# Long-Term Performance of Biofilter, Media Filter and Treatment Train Stormwater Controls at a Historical Industrial Site in Southern California

Pitt, R., M. Otto, A. Questad, R. Gearheart, J. Jones, M. Josselyn, M. Stenstrom, and B. Steets

# Contents

| Abstract2                                                 |
|-----------------------------------------------------------|
| Introduction2                                             |
| Description of Stormwater Controls and Monitoring Efforts |
| B1 Media Filter and Detention Basin (2012)7               |
| Detention Bioswales (2014)8                               |
| Lower Lot Sediment Pond and Biofilter (2013)9             |
| Upper Lot Media Filter (2017)9                            |
| NASA ELV Stormwater Treatment Train (2013)10              |
| Culvert Modifications (2009)10                            |
| Sampling Effort and Rainfall11                            |
| Analyses and Findings                                     |
| Stormwater Characteristics14                              |
| Influent Concentration Differences by Location16          |
| Filterable Fraction                                       |
| Particulate Strength19                                    |
| Treatment Performance23                                   |
| Permit Limit Exceedances23                                |
| Line Performance Plots25                                  |
| Paired Probability Plots27                                |
| Effluent Concentration Equations29                        |
| Influent and Effluent Concentration Trends with Time34    |
| Sediment Accumulation with Time37                         |
| Conclusions                                               |
| Maintenance                                               |
| Acknowledgements                                          |

| References                                                        | 41 |
|-------------------------------------------------------------------|----|
| Appendix A: Stormwater Characteristics and Treatment Performance  | 42 |
| Appendix B: Line Performance Plots                                | 48 |
| Appendix C: Influent and Effluent Concentration Probability Plots | 54 |
| Appendix D: Influent and Effluent Concentration Trends with Time  | 70 |

# Abstract

### Introduction

There have been a very large number of monitoring projects investigating the performance of stormwater controls, with much recent interest focusing on biofilters/bioretention systems. Most of these investigations were only conducted for relatively short (1 or 2 years) periods of time, with minimal data concerning long-term performance and maintenance issues, of great interest to stormwater managers.

The International BMP Database (http://bmpdatabase.org/) includes water quality performance data for over 700 studies. The 2016 Summary Statistics report (Clary, *et al.* 2017) describes the evolution of this database over the past 20 years. Even with this large number of performance investigations, only 9 biofilters, bioretention, or rain garden sites have been monitored for at least 3 years (maximum of 6 years). Another large-scale review of multiple stormwater control installations was conducted by Taylor, *et al.* (2014) for the Transportation Research Board, mostly based on stormwater controls at highway sites included in the International BMP Database. As part of this investigation, they reviewed long-term Department of Transportation performance studies at 6 vegetated sites having more than 4 years of data (one ecology embankment for four years in Washington, one swale for five years in Texas, and four strips for 5 to 7 years in California) to determine if performance changed over time. Also examined were three sand filter installations in California (monitored for 4 to 6 years) and one permeable friction course overlay study in Texas (monitored for 5 years). They were not able to identify any changes in performance based on these limited data.

The purpose of this paper is to expand this data set of long-term water quality performance of biofilters and media filter stormwater controls with monitoring data collected at several stormwater control installations at the Santa Susana Field Laboratory (SSFL) in Southern California. The SSFL is a 1,120 ha (2,800 ac) former federal government rocket engine testing and energy research facility located in the Santa Susana Mountains of eastern Ventura County that is currently owned by The Boeing Company and the U.S. Government. Activities at the site are now limited to demolition, remediation, and restoration. Much of the site is open space. Stormwater discharges from the site are regulated by the Los Angeles Regional Water Quality Control Board (LARWQCB) through an individual industrial NPDES permit that includes Water Quality Based Effluent Limits (WQBELs) for many constituents, including metals, organic solvents, dioxins, and radionuclides, at multiple outfalls. As part of the initial stormwater control design activities, Boeing partnered with the University of Alabama and Penn State Harrisburg to conduct laboratory performance studies to identify and evaluate stormwater treatment media filter mixtures. Bench-scale tests using stormwater included clogging, breakthrough, and removal; contact time and media depth; media capacity and kinetics; and aerobic/anaerobic effects. Results indicated that of the ten media mixes evaluated, a blend of rhyolite sand, surface modified zeolite (SMZ), and granular activated carbon (GAC) was a top ranked performer for the removal of a broad range of the contaminants of concern at reasonable flow rates and with minimal clogging. This media mix was implemented at stormwater control systems constructed at the SSFL.

Due to severe site constraints at two of the compliance monitoring "outfalls" (i.e., natural drainages located near the property boundary), "end-of-pipe" stormwater controls are not feasible. Therefore, a watershed-based, distributed stormwater control approach has been implemented, with numerous applications of advanced treatment trains incorporating sedimentation and flow equalization followed by flow-through media filters (or "biofilters" when vegetated).

# **Description of Stormwater Controls and Monitoring Efforts**

As part of the distributed stormwater control approach, numerous locations have been monitored during all runoff producing rains. Figure 1 shows 68 potential stormwater control monitoring locations downstream of historical industrial activities, known impacted surface soils, and/or significant developed areas (such as buildings and/or paved surfaces) along with 16 background monitoring locations and two NPDES outfall monitoring locations. Performance monitoring was also conducted at the constructed stormwater controls.

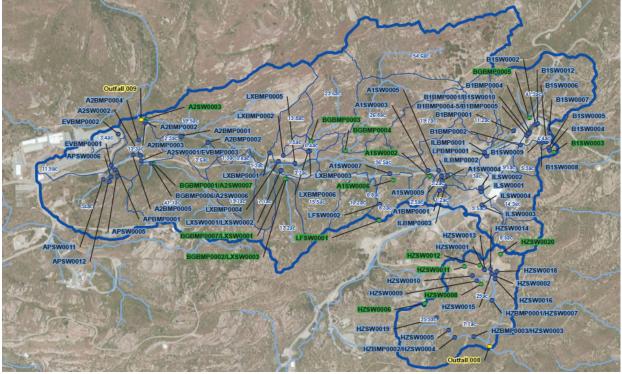
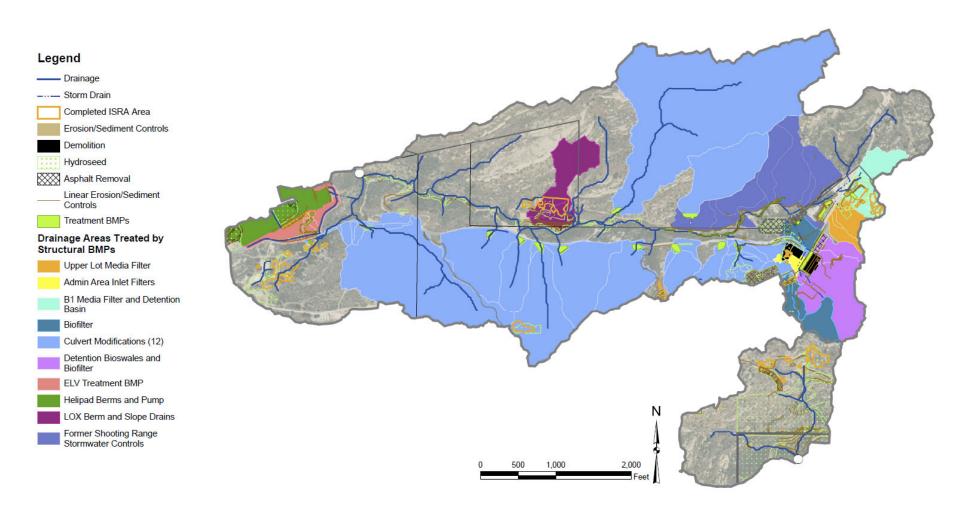



Figure 1. Source area monitoring locations (Blue at potential stormwater control monitoring locations, green: 16 at background monitoring locations, and yellow at NPDES outfall monitoring locations.


Every year, the source area monitoring data are evaluated, and the locations ranked according to procedures considering concentrations above the outfall NPDES benchmarks and/or limits and the number of samples available. The top ranked locations are then examined in detail and suitable stormwater controls evaluated, designed, and constructed. Performance monitoring is also conducted at these stormwater controls to verify the procedure and their performance. As of 2018, numerous stormwater controls have been used at the SSFL, as shown on Figure 2. Detailed site descriptions and historical activities are available at web sites of Boeing and various state agencies. The annual reports (including the monitoring data and evaluations) are also publicly available on web sites.

"Culvert modifications" (CMs) were installed early in the process in 2009 and 2010 before statistically sufficient amounts of data were collected as these could be installed quickly and at relatively low cost. These create impoundments at road crossing culverts with the impounded water directed through a horseshoe shape mound of the media mixture which is then collected with underdrains. Twelve culvert modifications have been installed at SSFL.

Table 1 lists ten stormwater controls examined in this paper, representing the types of controls at the SSFL and a range of drainage area characteristics. All of these controls were designed to hydraulically handle the 1-yr, 24-hr rain, which is 2.5 inches in depth (the peak flow rates depend on the drainage area times of concentration).

| Stormwater Control                                                            | Footprint of<br>Stormwater<br>Control<br>Media filter area:<br>3 m <sup>2</sup>     | Residence<br>time in Filter<br>Media<br>(minutes) | Drainage Area<br>(ha and acres)<br>17 to 21 ha (43<br>to 53 ac) | Approximate<br>Impervious Cover in<br>Drainage Area<br>(pavement, roofs,<br>and massive rock<br>outcrops) (%)<br>6.5 to 22% | Percentage of<br>Annual Flow<br>Treated (%)<br>29% | Treatment Area<br>(sedimentation plus<br>media filter) to<br>Drainage Area Ratio<br>(m <sup>2</sup> /ha and %)<br>0.14 to 0.18 (0.001<br>to 0.002%) |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| CM-8; Background<br>location (no known<br>historical industrial<br>activity)  | XXX                                                                                 | XXX                                               | 1 ha (2.6 ac)                                                   | 36%                                                                                                                         | XXX                                                | XXX                                                                                                                                                 |
| CM-9                                                                          | Media filter area:<br>3 m <sup>2</sup>                                              | XXX                                               | 4.1 ha (10.2 ac)                                                | 48%                                                                                                                         | 33%                                                | 0.73 (0.007%)                                                                                                                                       |
| CM-11; Background<br>location (no known<br>historical industrial<br>activity) | XXX                                                                                 | XXX                                               | 2.3 ha (5.7 ac)                                                 | 26%                                                                                                                         | XXX                                                | XXX                                                                                                                                                 |
| B-1 Media Filter                                                              | Biofilter area: 19<br>m <sup>2</sup>                                                | XXX                                               | 1.8 ha (4.4 ac)                                                 | 53%                                                                                                                         | 51%                                                | 10.6 (0.1%)                                                                                                                                         |
| ELV Treatment<br>Train                                                        | Sediment tank<br>area: 42 m <sup>2</sup><br>Media filter area:<br>21 m <sup>2</sup> | XXX                                               | 2.6 to 6.2 ha (6.6<br>to 15.6 ac)                               | 26 to 37%                                                                                                                   | 96%                                                | 10.2 to 24.2 (0.1 to<br>0.2%)                                                                                                                       |
| Northern Detention<br>Bioswale                                                | XXX                                                                                 | XXX                                               | 1.0 ha (2.6 ac)                                                 | 50%                                                                                                                         | XXX                                                | XXX                                                                                                                                                 |
| Southern Detention<br>Bioswale                                                | XXX                                                                                 | XXX                                               | 5.7 ha (14.2 ac)                                                | 50%                                                                                                                         | XXX                                                | XXX                                                                                                                                                 |
| Lower Lot Biofilter                                                           | Sedimentation<br>area: 300 m <sup>2</sup><br>Biofilter area:<br>300 m <sup>2</sup>  | XXX                                               | 12 ha (29.9 ac)                                                 | 53%                                                                                                                         | 79%                                                | 50 (0.5%)                                                                                                                                           |
| Upper Lot Media<br>Filter                                                     | XXX                                                                                 | ХХХ                                               | 2.0 ha (5.1 ac)                                                 | 35%                                                                                                                         | XXX                                                | XXX                                                                                                                                                 |

# Table 1. Characteristics of Stormwater Controls Examined at SSFL



Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Figure 2. Locations of structural and non-structural stormwater controls at SSFL, along with the drainage areas treated.

