
59	52 54	49 50 50 52	+	57 68 89 113	41 42 45 49	38 39 39 41	112 +	45 57 76	30 30 32 35	26 27 28 28	+	17.5																				
53	48 49	46 46 47 48	TA/5	48 56 70 88	37 37 40 43	34 35 35 37	80 + IA/F	36 44 56	26 26 27 30	23 24 24 25	IA/F	18.0																				
45	42	41 41 41 42	**	37 42 49 57	31 31 32 34	29 30 30 31	45 + (26 30 35	21 21 22 23	20 20 20 20	- (19.0																				
41	38 39	37 37 37 38	+	31 34 38 42	27 27 28 29	26 26 27 27	30 + 30 +	21 23 26	18 18 18 19	17 17 17 18	.10	20.0																				
32	30 31	30 30 30 30	- +	24 26 27 29	21 21 22 23	20 20 21 21	19 - + - +	16 17 18	14 14 14 14	13 13 13 13	- +	2.0																				
20	11	+ 7 8 10	+	17 18 19	8 9 11 14	5668	+	11 11 12	5568	1 3444	+	26.0																				
		E	xhil	bit	5-I	11:1	`abu	lar	hyd	rog	rapl	h un	it di	iscl	harg	ges	(csn	n/in)) fo	r ty	pe l	III r	ain	fall	dis	tribu	itio	n—	соп	tinu	ied	
--------------------------	-----------------------	-----------------------------	--------------------------------------	---------------------------------	--------------------------------------	---------------------------------	-----------------------	-----------------------	-------------------------	-------------------------	--------------------------	--------------------------	----------------------------------	---------------------------	-----------------------------	--------------------------------	------------------------------	--------------------------	--------------------------	-----------------------------	-------------------------	--------------------------	-------------------------	------------------------	-----------------------	----------------------	----------------------	------------------------------	-----------------------------	------------------------------------	-----------------------------	---------------------
TRVL TIME (hr)	11.	11.3 0 IA	11.6 + /P =	0.1	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	3.0 TC	13.2 - + - 0 - +	06RAP 13.4 .5 HR	H TIM	13.8 + *	URS) 14.0	14.3	14.6	15.0	15.5	16.0 +	16.5	17.0	17.5	18.0 IA/P	19.0	20.0	2.0	26.0
.10 .20 .30	19 18 16	24 23 21	35 30 29 26	43 40 34	50 47 38	97 64 58 44	144 86 77 53	125 109 69	186 161 95	273 235 139	355 315 203	392 367 278	390 382 337	296 318 367	139 194 218 289	129 145 199	94 103 135	67 75 80 98	65 68 77	52 56 57 62	49 50 54	42 43 44 46	36 38 39 40	33 33 35	28 28 30	23 24 25	21 22 22	19 19 20	15 15 16	13 14 14 14	11 11 11 11	0000
.40 .50 .75 1.0	16 14 12 10	20 18 16 12	25 22 20 16	33 28 25 20	36 31 28 22	41 35 30 23	49 39 34 25	62 46 38 28	84 57 45 31	121 75 56 34	176 106 75 39	244 152 104 47	306 213 145 60	358 323 246 110	306 346 319 197	220 282 308 280	151 202 252 309	107 140 187 279	83 102 135 220	64 73 89 138	55 59 67 90	47 50 53 63	41 42 44 49	35 37 39 42	30 32 33 37	25 27 28 31	23 23 24 26	20 21 22 23	16 16 17 18	14 14 14 15	12 12 12 12	0 0 0 1