The performance of the stormwater controls is dependent on many site and design factors. Generally, the best performance is expected for large stormwater controls and small drainage areas, for long contact times with the treatment media, and large fractions of the annual flows treated by the stormwater control (with the excess flows bypassing complete treatment). The effluent quality is better when the influent quality is better, while the percentage reductions are better if the influent concentrations are high.

Besides the stormwater controls listed on Table 1, Figure 1 indicates many other distributed controls on the site. The culvert modifications treat about half of the site area in these two subdrainages, while erosion controls have also been established on much of the site. The main drainage (the Northern drainage) has constantly undergone restoration and stabilization. Many minor controls are also on the site, including some inlet filters and diversions. At the Helipad large paved area, berms are established and much of the flows from that area are pumped to a sophisticated stormwater treatment system using chemical controls in an adjacent subdrainage area. In addition, Interim Source Remediation Action (ISRA) excavations have been conducted to remove contaminated soil from hotspots. A shooting range also was on the site and special soil excavation and stormwater controls have also been used to remove lead material from the site. Finally, demolition and removal of buildings and asphalt, and other site industrial structures has helped restore the natural hydrological response of the site. Final site restoration, including removal of additional soil contaminated by the site rocket testing and energy research activities, is still in state agency review. The stormwater and erosion controls established on the site will be kept in operation and maintained until these final activities are completed and the agencies approve the final site cleanup.

Unfortunately, the devastating Woolsey Fire in November 2018 covered about 80% of the SSFL area. There was only minor damage to site structures or stormwater controls by the fire, but massive amounts of natural and re-established vegetation were destroyed. The site owners and operators (The Boeing Company and the federal government, along with their contractors) immediately started emergency erosion controls and repairs to the site facilities. The source area monitoring had been tapering off in recent years as the critical subdrainage areas were addressed by stormwater controls that were established based on the site ranking system. However, after the fire, the sampling effort is being increased to identify any new potential critical areas needed stormwater control. The SSFL site was also affected by a fire in 2005 after which extensive erosion and other controls were used to control the movement of denuded soil from the site during rains. An on-site nursery was also used to produce many specimens of native plants which were re-planted in burnt and other areas.

The following describe the stormwater controls that are evaluated in this paper.

# B1 Media Filter and Detention Basin (2012)

Upstream of the existing B-1 culvert, a media filter with sediment forebays was installed to capture stormwater from the hillside and roadway. Two gabion check structures (filled with 10 - 20 cm rock) were placed on either end of the existing depression next to the road, to separate the media bed from the forebay, in order to promote settling and therefore preserve the life of the media. The media filter consists of a 10 cm layer of gravel on the surface, underlaid by 45 cm filter media (sand, GAC, zeolite),

which sits on top of a 10 cm perforated pipe set in gravel. The perforated underdrains convey the treated media to a riser overflow structure where it is discharged to the Northern Drainage. Additional curb cuts along Facility Road were installed to direct roadway stormwater to a series of check dams and riprap, which ultimately drain to the forebay and media filter. Finally, a detention basin was installed upstream to provide additional settling and pretreatment of hillside flows prior to entering the media bed.



Figure 3. B-1 Sedimentation Basin and Media Filter

# Detention Bioswales (2014)

Two detention bioswales consisting of vegetated swales with underlying storage chambers (Contech ChamberMaxx®), surrounded by stone bedding, pretreat the stormwater from the upper lot paved and surrounding areas before discharging to the lower lot biofilter system. These detention bioswales detain the drainage water for treatment in the lower lot biofilter after the initial lower lot flows are treated. Excess water that is not further treated by the biofilter is discharged to the Northern Drainage. Each unit drains through an outlet pipe, controlled by two orifices sized to drain the system within 72 hours. The vegetation mixture is comprised of Mugwort, Dwarf Coyote Bush, Tufted Hairgrass, Creeping Wildrye, California Fuchsia, Red Fescue, Baja Bush Snap Dragon, and Sticky Monkeyflower.



Figure 4. B1436 Detention Bioswales

# Lower Lot Sediment Pond and Biofilter (2013)

A collection trench drain conveys stormwater from the lower paved lot to an 85 m<sup>3</sup> cistern, which is then pumped to a 650  $m^3$  dry sediment basin. The sediment basin drains to the biofilter, which discharges back to the Northern Drainage. The sediment basin includes an orifice plate designed to drain 1/2 the volume in 12 hours and the remaining volume in 28 hours (total of 40 hours). The biofilter includes an outlet structure with orifices sized to limit the flow through the media, resulting in a minimum contact time of 2.1 hours. A 50 cm weir plate was originally installed, but replaced by a 10 cm weir plate, which is expected to result in an increase from 53% to 95% diversion of flows to the biofilter during the design storm. The biofilter cross-section includes: 10 cm layer topsoil/compost vegetative support layer, 46 cm layer of treatment media (fine filter sand, GAC, zeolite), 30 cm gravel layer with 150 cm PVC well screen laterals that drain through 200 cm underdrain. A plant growth pilot study was performed to confirm growth of plants in the treatment media and under alternating submerged and dry conditions. Additional vegetation studies were also conducted to select native vegetation found throughout SSFL and also to emphasize pollinators (Pollinator Partnership). Plants include Coastal Deerweed, Rose Snapdragon, Big Berry Manzanita, California Sagebrush, Narrow Leaf Milkweed, Coyote Brush, Island False Bindweed, Creeping Wildrye, California Encelia, Leafy Fleabane, California Buckwheat, Golden Yarrow, Toyon, Heart Leaved Penstamon, Chaparral Bush Mallow, California Melic, Sticky Monkey Flower, Wild Peony, Holly Leaved Cherry, Coast Live Oak, Lemonade Berry, White Chaparral Currant, Chaparral Currant, Purple Sage, Black Sage, Blue Elderberry, Indian Pink, Purple Needlegrass, Mugwort, Mulefat, California Fuchsia, Bricklebush, Sedge, Saltgrass, and Common Rush.



Figure 5. Lower Parking Lot Sedimentation Basin and Biofilter

# Upper Lot Media Filter (2017)

An existing shotcrete sump that collected water from a small portion of the upper paved lot was used as the base of this media filter which was filled with media, gravel, and pipe to create the flow-through components. The stormwater percolates through a 50 cm media layer (GAC, Zeolite, Sand) and into a roughly 30 cm drainage layer, which collects the water in a 150 cm PVC underdrain that discharges into a riser overflow structure. The media filter was designed to provide 100% capture of the 1-yr, 24-hr, design storm (with no outlet controls) and the outlet structure overflow was designed to provide equal or greater conveyance capacity compared to the existing outlet pipe in the sump that drains to the Northern Drainage.



Figure 6. Upper Parking Lot Media Filter

## NASA ELV Stormwater Treatment Train (2013)

The ELV channel conveys runoff from the hillside below the paved helipad to a 30 m<sup>3</sup> concrete sump, which also collects runoff from Helipad Road. The stormwater captured in the sump (up to the design storm) is pumped into two 70 m<sup>3</sup> open top portable sediment tanks equipped with floating tube settlers to provide greater effective surface area for particle settling. The sediment basins drain by gravity to an additional 70 m<sup>3</sup> open top portable media filter tank, which percolates water through 45 cm of media (sand, zeolite, GAC) and into a PVC well screen pipe controlled by an outlet orifice plate. The concrete sump includes an overflow that discharges high flows through a weir into the ELV culvert. Flows in excess of the sediment tank capacity overflow through a weir and discharge to the filtration tank.



Figure 7. ELV Treatment Train

## **Culvert Modifications (2009)**

Prior to the installation of the CMs, stormwater from the hillside and adjacent roadways drained into small drainage ways and through under-road culverts, which discharged into the Northern Drainage. The CMs are retrofits of the existing culverts and include fiber-reinforced plastic headwalls with removable weir boards that span the entrance to each culvert. The stormwater is forced to pond in front of the

weir boards and is directed through a 60 cm (minimum) mound of filter media (GAC, zeolite, sand) that is collected by 100 cm perforated pipe lateral underdrains. Once the stormwater filters through the media and through the laterals, the water is conveyed behind the weir boards and through the existing culvert, where it discharges into the Northern Drainage. During large storms, the water can overtop the weir boards and overflow into the existing culvert, thus bypassing treatment through the media mounds. No emphasis on vegetation at the CMs; however, existing vegetation was re-planted.



**Figure 8. Culvert Modifications** 

## Sampling Effort and Rainfall

Influent and effluent results for each stormwater control for the same storm event were compared to evaluate concentration reductions. Although split samples were periodically collected and used for QA/QC purposes, only the primary samples were used in these analyses.

For each of the five CM sites (constructed in 2009) discussed herein, the number of paired samples per CM ranges from 10 to 29 pairs for TSS and 0 to 29 pairs for dioxins, copper, and lead for 2011/2012 through 2017/2018. Influent grab samples are collected from the flowing surface water upstream of the maximum extent of ponding at each CM as observed before that date. All sampled CMs include a media filter and a slipline HDPE lining through existing galvanized corrugated metal culvert pipes with the exception of B-1, which is a media bed with no slipline element. Effluent grab samples at CM-1, CM-9, and B-1 are collected from the underdrain outlet (beginning in October 2011, rather than the culvert outlet), while other CM effluent grab samples are collected at the culvert outlets on the downstream side of the road, where the culvert pipes discharge to the Northern Drainage. Flows from the culvert outlets may represent treated runoff (via sedimentation and media filtration) and partially treated runoff (flowing through or over the weir boards).

Performance data for the lower lot biofilter (construction of which was completed in 2013) were collected from three locations within the system (influent, effluent, and a mid-point sample at the sedimentation basin outlet before the media filter inlet). There are 24 total sample pairs associated with the lower lot biofilter system location to date.

The ELV treatment train, constructed during the 2013/2014 reporting year, includes paired data from 10 events. The media bed for this system appears to have been flushing fines during the first sampling event in 2013/2014. During this event, the ELV treatment train was also heavily loaded by sediments eroded from the denuded ELV channel prior to implementation of subsequent erosion control improvements.

The B1436 detention bioswales, which were constructed in December 2014, were sampled for the first time during the 2015/2016 reporting year. Samples were collected at three locations at the southern detention bioswale: two influent locations (results from both locations were flow-weighted based on drainage area size and estimated imperviousness to determine the influent concentrations) and the effluent. Paired influent and effluent performance data were collected during 16 events at the southern detention bioswale. Samples were also collected at both the influent and effluent locations of the northern detention bioswale during eight events during the 2015/2016 and 2016/2017 reporting years.

The upper lot media filter was completed on May 16, 2017. Eight samples were collected during the 2016/2017 reporting year, but only at the influent location. Paired samples were collected for the first time at the upper lot media filter during 2017/2018 (for two events).

Table 2 shows the amount of rainfall and numbers of rain events and samples collected since the initial CM controls were constructed in 2009. Note the highly variable rainfall amount per year (6.1 to 23 inches and 4 to 14 rain events per year) and the sample numbers (17 to 150 per year). The average annual rainfall during the 8 years with samples was 13.1 inches, compared to the long-term average rainfall of 16.8 inches. Overall, more than 500 samples were collected at the stormwater control locations and other subareas.

| reporting year (June 1 to   | on-site measured total    | number of rain events per   | number of samples at         |
|-----------------------------|---------------------------|-----------------------------|------------------------------|
| May 31)                     | rainfall (inches)         | year (>0.1 inches in 24 hr  | stormwater control locations |
|                             |                           | period with at least 72 hrs | and other subareas           |
|                             |                           | of preceding dry weather)   | (observable flows)           |
| 2009/2010                   | 19.39                     | 11                          | 0                            |
| 2010/2011                   | 23.39                     | 14                          | 67                           |
| 2011/2012                   | 11.33                     | 11                          | 88                           |
| 2012/2013                   | 8.10                      | 9                           | 29                           |
| 2013/2014                   | 6.07                      | 5                           | 27                           |
| 2014/2015                   | 11.22                     | 9                           | 17                           |
| 2015/2016                   | 11.97                     | 13                          | 113                          |
| 2016/2017                   | 23.35                     | 14                          | 150                          |
| 2017/2018                   | 9.75                      | 4                           | 36                           |
| Total for 9 years           | 124.57                    |                             | 527                          |
| average                     | 13.84 inches/year         |                             |                              |
| long-term (1958/1958 to 201 | 7/2018): 16.80 inches per |                             |                              |
| year                        |                           |                             |                              |

Table 2. Rainfall Amounts, Rain Events, and Sample Numbers

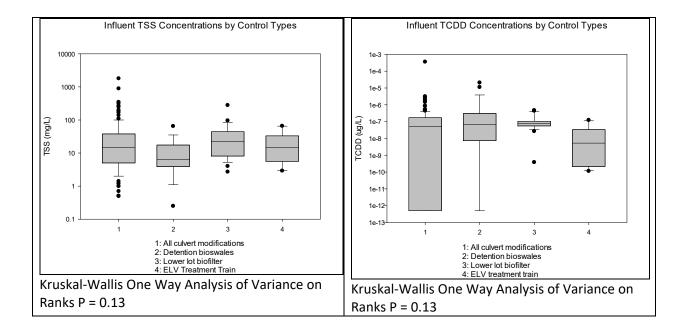
## **Analyses and Findings**

The regulated NPDES outfalls on the SSFL site are monitored for many constituents for each flowproducing event, including solids and particle sizes, heavy metals, organic solvents, radionuclides, and many major ions and other organic compounds. In recent years, the outfall stormwater water quality has improved (based on decreasing violations in numeric effluent limits). However, periodic exceedances occur for dioxin (TCDD, TEQ no DNQ, Tetrachlorodibenzo-*p*-dioxin, toxicity equivalence, and detected not quantifiable excluded) and total lead. Rare benchmark exceedances of iron and pH have also been noted in recent years. The performance monitoring at the stormwater control locations focus on a shorter list of constituents, including TSS, TCDD, total and filtered copper, total and filtered lead, total and filtered cadmium, total and filtered mercury, particle size distribution, conductivity, pH, temperature, and turbidity. These are evaluated in this paper, especially examining any potential trends in removal and effluent quality during the several years of operation of these stormwater controls. Influent and effluent samples were manually collected during all events that had observed flows at influent and effluent locations, totaling 225 total events for the ten locations combined.

The general data analyses (mostly conducted using Microsoft Excel, SigmaPlot version 14, and Minitab version 18) described in this section include the following:

- Basic statistical summaries of influent and effluent concentrations, concentration reductions, filterable fraction of the metals, and particulate strengths of the metals and dioxin, buy control measure.
- Comparisons of influent concentrations and statistical groupings between locations (Kruskal-Wallis One Way Analysis of Variance on Ranks, all Pairwise Multiple Comparison Procedures using Dunn's method, and associated grouped box and whisker plots).
- Full factorial analyses of influent concentrations for selected control locations to identify significant factors and interactions of rain characteristics affecting TSS concentrations.
- Grouped log-normal probability plots of influent and effluent concentrations, using Anderson-Darling test statistics for normalcy, for grouped stormwater control types.
- Line plots illustrating concentration trends between unit processes in treatment systems.
- Comparisons of paired influent vs. effluent concentrations using the Wilcoxon Signed Rank test to identify which constituents and control types resulted in significant differences between influent and effluent concentrations.
- Analyses of paired influent and effluent concentrations (found to have significant differences) to identify significant regression coefficients and models (using ANOVA) to calculate effluent concentrations for given influent concentrations.
- Standard residual analyses of significant regression equations to identify differences between stormwater controls within a grouped set, and to identify residual trends with time.
- Evaluation of influent concentrations with time using time-series scatterplots and regression with ANOVA to identify significant concentration trends with time.
- Calculations of accumulative sediment in stormwater controls with time.

### Stormwater Characteristics


Table 3 summarizes concentrations for these ten stormwater controls combined for an overall indication of the water quality at the SSFL at the locations where source area controls have been located. For comparison, industrial stormwater data contained in the National Stormwater Quality Database (NSQD), version 4.02 are also shown for a few of the constituents. The NSQD industrial data are for light and medium industrial activity. Even so, the NSQD median concentrations are about 2 to 5 times the SSFL influent concentrations for TSS, total and filtered Cu, and total Pb. The total Cd values for both sets of data are mostly non-detected, while the SSFL pH median values are about 1 pH unit less than the NSQD pH values. Also shown on this table are summary stormwater concentrations from medium to heavy industrial sites as presented by Clark and Pitt (2018). These data are from sites monitored by those authors along with selected data from the International BMP Database. Effluent concentrations of industrial stormwater controls are also summarized (sedimentation, filtration, and treatment trains). The medium and heavy industry stormwater concentrations are all much greater than the SSFL concentrations (about 4 times for TSS, about 9 times for Cu, about 20 times for Pb, while the filtered concentrations were closer). Because the influent concentrations were less for the SSFL locations, their corresponding effluent concentrations are also lower than for the medium and heavy industrial stormwater treatment effluent values. In contrast, the percentage reductions in concentrations are greater for the medium and heavy industrial controls than for SSFL locations. SSFL constituents that were mostly not detected (52 to 95% not detected) included: filtered Pb, total and filtered Cd, and total and filtered Hg. Appendix A contains influent and effluent concentration (and % reduction) summaries for each of these four groups, along with the background CM-8 and CM-11 control locations, for all of the monitored constituents.