1.5 2.0 2.5 3.0	6 3 2 1 +	8 5 3 1 1 IA	10 7 4 2 +	13 96 3 - 4 0.3	14 10 7 4	15 11 7 4 +	17 12 8 5	18 13 9 5	19 14 10 6	21 15 10 6	23 16 11 7	25 17 12 8 +	27 19 13 8 • • • •	34 22 16 10 +	49 27 18 12 - +	82 34 22 14 -+	143 50 26 16 • +	218 82 34 19	283 135 50 23	271 226 102 34	203 265 182 63	116 211 249 144	68 114 197 238	51 67 111 201	43 50 67 121	37 42 50 72	32 37 42 52	27 31 36 43 IA/P	21 23 26 31 0	16 18 20 23 +	13 13 14 15 +	4 9 10
0.0 .10 .20 .30	0 0 0 0	0 0 0 0	+0 0 0 0	1 1 0 0	+4320	15 11 8 2	40 30 23 6	101 77 59 17	198 158 125 45	295 249 208 98	345 313 278 171	345 335 316 242	325 329 324 291	232 253 271 313	161 178 196 249	122 132 144 182	100 106 112 136	88 91 95 108	80 82 85 92	72 73 75 80	65 66 67 71	59 60 61 63	53 53 54 56	46 47 47 49	39 40 40 42	34 35 35 36	31 31 32 33	28 28 28 29	23 23 23 24	21 21 21 21 21	18 18 18 18	00000
.40 .50 .75 1.0	0 0 0	00000	00000	00000	0000	1 0 0	4 1 0 0	13 3 1 0	34 10 4 0	77 26 12 1	140 60 29 2	208 113 60 6	264 177 104 16	304 276 204 67	263 295 271 155	198 244 263 235	148 185 222 263	115 140 174 242	97 111 136 198	81 88 101 138	72 77 83 102	64 67 70 80	57 59 61 66	50 52 54 58	43 45 47 51	37 39 40 44	33 34 35 38	30 31 32 34	24 24 25 27	21 22 22 23	18 18 18 19	0 0 0 1
1.5 2.0 2.5 3.0	0 0 0 0 +	0 0 0 0 + IA	0 0 0 0 + -	000	000+	0 0 0 0 +	0 0 0 0	0 0 0 +	0 0 0 0	0 0 0 0 +	0 0 0 0	0 0 0 0 0	0000	4 0 0 + TC	22 0 0 + - -	67 3 0 0 + 5 HR	138 13 1 0 • • +	205 42 4 0	241 93 15 1	221 182 62 10 +	167 225 139 41	110 191 213 127	79 119 180 203	66 83 117 171	58 67 82 114	51 58 67 81	44 51 58 66	38 44 51 57 IA/P	30 34 38 43 - +	24 27 30 33 +	20 21 22 23 - +	5 12 15 16
0.0 .10 .20 .30	0000	000000	0000	0000	0000	0000	3 2 1 0	24 17 12 1	68 51 38 8	124 100 79 28	174 149 126 62	190 177 160 105	190 1 186 1 181 1 141 1	162 169 173 176	133 140 147 165	114 119 124 141	103 106 109 120	97 99 101 107	92 93 95 99	85 86 88 91	80 81 81 84	75 75 76 78	68 69 69 71	60 61 62 64	52 52 53 56	47 47 48 49	43 43 44 45	39 39 39 41	33 33 33 33 33	30 30 30 31	26 26 26	00000
.40 .50 .75 1.0	0 0 0 0	0000	0000	00000	00000	00000	00000	1 0 0 0	6400	20 15 1 0	48 37 6 1	86 70 17 3	123 1 105 1 37 9	172 157 91 40	172 167 139 91	146 151 157 135	125 130 150 153	111 114 134 149	101 104 119 135	92 94 103 113	85 87 93 99	79 79 84 88	72 73 76 79	65 66 69 72	56 57 62 65	50 50 54 57	45 46 48 50	41 42 44 45	34 34 35 37	31 31 32 32	26 27 27 27	0 0 0 1
1.5 2.0 2.5 3.0	0 0 0 + R	0 0 0 41NFA	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 + 1	0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 + TC	5000+0	24 1 0 -+ 5 HR	59 7 0 0 +	101 25 2 0 +	132 55 9 0	144 106 36 5	130 138 81 24	107 130 133 74	90 105 133 128	80 89 104 122	73 79 88 103	65 72 79 88	57 65 71 78	51 57 64 70	41 45 50 55 +	34 37 41 45 + 0F 10	29 30 31 32 +	15 21 23

5-63

(210-VI-TR-55, Second Ed., June 1986)

TRVL	,	EX0		11.9		2.1	Jula	r ny	are	12.5	pn	12.7	ai	13.0	HYDR	06RAF	H TI	ME(H0 13.8	URS)	14.3	en	15.0	ma	16.0	str	17.0		-CO	au	nue		26.