|                        | SSFL<br>count | Light to<br>medium<br>indus<br>count<br>(NSQD) | Medium<br>to heavy<br>indus<br>count<br>(Clark and<br>Pitt 2018) | SSFL %<br>non-<br>detects | Light to<br>medium<br>indus %<br>non-detects<br>(NSQD) | Medium to<br>heavy indus<br>% non-<br>detects<br>(Clark and<br>Pitt 2018) | SSFL min   | SSFL max  | SSFL<br>median | Light to<br>medium<br>indus<br>median<br>(NSQD) | Medium<br>to heavy<br>indus<br>median<br>(Clark and<br>Pitt 2018) | SSFL<br>COV | Light to<br>medium<br>indus<br>COV<br>(NSQD) | Medium<br>to heavy<br>indus COV<br>(Clark and<br>Pitt 2018) |
|------------------------|---------------|------------------------------------------------|------------------------------------------------------------------|---------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|------------|-----------|----------------|-------------------------------------------------|-------------------------------------------------------------------|-------------|----------------------------------------------|-------------------------------------------------------------|
| Sample Date            | 225           |                                                |                                                                  |                           |                                                        |                                                                           | 12/11/2009 | 3/22/2018 |                |                                                 |                                                                   |             |                                              |                                                             |
| TSS inf mg/L           | 199           | 967                                            | 217                                                              | 6.0                       | 0.6                                                    | 1.8                                                                       | 1          | 1,800     | 16             | 74                                              | 60                                                                | 3.0         | 1.0                                          | 2.7                                                         |
| TSS efl mg/L           | 184           |                                                | 215                                                              | 7.1                       |                                                        | 4.2                                                                       | 1          | 610       | 11             |                                                 | 22                                                                | 2.4         |                                              | 2.1                                                         |
| TCDD inf µg/L          | 183           |                                                |                                                                  | 18.6                      |                                                        |                                                                           | 1.00E-12   | 3.60E-04  | 5.60E-08       |                                                 |                                                                   | 11.6        |                                              |                                                             |
| TCDD efl µg/L          | 167           |                                                |                                                                  | 34.7                      |                                                        |                                                                           | 1.00E-12   | 4.33E-06  | 2.10E-10       |                                                 |                                                                   | 5.4         |                                              |                                                             |
| Cu inf µg/L            | 158           | 3,090                                          | 203                                                              | 1.9                       | 14.5                                                   | 1.5                                                                       | 0.1        | 44.9      | 6.9            | 12                                              | 60                                                                | 0.8         | 2.0                                          | 1.6                                                         |
| Cu efl µg/L            | 134           |                                                | 206                                                              | 3.7                       |                                                        | 2.4                                                                       | 0.1        | 53.0      | 6.5            |                                                 | 21                                                                | 0.9         |                                              | 1.9                                                         |
| filt Cu inf µg/L       | 148           | 104                                            | 185                                                              | 0.0                       | 15.4                                                   | 9.2                                                                       | 0.7        | 164       | 4.2            | 8                                               | 12                                                                | 2.1         | 0.9                                          | 3.8                                                         |
| filt Cu efl µg/L       | 117           |                                                | 188                                                              | 0.0                       |                                                        | 12.2                                                                      | 0.9        | 47.0      | 5.1            |                                                 | 8                                                                 | 1.0         |                                              | 2.7                                                         |
| Pb inf µg/L            | 187           | 2,497                                          | 167                                                              | 8.0                       | 29.5                                                   | 3.6                                                                       | 0.1        | 55.0      | 2.8            | 7                                               | 61                                                                | 1.7         | 2.6                                          | 1.2                                                         |
| Pb efl µg/L            | 172           |                                                | 171                                                              | 7.0                       |                                                        | 4.7                                                                       | 0.1        | 39.0      | 1.6            |                                                 | 24                                                                | 1.7         |                                              | 1.7                                                         |
| filt Pb inf µg/L       | 148           | 28                                             | 150                                                              | 52.0                      | n/a                                                    | 69.3                                                                      | 0.1        | 26.4      | 0.5            | 5                                               | 0.5                                                               | 2.5         | 1.6                                          | 3.0                                                         |
| filt Pb efl µg/L       | 117           |                                                | 153                                                              | 57.3                      |                                                        | 73.9                                                                      | 0.1        | 5.0       | 0.5            |                                                 | 0.5                                                               | 1.0         |                                              | 3.5                                                         |
| Cd inf µg/L            | 161           | 2,561                                          |                                                                  | 62.1                      | 58.8                                                   |                                                                           | 0.10       | 6.21      | 0.25           | 0.25                                            |                                                                   | 1.5         | 4.0                                          |                                                             |
| Cd efl µg/L            | 139           |                                                |                                                                  | 91.4                      |                                                        |                                                                           | 0.10       | 1.30      | 0.25           |                                                 |                                                                   | 0.6         |                                              |                                                             |
| filt Cd inf µg/L       | 148           | 23                                             |                                                                  | 80.4                      | n/a                                                    |                                                                           | 0.10       | 4.94      | 0.25           | 0.60                                            |                                                                   | 1.6         | 1.1                                          |                                                             |
| filt Cd efl µg/L       | 117           |                                                |                                                                  | 95.7                      |                                                        |                                                                           | 0.10       | 2.50      | 0.25           |                                                 |                                                                   | 1.1         |                                              |                                                             |
| Hg inf µg/L            | 162           | 27                                             |                                                                  | 95.1                      | n/a                                                    |                                                                           | 0.05       | 0.98      | 0.10           | 0.2                                             |                                                                   | 0.7         | 2.7                                          |                                                             |
| Hg efl µg/L            | 139           |                                                |                                                                  | 92.8                      |                                                        |                                                                           | 0.05       | 1.70      | 0.10           |                                                 |                                                                   | 1.3         |                                              |                                                             |
| filt Hg inf μg/L       | 145           |                                                |                                                                  | 97.2                      |                                                        |                                                                           | 0.05       | 0.49      | 0.10           |                                                 |                                                                   | 0.5         |                                              |                                                             |
| filt Hg efl µg/L       | 116           |                                                |                                                                  | 94.8                      |                                                        |                                                                           | 0.05       | 0.12      | 0.10           |                                                 |                                                                   | 0.2         |                                              |                                                             |
| Cond inf mS            | 178           |                                                |                                                                  | 0.0                       | n/a                                                    |                                                                           | 0.005      | 1.80      | 0.075          | 0.135                                           |                                                                   | 1.5         | 2.2                                          |                                                             |
| Cond efl mS            | 166           | 129                                            |                                                                  | 0.0                       |                                                        |                                                                           | 0.001      | 1.33      | 0.104          |                                                 |                                                                   | 1.2         |                                              |                                                             |
| Grain size inf $\mu m$ | 42            |                                                |                                                                  | 0.0                       |                                                        |                                                                           | 1          | 347       | 17             |                                                 |                                                                   | 1.42        |                                              |                                                             |
| Grain size efl µm      | 28            |                                                |                                                                  | 0.0                       |                                                        |                                                                           | 0          | 71        | 10             |                                                 |                                                                   | 1.16        |                                              |                                                             |
| pH inf                 | 181           | 902                                            |                                                                  | 0.0                       | 0.1                                                    |                                                                           | 3.83       | 7.98      | 6.61           | 7.5                                             |                                                                   | 0.1         | 0.1                                          |                                                             |
| pH efl                 | 167           |                                                |                                                                  | 0.0                       |                                                        |                                                                           | 4.62       | 8.23      | 6.71           |                                                 |                                                                   | 0.1         |                                              |                                                             |
| Temp inf °F            | 171           |                                                |                                                                  | 0.0                       |                                                        |                                                                           | 6.5        | 21.3      | 11.6           |                                                 |                                                                   | 0.2         |                                              |                                                             |
| Temp efl °F            | 153           |                                                |                                                                  | 0.0                       |                                                        |                                                                           | 5.9        | 23.5      | 11.8           |                                                 |                                                                   | 0.2         |                                              |                                                             |
| Turb inf NTU           | 175           | 38                                             |                                                                  | 0.0                       | n/a                                                    |                                                                           | 0.2        | 900       | 36             | 17                                              |                                                                   | 1.6         | 1.8                                          |                                                             |
| Turb efl NTU           | 160           |                                                |                                                                  | 0.0                       |                                                        |                                                                           | 0.1        | 961       | 40             |                                                 |                                                                   | 1.6         |                                              |                                                             |

## Table 3. SSFL Influent and Effluent Stormwater Concentrations

#### Influent Concentration Differences by Location

Comparison analyses of SSFL influent stormwater concentrations for the different control locations were also conducted to identify logical groupings of the data for the performance calculations. Similar influent concentrations at all the control types would reduce their effect on differences of the treatment performance. Figure 9 shows box and whisker plots for TSS, TCDD TEQ no DNQ, Cu, and Pb for four groups of controls: 1) B-1, CM-1, CM-9 and upper lot media filter, 2) Southern and Northern detention bioswales, 3) Lower lot biofilter with sedimentation, and 4) ELV treatment train. Of the four main constituents shown here, only copper indicated significant differences, using the Kruskal-Wallis one way analysis of variance on ranks test, between at least one control type and the others. The ELV treatment train influent copper concentrations appear to be relatively low while the lower lot biofilter influent copper concentrations appear to be relatively high. The other constituent influent concentrations had more over-lapping concentration ranges with higher Kruskal-Wallis p values what were not significant.



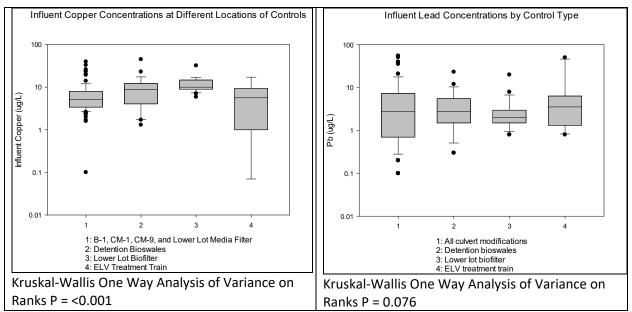



Figure 9. Box and whisker plots of influent concentrations for different stormwater control types.

### **Filterable Fraction**

The filterable fraction of the constituents affects their removal by most stormwater controls. Constituents having large portions of their mass associated with particulates are more effectively removed by conventional sedimentation and filtering processes. Constituents having large amounts of filterable components usually require chemical unit processes (such as chemically-active filtration media). Generally, the effluent filterable fraction is less than the influent filterable fraction indicating the preferential removal of the particulate bound pollutants.

The filterable fraction information is also needed to calculate the particulate strengths of the constituents, as shown in the following subsection.

Table 4 presents the filterable fraction of the influent and effluent stormwater constituents for the stormwater controls located in watersheds affected by historical industrial activities or having large amounts of buildings and roads. Very few effluent cadmium and influent and effluent mercury values were detected, with most of the data being available for copper, lead, and influent cadmium.

| Influent Location | Percent    | Cu inf % | Cu efl % | Pb inf % | Pb efl % | Cd inf % | Cd efl % | Hg inf % | Hg efl % |
|-------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                   | filterable | filt     |
| B-1 Media Filter  | count      | 21       | 19       | 21       | 19       | 6        |          | 1        | 6        |
|                   | min        | 29.5     | 33.8     | 3.5      | 7.1      | 48.1     |          | 86.7     | 41.7     |
|                   | max        | 88.8     | 337.5    | 98.0     | 96.2     | 91.7     |          |          | 83.3     |
|                   | median     | 68.4     | 70.6     | 12.5     | 22.2     | 77.4     |          |          | 60.7     |
|                   | COV        | 0.31     | 0.75     | 1.11     | 0.74     | 0.20     |          |          | 0.23     |
| CM-1              | count      | 21       | 5        | 26       | 10       | 7        | 1        | 1        |          |
|                   | min        | 7.5      | 22.4     | 0.8      | 6.4      | 13.7     | 45.5     | 66.7     |          |
|                   | max        | 117.6    | 100.0    | 100.0    | 100.0    | 125.0    |          |          |          |
|                   | median     | 70.0     | 72.1     | 12.6     | 14.4     | 50.0     |          |          |          |

Table 4. Filterable Fraction of Influent and Effluent Stormwater from SSFL Stormwater Controls

|                    | COV    | 0.49  | 0.42  | 1.15  | 1.19  | 0.61  |      |      |      |
|--------------------|--------|-------|-------|-------|-------|-------|------|------|------|
| CM-9               | count  | 29    | 12    | 29    | 12    | 13    | 1    | 1    |      |
|                    | min    | 11.9  | 30.0  | 0.6   | 5.8   | 9.1   | 86.7 | 76.9 |      |
|                    | max    | 131.0 | 107.7 | 141.4 | 100.0 | 112.0 |      |      |      |
|                    | median | 82.4  | 88.9  | 22.4  | 55.4  | 77.7  |      |      |      |
|                    | COV    | 0.39  | 0.27  | 1.22  | 0.55  | 0.49  |      |      |      |
| Upper Lot Media    | count  | 10    | 2     | 10    | 2     |       |      |      |      |
| Filter             | min    | 41.8  | 86.1  | 9.0   | 45.5  |       |      |      |      |
|                    | max    | 100.0 | 87.6  | 100.0 | 87.7  |       |      |      |      |
|                    | median | 71.7  | 86.9  | 47.8  | 66.6  |       |      |      |      |
|                    | COV    | 0.32  | 0.01  | 0.59  | 0.45  |       |      |      |      |
| Southern Detention | count  | 17    | 18    | 17    | 18    | 18    |      |      |      |
| Bioswale           | min    | 31.6  | 63.6  | 5.5   | 16.7  | 33.6  |      |      |      |
|                    | max    | 93.8  | 114.1 | 31.6  | 100.0 | 130.0 |      |      |      |
|                    | median | 61.7  | 87.6  | 10.0  | 46.1  | 57.2  |      |      |      |
|                    | COV    | 0.26  | 0.15  | 0.50  | 0.55  | 0.37  |      |      |      |
| Northern Detention | count  | 7     | 18    | 8     | 15    |       |      |      | 1    |
| Bioswale           | min    | 19.3  | 18.1  | 19.2  | 20.0  |       |      |      | 41.7 |
|                    | max    | 176.9 | 184.6 | 100.0 | 138.9 |       |      |      |      |
|                    | median | 62.5  | 88.1  | 66.3  | 58.8  |       |      |      |      |
|                    | COV    | 0.71  | 0.44  | 0.46  | 0.52  |       |      |      |      |
| LLBF               | count  | 24    | 25    | 24    | 25    |       |      |      |      |
|                    | min    | 34.4  | 26.2  | 7.3   | 9.8   |       |      |      |      |
|                    | max    | 113.6 | 100.0 | 227.3 | 86.2  |       |      |      |      |
|                    | median | 83.4  | 69.3  | 25.0  | 26.5  |       |      |      |      |
|                    | COV    | 0.28  | 0.28  | 1.27  | 0.63  |       |      |      |      |
| ELV                | count  | 7     | 7     | 10    | 13    |       |      |      |      |
|                    | min    | 50.8  | 52.8  | 1.3   | 12.7  |       |      |      |      |
|                    | max    | 158.2 | 110.4 | 28.6  | 35.6  |       |      |      |      |
|                    | median | 75.3  | 69.8  | 18.3  | 24.3  |       |      |      |      |
|                    | COV    | 0.43  | 0.25  | 0.50  | 0.26  |       |      |      |      |

Table 5 compares the approximate of the SSFL filterable fractions for Cd, Cu, and Pb with results from a few other stormwater studies. The SSFL Cd filterable fraction is larger than for the other locations, as with most of the SSFL Cu filterable fraction values, although not as distinctly. The Pb filterable fraction is generally quite low, as most of the SSFL data indicates, while some of the SSFL locations had much greater filterable fractions of Pb than typical. The upper lot biofilter and the Northern detention bioswale, which both drain a large paved area, have the largest Pb filterable fraction values, while the other locations, including the Southern detention bioswale that drains the same general area, are within the range of the other observed filterable fractions.

| Table | able 5. Interable Haction compared to 5512 values |            |                          |              |                          |  |  |  |  |
|-------|---------------------------------------------------|------------|--------------------------|--------------|--------------------------|--|--|--|--|
|       | SSFL                                              | Morquecho  | House, Waschbusch, and   | Pitt, et al. | Pitt, Lantrip, Harrison, |  |  |  |  |
|       | influent                                          | (2005),    | Hughes 1993 (WI pond     | (1998) 550   | Henry, and Hue. 1999     |  |  |  |  |
|       |                                                   | summary of | influent from commercial | nationwide   | (87 source area          |  |  |  |  |
|       |                                                   | NSQD ver 1 | area, about 60 samples)  | samples      | samples, Bham)           |  |  |  |  |
| Cd    | 50 to 80%                                         | 30%        |                          |              | 1 to 36%                 |  |  |  |  |
| Cu    | 60 to 80%                                         | 35%        | 13%                      | 33%          | 2 to 86%                 |  |  |  |  |
| Pb    | 10 to 65%                                         | 20%        | 4%                       | 21%          | 3 to 7%                  |  |  |  |  |

Table 5. Filterable Fraction Compared to SSFL Values

#### **Particulate Strength**

Pollutant strengths are the contaminant concentrations associated with the particulate matter in the stormwater. Constituents having large particulate strengths, especially for large particle sizes, are more effectively retained by most stormwater controls. Also, the effluent particulate strengths are usually larger than the influent particulate strengths due to the typical great particulate strengths associated with the harder to control smaller particle sizes. These values can also be compared to particulate strengths of potential source area particulates, such as eroding soil, atmospheric deposition, and pavement particulates ("street dirt") to help identify the sources of the contaminants in the stormwater.

Particulate strengths are determined by calculating the pollutant concentrations only associated with the particulates (measured as TSS or SSC) in the stormwater. They are calculated by the following equation:

(total conc. - filterable conc.) particulate solids conc.

As an example, if the total copper concentration was 50  $\mu$ g/L, the filterable ("dissolved") copper concentration was 10  $\mu$ g/L, and the TSS concentration was 150 mg/L, the particulate strength for this sample would be:

 $\frac{\left(\frac{50 \ \mu \frac{gCu}{L} - 10 \ \mu \frac{gCu}{L}\right)}{150 \ mg/L}}{150 \ mg/L} = 0.26 \ \mu \frac{gCu}{mg \ solids} = 260 \ \mu g \ Cu/g \ solids = 0.26 \ \mu g \ solids =$ 

260 mg Cu/kg solids (also = 260 ppm)

Table 6 shows the calculated particulate strengths for the influent and effluent stormwater at the different SSFL stormwater controls. The TCDD TEQ no DNG values were calculated assuming these compounds were all particulate bound, with very low filterable fractions. Few filtered concentrations were available for Hg and effluent Cd, as noted previously, so few particulate strength data are available for these constituents.

| Influent Location | Effluent | TCDD inf             | TCDD efl             | Cu inf part     | Cu efl part  | Pb inf part     | Pb efl part     | Cd inf part     | Cd efl part     | Hg inf                  | Hg efl part     |
|-------------------|----------|----------------------|----------------------|-----------------|--------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-----------------|
|                   | Location | part strgth<br>mg/kg | part strgth<br>mg/kg | strgth<br>mg/kg | strgth mg/kg | strgth<br>mg/kg | strgth<br>mg/kg | strgth<br>mg/kg | strgth<br>mg/kg | part<br>strgth<br>mg/kg | strgth<br>mg/kg |
| CM-8              | count    |                      |                      |                 |              |                 | 10              |                 |                 |                         |                 |
|                   | min      |                      |                      |                 |              |                 | 20.0            |                 |                 |                         |                 |
|                   | max      |                      |                      |                 |              |                 | 310             |                 |                 |                         |                 |
|                   | median   |                      |                      |                 |              |                 | 210             |                 |                 |                         |                 |
|                   | COV      |                      |                      |                 |              |                 | 0.47            |                 |                 |                         |                 |
| CM-11             | count    | 12                   | 12                   |                 |              |                 |                 |                 |                 |                         |                 |
|                   | min      | 5.26E-11             | 1.11E-10             |                 |              |                 |                 |                 |                 |                         |                 |
|                   | max      | 1.95E-08             | 1.50E-07             |                 |              |                 |                 |                 |                 |                         |                 |
|                   | median   | 4.17E-10             | 1.00E-09             |                 |              |                 |                 |                 |                 |                         |                 |
|                   | COV      | 1.70                 | 2.84                 |                 |              |                 |                 |                 |                 |                         |                 |
| B-1 Media Filter  | count    | 21                   | 22                   | 21              | 16           | 21              | 23              | 6               |                 |                         | 6               |
|                   | min      | 1.08E-10             | 1.85E-10             | 19.5            | 12.5         | 3.2             | 3.7             | 0.2             |                 |                         | 1.0             |
|                   | max      | 2.45E-02             | 1.08E-05             | 171             | 408          | 462             | 192             | 2.2             |                 |                         | 6.5             |
|                   | median   | 7.34E-06             | 2.25E-06             | 64.5            | 60.0         | 101             | 66.7            | 0.5             |                 |                         | 2.1             |
|                   | COV      | 4.55                 | 0.92                 | 0.63            | 1.15         | 0.83            | 0.60            | 0.88            |                 |                         | 0.79            |
| CM-1              | count    | 42                   | 34                   | 20              | 5            | 24              | 33              | 7               | 1               | 1                       |                 |
|                   | min      | 6.12E-11             | 5.71E-12             | 3.6             | 45.2         | 31.2            | 9.9             | -1.1            | 12.0            | 3.8                     |                 |
|                   | max      | 5.53E-05             | 2.46E-04             | 314             | 827          | 664             | 1,300           | 8.6             |                 |                         |                 |
|                   | median   | 1.02E-06             | 2.28E-07             | 81.1            | 100          | 92.7            | 245             | 2.3             |                 |                         |                 |
|                   | COV      | 2.15                 | 3.28                 | 0.77            | 1.16         | 1.03            | 0.95            | 1.18            |                 |                         |                 |
| CM-9              | count    | 38                   | 23                   | 37              | 25           | 26              | 27              | 23              | 10              | 1                       |                 |
|                   | min      | 6.67E-11             | 1.00E-10             | 12.7            | 23.1         | 0.0             | 16.2            | 0.1             | 0.9             | 3.4                     |                 |
|                   | max      | 2.40E-05             | 7.13E-06             | 5,500           | 4,300        | 1,022           | 1,000           | 290             | 160             |                         |                 |
|                   | median   | 4.50E-07             | 1.06E-08             | 134             | 200          | 138             | 120             | 10.0            | 7.8             |                         |                 |
|                   | COV      | 1.86                 | 2.23                 | 2.22            | 1.88         | 1.14            | 1.19            | 1.87            | 1.91            |                         |                 |