(hr)	11.	0 1 1 IA/	1.6 + P =	0.1	2.0	+	12.2	+	12.4	+	12.6	+	12.8	* TC	13.2	.75 H	13.6 R * *	**	14.0	+	14.6	+	15.5	+	16.5	+	17.5	IA/P	9.0	.10	22.0	
0.0 .10 .20 .30	17 17 15 14	22 21 19 18	28 27 24 23	39 37 31 30	45 42 35 33	56 51 40 38	73 66 48 44	104 91 60 55	151 131 81 72	215 187 114 100	281 250 163 142	328 302 221 194	343 336 275 248	310 319 328 320	228 247 298 305	163 179 229 245	121 131 167 182	94 101 124 135	77 82 96 103	63 65 73 76	53 55 60 62	45 46 49 50	39 40 42 42	34 35 36 37	29 29 31 31	25 25 26 27	22 22 23 23	20 20 20 21	15 16 16	14 14 14 14	11 11 12 12	
.40 .50 .75 1.0	13 12 10 8	16 16 13 10	21 20 16 13	26 25 21 16	29 28 23 18	32 30 25 19	36 34 27 21	41 39 30 23	50 46 33 25	65 59 38 27	88 78 46 30	124 109 58 34	171 150 77 39	268 244 140 61	313 306 221 109	288 294 277 181	228 242 287 249	170 184 248 280	127 138 197 265	88 94 133 198	68 71 92 134	54 56 85	44 45 50 58	38 39 42 46	33 34 36 40	28 28 31 34	24 24 26 29	21 22 23 25	17 17 18 20	14 14 15 16	12 12 12 12	
1.5 2.0 2.5 3.0	5210	7 4 2 1	9.532	12 7 5 3	13 8 5 3	14 96 3	15 96 4	16 10 7 4	17 11 8 5	19 12 8 5	20 13 9 6	22 14 10 7	24 16 11 7	30 18 13 9	40 22 15 10	63 26 18 12	106 34 21 15	167 50 26 17	225 80 34 21	261 155 62 29	226 226 120 50	147 246 209 113	84 158 234 209	58 91 151 224	46 61 90 144	39 47 60 88	34 40 47 59	29 34 39 46	22 25 29 33	17 20 22 25	13 14 15 16	1
		IA/	P =	0.3	0									* TC	- 0	.75 H	R * *	*										IA/P	- 0	.30		
0.0 .10 .20 .30	00000	0000	0000	0000	1 0 0 0	3200	8 6 1 1	24 18 5 3	58 45 14 10	113 91 35 26	182 151 72 57	243 212 125 102	283 259 183 156	287 284 263 245	233 245 277 270	178 191 230 240	139 149 180 192	114 120 142 151	98 102 116 122	83 85 93 96	73 75 80 82	64 65 68 69	56 57 59 60	50 50 52 53	43 43 45 46	37 37 39 39	33 33 34 35	30 30 31 31	24 24 25 25	21 21 22 22	18 18 18 18	
.40 .50 .75 1.0	0 0 0 0	0 0 0	00000	0 0 0	00000	00000	00000	1 0 0 0	2200	8 6 0	20 15 1 0	45 35 2 1	83 67 7	182 158 35 21	252 235 100 68	264 259 178 140	226 235 232 205	181 192 242 236	144 153 217 229	108 113 163 181	89 92 121 135	73 75 90 97	62 63 71 74	55 56 63	48 49 54 55	41 42 47 48	36 36 40 41	32 33 35 36	26 26 28 29	22 22 23 24	19 19 19 19	