Table 6. Particulate Strengths for Influent and Effluent Stormwater Samples for SSFL Stormwater Controls

| Influent Location      | Effluent<br>Location | TCDD inf<br>part strgth<br>mg/kg | TCDD efl<br>part strgth<br>mg/kg | Cu inf part<br>strgth<br>mg/kg | Cu efl part<br>strgth mg/kg | Pb inf part<br>strgth<br>mg/kg | Pb efl part<br>strgth<br>mg/kg | Cd inf part<br>strgth<br>mg/kg | Cd efl part<br>strgth<br>mg/kg | Hg inf<br>part<br>strgth<br>mg/kg | Hg efl part<br>strgth<br>mg/kg |
|------------------------|----------------------|----------------------------------|----------------------------------|--------------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------|--------------------------------|
| Upper Lot Media Filter | count                | 10                               | 2                                | 9                              | 2                           | 10                             | 2                              |                                |                                |                                   |                                |
|                        | min                  | 2.11E-06                         | 3.21E-08                         | 15.8                           | 85.7                        | 0.0                            | 12.1                           |                                |                                |                                   |                                |
|                        | max                  | 8.13E-05                         | 1.32E-05                         | 217                            | 86.2                        | 106                            | 42.9                           |                                |                                |                                   |                                |
|                        | median               | 1.41E-05                         | 6.61E-06                         | 142                            | 86.0                        | 56.8                           | 27.5                           |                                |                                |                                   |                                |
|                        | COV                  | 1.08                             | 1.41                             | 0.42                           | 0.00                        | 0.63                           | 0.79                           |                                |                                |                                   |                                |
| Southern Detention     | count                | 17                               | 18                               | 16                             | 15                          | 16                             | 16                             | 16                             |                                |                                   |                                |
| Bioswale               | min                  | 4.88E-07                         | 1.08E-10                         | 18.2                           | 55.6                        | 32.7                           | 0.0                            | 2.4                            |                                |                                   |                                |
|                        | max                  | 9.45E-04                         | 7.85E-06                         | 168                            | 1,200                       | 245                            | 259                            | 16.8                           |                                |                                   |                                |
|                        | median               | 3.71E-06                         | 5.95E-08                         | 110                            | 200                         | 108                            | 83.9                           | 10.1                           |                                |                                   |                                |
|                        | COV                  | 3.01                             | 2.05                             | 0.45                           | 1.11                        | 0.48                           | 0.82                           | 0.40                           |                                |                                   |                                |
| Northern Detention     | count                | 8                                | 18                               | 6                              | 12                          | 6                              | 13                             |                                |                                |                                   | 2                              |
| Bioswale               | min                  | 2.00E-10                         | 3.70E-11                         | 31.3                           | 83.3                        | 14.6                           | 11.4                           |                                |                                |                                   | 0.0                            |
|                        | max                  | 1.77E-06                         | 1.12E-06                         | 2,132                          | 9,053                       | 453                            | 579                            |                                |                                |                                   | 40.0                           |
|                        | median               | 2.47E-08                         | 2.82E-10                         | 166                            | 1,062                       | 53.1                           | 90.0                           |                                |                                |                                   | 20.0                           |
|                        | COV                  | 1.87                             | 4.05                             | 1.71                           | 1.33                        | 1.48                           | 1.07                           |                                |                                |                                   | 1.41                           |
| LLBF                   | count                | 24                               | 25                               | 20                             | 24                          | 23                             | 25                             |                                |                                |                                   |                                |
|                        | min                  | 4.5E-08                          | 9.1E-12                          | 56.3                           | 47.0                        | 44.1                           | 15.4                           |                                |                                |                                   |                                |
|                        | max                  | 2.8E-05                          | 6.6E-06                          | 370.4                          | 465.1                       | 153.8                          | 432.0                          |                                |                                |                                   |                                |
|                        | median               | 4.1E-06                          | 1.3E-08                          | 101.9                          | 143.3                       | 75.0                           | 90.9                           |                                |                                |                                   |                                |
|                        | COV                  | 1.06                             | 3.12                             | 0.66                           | 0.69                        | 0.38                           | 0.83                           |                                |                                |                                   |                                |
| ELV                    | count                | 10                               | 13                               | 6                              | 7                           | 9                              | 13                             |                                |                                |                                   |                                |
|                        | min                  | 2.0E-08                          | 2.6E-11                          | 21.1                           | 4.0                         | 60.5                           | 16.7                           |                                |                                |                                   |                                |
|                        | max                  | 5.6E-06                          | 1.2E-06                          | 253.1                          | 48.8                        | 287.6                          | 133.2                          |                                |                                |                                   |                                |
|                        | median               | 2.8E-07                          | 3.3E-09                          | 113.2                          | 21.4                        | 168.1                          | 47.2                           |                                |                                |                                   |                                |
|                        | COV                  | 1.58                             | 3.38                             | 0.69                           | 0.69                        | 0.34                           | 0.55                           | 1                              |                                |                                   |                                |

As noted, the effluent stormwater generally has higher particulate strengths, but not for all control locations and constituents. As an example, the upper lot media filter and ELV treatment train show decreased particulate strengths for TCDD, Cu, and Pb. Table 7 lists some historical industrial area particulate strength data for Cu and Pb. As typical for stormwater, there are substantial variations in particulate strengths, usually depending on the source of the particulates. As noted previously, the special studies on-going at SSFL involve collecting and analyzing particulate strengths to indicate potential major sources of the stormwater pollutants.

|                                                                              | Copper (mg | Lead (mg Pb/kg |
|------------------------------------------------------------------------------|------------|----------------|
|                                                                              | Cu/kg SS)  | SS)            |
| Industrial streets (Pitt 2004 WI and MN sheetflow)                           | 74 (0.4)*  | 100 (0.3)      |
| Industrial parking (Pitt 2004 WI and MN sheetflow)                           | 83 (0.5)   | 180 (0.5)      |
| Industrial pvd path (Pitt and McLean 1986, Toronto, Ontario 125µm)           | 280        | 460            |
| Industrial NSQD outfalls                                                     | 281 (0.6)  | 664 (0.9)      |
| Industrial street dirt (Pitt and McLean 1986, Toronto, Ontario <125 $\mu m)$ | 360        | 900            |
| Industrial pvd parking (Pitt and McLean 1986, Toronto, Ontario 125µm)        | 1110       | 650            |
| Industrial unpvd parking (Pitt and McLean 1986, Toronto, Ontario 125μm)      | 1120       | 2050           |
| Industrial roofs (Pitt 2004 WI and MN sheetflow)                             | n/a        | 220 (1.1)      |

#### **Table 7. Industrial Area Samples Particulate Strengths**

\* Average and coefficient of variation values (where available).

### **Treatment Performance**

#### Permit Limit Exceedances

Appendix A contains the summary influent and effluent concentrations for the stormwater control groups and associated reductions. The outfall 008 and 009 watersheds, where the controls described in this paper are located, used multiple tools to reduce the outfall stormwater concentrations, including:

- Source controls
  - o Interim soil remediation action (ISRA) soil removal
  - Pavement and building removal
- Erosion and sediment controls and restoration
  - Hydroseeding, mulching, and plantings of native vegetation
  - Dirt road controls
  - Northern channel stabilization controls
- Treatment controls
  - Flow-through media filters (culvert modifications, upper lot media filter, sedimentation basin and biofilter, ELV treatment train, and administration area inlet filters)
  - Detention bioswales with gravel filters
  - Temporary sedimentation areas (at LOX and helipad areas)

The primary purpose of the stormwater controls is to reduce the occurrence of exceedances of NPDES permit limits at the regulated outfalls. Since 2009, many site activities and improvements have resulted in the general reduction of these exceedances. Figure 10 shows how the SSFL outfall permit limit exceedances have substantially reduced over time with the use of stormwater controls and other site improvements. The 2017 - 2018 rain year had the least number of exceedances on record, while the rain total was generally similar to the prior years 2011 through 2016, which all had many more exceedances. The 2016 - 2017 rain year had more exceedances than the 2011 to 2016 rain years, likely due to much greater rainfall. However, when compared to the 2010 - 2011 rain year which had similar rain amounts, the later period had less than half of the former period exceedances.

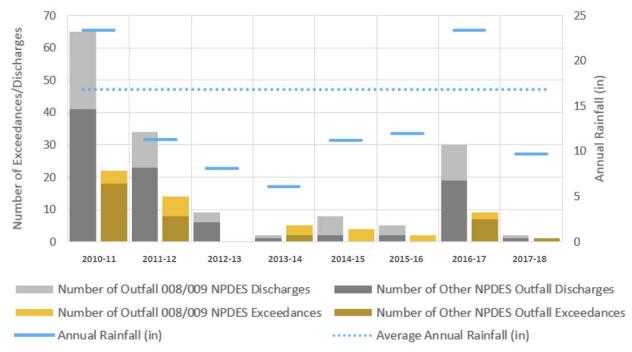



Figure 10. Historical overview of NPDES outfall permit limit exceedances.

Table 8 shows the percentage of influent and effluent samples for several controls that exceeded the permit limit values, along with the ratios of the concentrations to the permit limit values, for all monitoring data from 2009 through 2018. In all cases, the exceedance percentages were all much less for the effluent samples than for the influent samples, while most of the controls also indicate smaller average concentration ratios for the effluent samples compared to the influent samples (except for B-1 Pb and CM-1 TCDD). During the most recent monitoring year having samples (2016 – 2017, which had the largest site rainfall during this period), no effluent sample concentrations exceeded the permit limit values. However, a small number of TCDD values at CM-1 and northern detention bioswale exceeded the permit limit value, but no outfall samples at 009 exceeded the permit limit. Therefore, the site water quality is improving with time and the stormwater controls, and other site improvements, have reduced the permit exceedances to very low numbers.

| 2009 to 2018 |                 |                  |                          |                             |          |  |
|--------------|-----------------|------------------|--------------------------|-----------------------------|----------|--|
| Stormwater   | Parameter       | % of Samples G   | reater than              | Average Exceedance Ratio    |          |  |
| Control      |                 | Permit Limits (5 | 5.2 ug/L for             | (Exceeding Result to Permit |          |  |
|              |                 | Pb and 2.80 x 1  | 0 <sup>-8</sup> ug/L for | Limit ratio)                |          |  |
|              |                 | Dioxin)          |                          |                             |          |  |
|              |                 | Influent         | Effluent                 | Influent                    | Effluent |  |
| B-1          | Lead            | 35               | 9                        | 1.3                         | 1.5      |  |
|              | TCDD TEQ no DNQ | 85               | 68                       | 770                         | 3.9      |  |
| CM-1         | Lead            | 42               | 24                       | 4.3                         | 3.1      |  |

**Table 8. Influent and Effluent Concentrations Compared to Permit Limits** 

|               | TCDD TEQ no DNQ | 77 | 60 | 13  | 18             |
|---------------|-----------------|----|----|-----|----------------|
| CM-9          | Lead            | 39 | 28 | 4.3 | 2.9            |
|               | TCDD TEQ no DNQ | 47 | 26 | 9.1 | 3.2            |
| Upper Lot     | Lead            | 10 | 0  | 1.1 | no exceedances |
| Media Filter  | TCDD TEQ no DNQ | 90 | 50 | 5.4 | 2.7            |
| Lower Lot     | Lead            | 13 | 4  | 2.1 | 1.1            |
| Biofilter     | TCDD TEQ no DNQ | 92 | 8  | 4.4 | 3.9            |
| ELV Treatment | Lead            | 20 | 0  | 5.9 | no exceedances |
| Train         | TCDD TEQ no DNQ | 30 | 8  | 2.3 | 1.6            |
| Detention     | Lead            | 31 | 0  | 1.9 | no exceedances |
| Bioswales     | TCDD TEQ no DNQ | 73 | 14 | 67  | 2.9            |

Unfortunately, the November 2018 Woolsey fire covered most of the SSFL site and it is expected that there will be some degradation in the stormwater quality until the site vegetation is restored. All of the SSFL stormwater and critical erosion controls were put back in operation before the first rains which occurred less than a week after the fire. Increased monitoring is now on-going and the results will be used to direct continued site restoration and stormwater control efforts, as it had after the prior 2005 fire that also covered most of the SSFL site.

#### **Line Performance Plots**

Appendix B contains grouped line plots for the primary constituents: TSS, TCDD, total and filtered Cu, total and filtered Pb, conductivity, median particle size (few samples), pH, temperature, and turbidity. The stormwater controls were grouped: background culvert modifications, prior industrial area culvert modifications, detention bioswales with gravel filters, lower lot detention and biofilter, and ETV treatment train. These plots link the concentrations for the influent and effluent sampling locations. The lower lot and ELV systems also have an intermediate sampling location between the sedimentation pond or tank and the biofilter or media filter.

Figure 11 is a copy of the line plot for TCDD. Observing the trend lines indicate how effective and consistent these controls are for varying influent concentrations, and also visually separate the performance of the unit processes in the multiple unit controls (low lot detention/biofilter and the ELV treatment train). The summary tables in Appendix A also include the Wilcoxon Signed Rank test p value indicating the statistical significance of the differences in the influent and effluent concentrations, for reference. The background area culvert modifications do not indicate and obvious or consistent reductions, and the Wilcoxon Signed Rank p value is a high 0.45. In contrast the many samples available for the culvert modifications located in prior industrial areas show many downward trends, but large number of over-lapping data lines hinder a clear observation. The Wilcoxon Signed Rank p value is a very significant <0.001 indicating significant differences in the influent and effluent concentrations. The detention bioswale plots more clearly indicate concentration reductions, and the p values is also significant at <0.001. The lower lot and ETV systems also have p values <0.05 also indicating significant differences in concentrations (<0.001 and 0.004, respectively). These plots also indicate that the greatest reductions occur when the influent concentrations are the highest, while little differences are seen when the influent concentrations are low (but in most cases, they are already lower than the permit limit values).

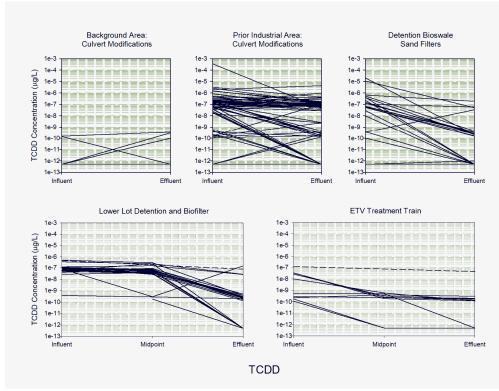



Figure 11. Performance line figures for TCDD.

Most importantly, these plots also provide a visual comparison of the consistency and magnitude of reductions of the concentrations for the different control types. Table 9 shows the Wilcoxon Signed Rank p values along with some notes on the visual consistency of any trends. Although the culvert modifications were shown to have significant TCDD concentration differences, the changes are not very consistent, with trend lines both increasing and decreasing. This is likely due to the very small footprints of these controls compared to the drainage areas, with associated very short contact times of the stormwater with the media. The significant p results are also affected by the large number of observations for these culvert modifications. In contrast, the detention bioswales are very large compared to their drainage areas, with much greater contact times to provide sedimentation of silt-sized stormwater particulates in the crushed stone material under the swales. The slow infiltration of the stormwater through the surface soils also provides for the capture of stormwater pollutants, compared to under-sized systems, although the longer contact times appear to have resulted in increases in copper, pH, and temperature.

|   |                    | anaco ana comm        | cinto on incutinei  | it menus            |                     |
|---|--------------------|-----------------------|---------------------|---------------------|---------------------|
| ĺ | background culvert | prior industrial area | detention bioswales | lower lot detention | ETV treatment train |
|   | modifications (CM8 | culvert               | with gravel filters | and biofilter       |                     |
|   | and CM11)          | modifications (B1,    |                     |                     |                     |
|   |                    | CM1, CM9, and         |                     |                     |                     |
|   |                    | ULBF)                 |                     |                     |                     |

#### Table 9. Wilcoxon Signed Rank p Values and Comments on Treatment Trends

| TSS                  | 0.09; inf low (all<br><100)                    | <0.001; high inf;<br>many overlapping<br>trends                   | <0.001; apparent<br>consistent decrease                                    | 0.55; inf low (most<br><100)                                                        | 0.074; if low (all<br><100); consistent<br>reduc in sed tank,<br>but consistent flush<br>out in media |
|----------------------|------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| TCDD TEQ no DNQ      | 0.45; all very low inf                         | <0.001; hgh inf<br>conc; appears<br>consistent decrease           | <0.001; high inf;<br>consistent decrease                                   | <0.001; high inf; no<br>change in dry pond,<br>consistent decrease<br>in biofilter  | 0.004; apparent<br>consistent<br>decrease, esp in sed<br>tanks                                        |
| Total Cu             | n/a                                            | <0.001; all trends in<br>consistent range                         | 0.007; consistent<br>INCREASE                                              | 0.12; all trends in<br>narrow range,<br>apparent slight<br>trend                    | 0.031; consistent<br>decrease, esp in sed<br>tanks                                                    |
| filtered Cu          | n/a                                            | <0.001; all trends in<br>narrow range, slight<br>consistent trend | 0.004; mostly<br>consistent<br>INCREASE                                    | 0.003; narrow<br>range, slight trend                                                | 0.014; consistent<br>trend, esp in sed<br>tank                                                        |
| Total Pb             | >0.5; few samples<br>and low<br>concentrations | <0.001; wide range<br>of overlapping<br>trends                    | <0.001; consistent<br>trend                                                | 0.88; slight trend in<br>dry pond                                                   | 0.008; consistent<br>decrease in sed<br>tank. Possible loss<br>in media (but<br>overall reduc)        |
| filtered Pb          | n/a                                            | <0.001; overlapping<br>trends, apparent<br>trend                  | 0.063; few obs,<br>inconsistent trends,<br>but high inf large<br>decreases | 1.0; apparent<br>decrease in dry sed<br>pond, then increase<br>in biofilter         | 0.084; consistent<br>but small trend<br>overall                                                       |
| conductivity         | 0.21; no apparent trends                       | 0.006; wide band of<br>overlapping trends                         | 0.053; inconsistent<br>trends                                              | 0.086; inconsistent<br>trend in dry pond,<br>consistent<br>INCREASE in<br>biofilter | 0.031; no apparent<br>change in sed tank;<br>consistent<br>INCREASE in media<br>(overall increase)    |
| median particle size | n/a                                            | 0.27; few data, but apparent decrease                             | 0.12; few data, but apparent decrease                                      | 0.30; few data, but<br>apparent decrease<br>in biofilter                            | n/a                                                                                                   |
| рН                   | 0.31; consistent no trend                      | 0.29; many<br>overlapping trends                                  | <0.001; consistent<br>INCREASE in pH                                       | 0.90; no consistent<br>pattern                                                      | 0.69; few data, no<br>consistent pattern                                                              |
| temperature          | 0.47; no consistent<br>trend                   | 0.73; many<br>overlapping trends                                  | 0.008; slight<br>consistent<br>INCREASE                                    | 0.87; apparent<br>decrease in dry<br>pond, possible<br>increase in biofilter        | 0.94; few data, no<br>apparent trend                                                                  |
| turbidity            | 0.59; no consistent<br>trend                   | 0.46; many<br>overlapping trends                                  | 0.11; some increase<br>and some decrease                                   | 0.03; apparent<br>decrease in dry<br>pond, consistent<br>INCREASE in<br>biofilter   | 0.30; few data,<br>apparent<br>INCREASES in dry<br>tank and more so in<br>media                       |

The most consistent and lowest stormwater effluent concentrations are associated with properly sized stormwater controls that are able to treat most of the annual flows with minimal bypassing of treatment. Multiple-stage unit process treatment systems can also provide the most consistent levels of treatment for a broad range of constituents having large influent concentration ranges.

#### **Paired Probability Plots**

Figure 12 is an example paired probability plot prepared using MiniTab (version 18) that indicates the concentration distributions for influent and effluent (and mid point) for four sets of SSFL stormwater controls. All of the culvert modification data were combined (instead of keeping the background locations separate) as the treatment processes are all the same and combining the background data with the industrial locations expanded the range of influent concentrations. Appendix C includes similar

sets of plots for the same four stormwater control groups, for: TSS, TCDD, total and filtered Cu, total and filtered Cd, filtered Hg, conductivity, median particle size, pH, temperature, and turbidity. These plots indicate the relative differences between the influent and effluent concentrations and show the best fit probability line and 95% confidence limits for each distribution. All of these are plotted as log-probability plots, except for pH (which is already a log scale). Also noted on these plots are the Anderson-Darling test statistic and corresponding p value. If the p values are smaller than 0.05, the distribution can be considered to be significantly different from a log-normal distribution (a straight line on these plots). Most of the statistical tests conducted using these data are non-parametric and are less sensitive to the distribution types than parametric tests.

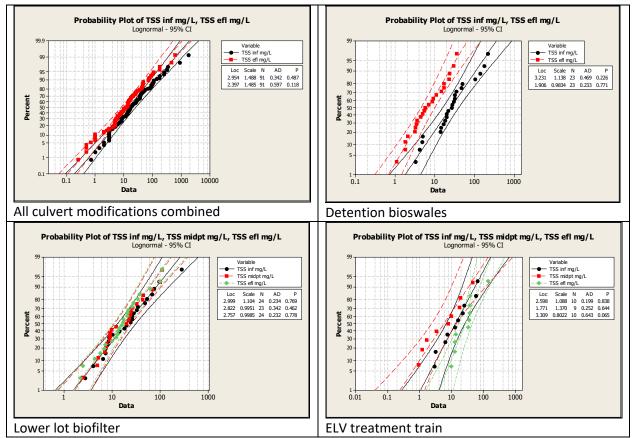



Figure 12. Paired probability plots for TSS for SSFL stormwater control types

Table 10 summarizes the characteristics of the probability plots, indicating the amount of overlapping confidence limits of the probability distributions, the consistency of the concentration patterns, and the Anderson-Darling test results. Generally, the culvert modifications had the narrowest separations (except for filtered Pb and total and filtered Cd), while the detention bioswales had the widest separations (but with increases in Cu concentrations, conductivity, and pH, with treatment).