1.5 2.0 2.5 3.0	0 0 0 0 +	0 0 0 0	0 0 0 0 + F	0000+5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 +	0 0 0 0 ++	0 0 0 0	0 0 0 0 0	0000	0 0 0 0 +	2000+	13 1 0 0 +	42 4 0 0 +	94 15 1 0 +	155 42 5 0	221 113 27 1	212 184 80 10	158 209 168 56	103 151 199 154	77 101 146 191	64 76 100 151	56 63 75 105	49 55 63 78	42 48 55 64	33 36 41 48	26 29 32 37	20 21 22 24	10 14 19
0.0 .10 .20 .30	• + 0 0 0 0	0 0 0 0	· + 0 0 0.	· + 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	+ 3 2 0 0	13 10 1 1	37 28 7 5	71 57 21 15	108 91 45 35	140 124 76 62	167 163 135 121	156 158 159 157	136 140 153 157	120 124 136 140	108 111 120 124	101 103 109 112	92 94 98 100	85 86 90 91	78 79 82 83	72 72 74 75	64 65 67 68	56 57 59 60	50 50 52 52	45 46 47 47	41 41 43 43	34 34 35 35	31 31 31 31 31	26 27 27 27	
.40 .50 .75 1.0	0 0 0 0	0 0 0	0000	0 0 0 0	0 0 0	0 0 0 0	00000	0000	1 0 0	3 0 0 0	11 2 1 0	27 8 4 0	50 21 10 0	107 66 38 5	146 118 82 24	154 148 122 60	143 152 142 102	128 139 144 132	115 125 133 142	102 108 116 133	93 97 103 116	84 87 91 99	76 78 80 86	69 71 73 77	61 63 66 70	53 55 58 62	48 49 51 55	43 45 46 49	35 36 37 40	32 32 32 33	27 27 28 28	
1.5 2.0 2.5 3.0	0000+	00000	0000+	0000+	0 0 0 0	0000+	0000	0 0 0 0 0	0000+	0 0 0 0 0	00000	0 0 0 0 0	0000	0000	10000	7 0 0 0	25 2 0 0	55 9 0 0	91 25 3 0	128 66 16 2	136 109 47 10	119 131 100 44 +	98 116 127 102	85 97 114 124	77 85 96 112	69 76 84 95	62 69 75 83	54 61 68 75	44 48 53 59	36 39 43 47	29 30 31 33 • +	1

TOVE		Ext	hibi	t 5-	III:	: Ta	bula	ur hy	ydro	gra	ph	unit	dis	ch	arge	s (c	sm/	in)	for	typ	e II	I ra	infa	dl d	istr	ibut	ion	-ce	onti	nue	d	
(hr)	11.0	11.3 0 1	11.6 + /P =	11.9 0.1	12.0	12.1	12.2	12.3	12.4	2.5	12.6	12.7	12.8	3.0	13.2	13.4	13.6	13.8	14.(14.3	14.6	15.0	15.5	16.0 +	16.5	17.0	17.5	18.0 IA/P	9.0	.10	2.0	26.0
0.0 .10 .20 .30	15 13 13 12	19 17 16 16	24 22 21 20	32 28 27 26	37 31 29 28	44 35 33 31	54 41 38 36	71 49 46 42	98 64 58 53	136 87 77 69	181 120 105 93	227 161 142 126	264 205 184 165	297 273 257 240	270 289 285 279	215 254 263 268	164 201 214 225	128 155 167 178	103 122 130	78 90 95 100	64 71 74 77	52 56 57 59	43 45 46 47	36 38 39 39	31 33 33 34	26 28 28 29	23 24 24 25	21 21 22 22	16 17 17 17	14 14 14 15	12 12 12 12 12	+ 0 0 0
.40 .50 .75 1.0	11 11 8 6	14 13 10 9	18 17 13 11	23 22 17 14	25 24 18 15	27 26 19 17	30 29 21 18	34 32 23 20	40 37 25 21	48 45 28 23	62 56 31 25	83 74 36 28	112 99 44 32	185 167 72 46	251 235 122 75	276 270 186 124	256 261 239 185	213 223 258 234	168 179 243 253	118 126 189 226	87 92 136 170	65 67 90 110	50 51 62 71	41 42 48 53	35 36 40 43	30 31 34 37	26 26 29 31	23 23 25 27	18 18 20 21	15 15 16	12 12 12 13	1 1 2 4
1.5 2.0 2.5 3.0	4 2 1 0 +	6 3 1 0 1 1 0	84 2 1+=	10 6 4 2 + 0.3	11 7 4 2 -+	12 7 5 2	13 8 5 3 +	14 9 6 3	15 10 6 3	16 10 7 4	17 11 8 4	19 12 8 5	21 13 9 5	25 16 11 7 +	32 18 13 8 - +	46 22 15 10 .0 HR	74 28 18 12 • • +	118 38 22 14 +	170 58 28 16	230 111 46 21	239 179 87 32 +	179 228 167 68	108 185 219 156	70 116 176 210	52 75 113 179	43 54 73 120	36 44 54 78	31 37 43 56 IA/P	23 27 31 37 +	18 21 23 27 +	13 14 15 16 - +	7 9 10 11
0.0 .10 .20 .30	+ 0 0 0 0	0 0 0	+ 0 0 0 0 0	- + 0 0 0 0	+00000	1 1 0 0	5 3 1 1	13 10 3 2	30 23 7 6	57 46 18 14	95 79 36 29	141 120 65 53	186 164 102 86	243 230 183 163	249 245 233 221	213 221 241 237	174 183 210 217	142 150 174 183	119 125 144 151	97 101 112 117	83 85 92 95	70 72 76 78	60 61 64 65	53 53 56 56	46 46 48 49	39 40 42 42	35 35 36 37	31 31 33 33	25 25 26 26	22 22 22 22	18 18 19 19	+ 0 0 1 1
.40 .50 .75 1.0	00000	0 0 0	000000	00000	0 0 0 0	0 0 0	00000	0 0 0	1 1 0 0	4 3 0	11 8 1 0	23 18 4	43 34 9 2	107 91 33 11	180 162 82 37	225 214 145 85	233 230 196 144	207 213 218 192	175 183 211 214	133 139 174 199	105 109 135 160	84 86 101 116	68 70 77 85	59 60 64 69	51 52 56 59	44 45 48 51	38 39 42 44	34 34 37 38	27 27 29 30	23 23 24 25	19 19 19 20	1135
1.5	0 0 0 +	0 0 0 0 1 4	0 0 0 + - -	000	0000+0	0 0 0 0 +	0 0 0 0	0 0 0 0 0 +	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 +	0000	0 0 0 + TC	1 0 0 0 + - 1	7 0 0 0 0	23 2 0 0 +	56 8 1 0 +	104 24 3 0	174 73 15 1	203 139 51 6 +	177 194 127 35 +	123 169 186 117	89 120 162 180	71 87 117 164	60 70 86 122	52 59 69 90	45 51 59 71 IA/P	35 39 44 51 - 0	27 30 34 39 +	21 22 23 25 - +	11 14 16 16
0.0 .10 .20 .30	+ 0 0 0 0	0 0 0 0	+ 0 0 0	. + 0 0 0 0	-+ 0 0 0 0	0000	0000	2 1 1 0	+ 6 5 3 0	17 13 10 2	34 27 21 7	57 47 38 16	83 71 60 31	127 117 106 73	151 146 138 114	142 144 143 139	130 133 135 142	118 121 124 132	109 112 114 121	99 101 102 108	91 92 94 98	83 84 85 88	75 76 76 79	68 68 69 71	59 60 61 64	52 53 54 56	47 48 48 50	43 43 44 45	35 35 35 36	31 32 32 32	27 27 27 27	1
.40 .50 .75 1.0	0 0 0 0	0000	0000	0000	00000	0 0 0 0	0000	0 0 0 0	0 0 0	2 0 0 0	5 1 0 0	13 4 2 0	25 10 5 1	62 35 19 6	104 74 43 21	133 112 84 49	140 134 115 84	134 138 131 113	124 131 134 129	110 117 123 132	99 104 110 119	89 93 97 103	80 82 85 89	72 74 77 80	64 67 69 72	56 59 61 64	50 52 54 56	45 47 48 50	37 38 39 41	32 33 33 34	27 28 28 28	1235
1.5 2.0 2.5 3.0	0 0 0 + RA	0 0 0 1 1NFAL	0 0 0 0 +	0 0 0 0 0	0000+1	0 0 0 0 + +	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 +	0 0 0 0	0 0 0 0 0	0000	0 0 0 0 +	1 0 0 0 + +	7 0 0 0	21 1 0 0 +	46 4 0 0 +	75 14 1	113 42 9 1	128 82 29 5	120 119 75 28	102 124 117 80	88 104 121 118	79 90 102 118	71 80 89 101	63 72 79 88	56 64 71 79	45 50 56 63 7 0	37 41 45 49 + F 10	29 31 32 34	12 20 23 24

5-45

(210-VI-TR-55, Second Ed., June 1986)

	Ex	hibi	t 5-		Tal	bula	r hy	dro	gra	ph	unit	dis	scha	arge	s (c	sm/i	in) f	or	typ	e II	I ra	infa	ll di	istri	ibut	ion	-co	nti	nue	d	
TRVL TIME (hr)11	11.3 .0	11.6	11.9	2.0	2.1	12.2	2.3	2.4	2.5	12.6	12.7	2.8	13.0	HYDR 13.2	0GRAP 13.4	H TIN	4E(H0 13.8	URS) 14.0	14.3	14.6	15.0	15.5	+	16.5	17.0	17.5	18.0	9.0	10.0	2.0	26
0.0 13 .10 13 .20 11 .30 11	17 16 15 14	22 21 18 18	28 27 24 23	-+ 32 30 26 25	37 34 29 27	44 41 33 31	56 51 38 36	75 67 47 43	100 89 60 54	133 118 79 71	170 152 105 94	- + 206 188 137 122	255 243 203 187	264 261 248 237	236 243 256 254	194 204 232 238	155 164 193 203	125 133 156 165	95 100 115 121	75 79 88 92	59 61 67 69	47 48 51 53	39 40 42 43	33 34 35 36	28 29 30 30	24 25 26 26	22 22 23 23	17 17 18 18	14 15 15 15	12 12 12 12 12	10
.40 10 .50 9 .75 8 1.0 6	12 12 11 8	16 15 14	20 19 17 14	22 21 19 15	24 23 20 16	26 25 22 17	29 28 24 19	34 32 27 20	40 37 31 22	49 45 36 25	64 58 44 28	84 75 56 32	140 126 93 46	201 186 144 74	242 232 196 119	250 248 230 170	228 233 237 213	193 201 220 234	142 150 174 218	$106 \\ 111 \\ 131 \\ 174$	77 80 91 120	57 58 64 79	46 47 50 58	38 39 41 46	32 33 34 38	27 28 29 32	24 24 25 27	19 19 20 21	15 15 16 17	12 12 12 13	
1.5 3 2.0 2 2.5 1 3.0 0	5 3 1 0	7 4 2 1	9632+	9.632+	10 7 4 2	11 8 4 2	12 8 5 3 +	13 9 5 3	14 10 6 4	16 11 7 4	17 12 7 5	18 13 8 5 +	22 15 10 6	27 18 11 8	38 22 13 9	58 27 16 11	91 38 19 13	134 57 24 16	197 106 38 21	223 166 68 31	194 214 137 66	128 184 206 145	83 124 186 200	60 82 130 178	47 59 87 126	39 47 62 85	33 39 48 61	24 28 33 39 +	19 21 24 28	14 14 15 17	
0.0 0 .10 0 .20 0 .30 0	0 0 0 0	4/P = +	0.3	+0000	1 1 0 0	2 2 1 0	+ 7 5 4 1	18 14 10 3	35 28 22 8	61 50 41 17	**************************************	* + 130 113 97 55	192 177 162 115	= 1. 222 214 205 174	25 H 218 219 217 208	R * * 191 197 202 214	* 161 168 175 195	136 142 149 168	+ 110 115 119 133	93 96 99 108	+ 77 79 81 87	65 66 67 70	56 57 58 60	48 49 50 52	41 42 43 45	36 37 37 39	32 33 33 34	= 0 26 26 27	.30 22 22 23 23	. + 19 19 19 19	
.40 0 .50 0 .75 0 1.0 0	00000	0000	00000	0 0 0 0	0 0 0 0	0 0 0	1 0 0 0	2 1 0 0	6 2 1 0	14 5 2 0	26 11 5 0	45 21 11 1	100 60 35 6	159 116 79 23	200 170 131 57	212 203 175 105	199 209 201 153	174 192 201 186	138 156 172 198	112 124 140 172	89 97 107 131	72 76 82 95	61 64 67 75	53 55 58 63	45 47 50 54	39 41 43 47	35 36 37 41	28 29 30 32	23 24 24 25	19 19 20 20	
1.5 0 2.0 0 2.5 0 3.0 0	0 0 0 0	0000	0 0 0 0 +	0 0 0 +	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 +	0 0 0 0 +	0 0 0 0	0 0 0 0 0	0000+	0000	2000+	8 0 0 0	24 2 0 0 +	54 9 0 +	96 24 2 0	157 69 10 1	189 127 35 6 +	174 182 99 34	127 167 176 107	94 124 167 171	74 93 129 161	63 74 96 125	54 62 76 94	46 53 63 75	35 40 46 53 +	28 31 35 40	21 22 23 25 +	
0,0 0 .10 0 .20 0 .30 0	0 0 0 0	VP - + 0 0 0	0.5	+ 0 0 0	0 0 0 0	0 0 0 0	+ 1 0 0	4 1 0 0	10 3 2 1	21 8 6 4	36 16 13 10	55 30 24 19	95 66 57 49	= 1. 123 102 94 85	25 H 138 125 120 113	131 134 132 131	* 122 128 130 131	114 120 122 124	104 108 110 112	95 99 101 102	**************************************	78 80 81 82	70 73 73 74	62 65 66 66	55 57 58 58	49 51 51 52	1A/P 44 46 46 47	- 0 36 37 37 38	.50 32 32 33 33	- + 27 28 28 28	
.40 0 .50 0 .75 0 1.0 0	00000	0000	0000	0 0 0	0 0 0 0	0 0 0	0000	0 0 0 0	1 0 0 0	3 1 0 0	8 2 1 0	16 6 3 0	42 22 12 1	76 51 32 7	106 84 61 22	126 112 91 47	130 127 113 76	125 129 125 102	114 120 123 122	104 109 114 124	93 97 101 111	83 86 89 96	75 77 80 85	67 70 72 76	59 61 64 69	52 54 56	47 49 50 54	38 40 41 43	33 33 34 36	28 28 28 29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00000	0000	00000	0000	0000	0 0 0	00000	0000	0000	00000	0 0 0	0000	00000	0000	2 0 0 0	8 1 0 0	22 3 0 0	43 9 1 0	82 30 6 0	111 63 20 3	121 104 58 19	109 118 104 64	95 107 116 104	84 94 106 114	76 83 93 104	68 75 83 92	60 67 74 82	48 539 65	39 43 47 52	30 31 33 35	

Appendix 3-B. Rainfall Distribution for the US (from TR-55, SCS, and TP-40)