### **Table 10. Probability Plot Characteristics**

|                      | Culvert Modifications                                                       | Detention Bioswales                                                                                 | Lower Lot Biofilter                                                                                           | ELV Treatment Train                                                                                                                     |
|----------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| TSS                  | Small separation, log-<br>normal distributions                              | Wide separation, log-<br>normal distribution                                                        | Much overlap, efl lower<br>conc for high inf<br>conditions, log-normal<br>distributions                       | Some overlap, midpoint<br>consistently lowest<br>concentrations, log-<br>normal distributions                                           |
| TCDD                 | Much overlap, failed AD<br>test                                             | Wide separation, failed<br>AD test                                                                  | Very wide separation,<br>failed AD test                                                                       | Overlapping<br>distributions, but inf<br>highest conc; failed AD<br>test                                                                |
| Total Cu             | Small separation, mixed<br>AD results                                       | Wide separation, but<br>effluent consistently<br>higher, mixed AD results                           | Much overlapping, but<br>efl consistently lowest<br>conc; log-normal<br>distributions                         | Wide separations<br>between efl/mid vs inf,<br>and midpoint and efl<br>consistently lower conc<br>than inf; log-normal<br>distributions |
| filtered Cu          | Small separation, efl<br>mostly lower than inf;<br>log-normal distributions | Wide separation, but<br>effluent consistently<br>higher than influent; log-<br>normal distributions | Much overlapping, and<br>efl consistently lower<br>than mid and inf; mixed<br>AD test results                 | Efl and mid-point similar<br>to each other and wide<br>separation from inf; log-<br>normal distribution                                 |
| Total Pb             | Small but consistent separation; log-normal distributions                   | Wide separation with efl<br>always less than inf; log-<br>normal distributions                      | Much overlapping, with<br>midpoint values mostly<br>the lowest; log-normal<br>distribution                    | Wide separation with<br>mid and efl similar and<br>always less than efl; log-<br>normal distributions                                   |
| filtered Pb          | Wide separations with<br>consistently lower efl;<br>mixed AD test results   | Wide separation with efl<br>narrow conc range close<br>to ND; mixed AD results                      | Few data and large<br>overlaps; log-normal<br>distributions                                                   | Much overlapping, with<br>efl generally lowest; log-<br>normal distributions                                                            |
| Total Cd             | Wide separations with<br>efl consistently lower;<br>mixed AD test results   | Wide separation with efl<br>narrow conc range close<br>to ND; mixed AD results                      | Few data and large<br>overlaps, efl lowest; log-<br>normal distributions                                      | Only two pairs of data observed; efl both ND                                                                                            |
| filtered Cd          | Wide separations with<br>efl consistently lower;<br>mixed AD test results   | Wide separation with efl<br>narrow conc range close<br>to ND; failed AD test                        | Few data, but efl lowest<br>conc; log-normal<br>distributions                                                 | Only two pair of data                                                                                                                   |
| Total Hg             | Mostly overlapping, but<br>most efl lower than inf;<br>mixed AD results     | n/a                                                                                                 | n/a                                                                                                           | n/a                                                                                                                                     |
| filtered Hg          | Only two pair of data, efl less than inf for both                           | n/a                                                                                                 | n/a                                                                                                           | n/a                                                                                                                                     |
| conductivity         | All overlapping; failed AD test                                             | Consistent separation<br>with efl greater then inf;<br>mixed AD results                             | Mostly all overlapping;<br>log-normal distributions                                                           | Inf and mid overlapping<br>and lower than widely<br>separated higher efl<br>concentration; log-<br>normal distributions                 |
| median particle size | Mostly separated with<br>efl smaller than inf; log-<br>normal distributions | Mostly separated with<br>efl smaller than inf; log-<br>normal distributions                         | Efl small thatn similar inf<br>and mid; log-normal<br>distributions                                           | n/a                                                                                                                                     |
| рН                   | All overlapping; failed AD tests                                            | Widely separated with<br>inf lower pH than efl pH;<br>normal distribution                           | All overlapping; mixed<br>AD test results                                                                     | All overlapping; log-<br>normal distributions                                                                                           |
| temperature          | All overlapping and<br>narrow; log-normal<br>distributions                  | All overlapping; log-<br>normal distributions                                                       | All overlapping; mixed<br>AD test results                                                                     | All overlapping; mixed<br>AD test results                                                                                               |
| turbidity            | All overlapping and narrow; failed AD test                                  | Overlapping distributions<br>but efl consistently less<br>than inf; mixed AD test<br>results        | Overlapping<br>distributions, but efl<br>consistently higher than<br>inf and mid; log-normal<br>distributions | Overlapping<br>distributions; mixed AD<br>test results                                                                                  |

## **Effluent Concentration Equations**

Table 11 summarizes the results of the statistical analyses examining the relationships between the influent and effluent concentrations. Three sets of observations were noted, as described below.

1) The constituents having statistically significant removals based on the Wilcoxon Signed Rank Test (p<0.05) were further examined using regression analyses (first-order polynomials), with ANOVA and residual analyses (using combinations of Microsoft Excel, Minitab ver 18 and SigmaPlot ver 14). The resulting equation coefficients were examined by ANOVA to determine the significance of the coefficients and the overall equation. If the intercept term was not significant (p > 0.05), it was removed from the equation which was then re-evaluated, forcing the regression through the origin. In this case, the percentage reduction is the same for all influent concentrations. With a significant intercept term, low influent concentrations have lower percentage removals than high influent concentrations.

If the final equation was significant based on ANOVA, residuals were calculated and examined. Equations were examined using log<sub>10</sub> transformed influent and effluent concentrations and nontransformed concentration data. The non-transformed equations were used if the residuals met the basic residual requirements (especially an even distribution of the independent variable over the range of concentrations). Other residual analyses tested for the overall random distribution of the residual values, random distribution of residuals vs. time order, and random distribution of residuals vs. calculated effluent concentrations).

The residuals vs. control type were also examined for the stormwater control types that had multiple examples combined (the culvert modifications and the detention bioswales). The residuals were desired to have consistent behavior with time and for different controls which indicated little likelihood of different individual controls having fundamentally different performance relationships. Direct paired statistical comparisons of the effluent concentrations could be affected by different ranges of influent concentrations for the different controls. Comparing performance equation residuals would identify separate behavior patterns more accurately. Also, consistent residual behavior with time indicated consistent performance with minimal effects associated with accumulation of captured material or consuming the chemical capacity of the media. In all cases, these residual plots did not indicate any performance different individual controls they were grouped with, or with time.

- 2) The second scenario is when the influent vs. effluent scatterplot indicated a relative constant effluent concentration (also confirmed by the grouped probability plot), and if the paired Wilcoxon Signed Rank test indicated significant differences between influent and effluent concentrations (p<0.05). This scenario occurred when the slope coefficient and overall equation were not significant using ANOVA. Under this condition, the effluent is assumed to be the average of all observed effluent concentrations, with no change associated with influent concentrations. The variation of these data are represented by the COV values.</p>
- 3) The third scenario is when the Wilcoxon Signed Rank test had a large p value (>0.05) indicating that the differences between the influent and effluent concentrations could not be distinguished based on the number of data observations available. In these cases, the table shows the efl = inf.

The detention bioswale equations are all in the second category above, with the average and COV values shown, except for temperature. If the COV is large, the variation of the resulting effluent concentration is also large. The TCDD results have the largest COV values, while the pH values have the smallest COV values (if present, as most of the pH relationships did not indicate any significant differences between the influent and effluent pH values).

# Table 11. Equations to Predict Effluent Concentrations for Different Stormwater Controls at SSFL

|                |                                        | TSS                 | TCDD             | Cu              | filt Cu              | Pb                    | filt Pb             |
|----------------|----------------------------------------|---------------------|------------------|-----------------|----------------------|-----------------------|---------------------|
| B1, CM1, CM9,  | Wilcoxon Signed Rank Test P, inf = efl | <0.001              | <0.001           | <0.001          | <0.001               | <0.001                | <0.001              |
| ULBF, CM8, and | number of pairs                        | 91                  | 59               | 55              | 38                   | 81                    | 18                  |
| CM11 combined  | ANOVA P for selected equation          | <0.001              |                  | <0.001          | <0.001               | <0.001                | <0.001              |
|                | selected efl equation or values        | log TSS efl = 0.791 | 1.07E-07 (4.31)* | Cu efl = 1.95 + | filt Cu efl = 1.89 + | Pb efl = 0.473 Pb inf | filt Pb efl = 0.303 |
|                |                                        | log TSS inf         |                  | 0.427 Cu inf    | 0.348 filt Cu inf    |                       | + 0.229 filt Pb inf |

|                 |                                        | TSS      | TCDD            | Cu          | filt Cu     | Pb          | filt Pb     |
|-----------------|----------------------------------------|----------|-----------------|-------------|-------------|-------------|-------------|
| South and North | Wilcoxon Signed Rank Test P, inf = efl | <0.001   | <0.001          | 0.007       | 0.004       | <0.001      | 0.063       |
| Detention       | number of pairs                        | 23       | 21              | 24          | 24          | 22          | 5           |
| Bioswales       | ANOVA P for selected equation          |          |                 |             |             |             |             |
| combined        | selected efl equation or values        | 9 (0.94) | 1.15E-08 (3.08) | 18.1 (0.59) | 16.0 (0.65) | 1.38 (0.51) | 1.02 (0.98) |

|                     |                                        | TSS       | TCDD            | Cu        | filt Cu              | Pb        | filt Pb   |
|---------------------|----------------------------------------|-----------|-----------------|-----------|----------------------|-----------|-----------|
| Lower Lot Biofilter | Wilcoxon Signed Rank Test P, inf = efl | 0.550     | <0.001          | 0.120     | 0.003                | 0.880     | 1.000     |
|                     | number of pairs                        | 24        | 24              | 24        | 24                   | 24        | 3         |
|                     | ANOVA P for selected equation          |           |                 |           | 0.004                |           |           |
|                     | selected efl equation or values        | efl = inf | 1.11E-08 (2.92) | efl = inf | filt Cu efl = 2.83 + | efl = inf | efl = inf |
|                     |                                        |           | with many NDs   |           | 0.469 filt Cu inf    |           |           |

|               |                                        | TSS                                | TCDD                             | Cu                               | filt Cu                                   | Pb                                                         | filt Pb                            |
|---------------|----------------------------------------|------------------------------------|----------------------------------|----------------------------------|-------------------------------------------|------------------------------------------------------------|------------------------------------|
| ELV Treatment | Wilcoxon Signed Rank Test P, inf = efl | 0.074                              | 0.004                            | 0.031                            | 0.014                                     | 0.008                                                      | 0.084                              |
| Train         | number of pairs                        | 10                                 | 10                               | 7                                | 10                                        | 10                                                         | 10                                 |
|               | ANOVA P for selected equation          | <0.001                             |                                  | <0.001                           | 0.028                                     | 0.023 (efl = inf<br>mostly, except for<br>high efl values) | 0.001                              |
|               | selected efl equation or values        | log TSS efl = 0.745<br>log TSS inf | 3.51E-09 (3.50)<br>with many NDs | Cu efl = 0.863 +<br>0.301 Cu inf | filt Cu efl = 1.56<br>+ 0.167 filt Cu inf | log Pb efl = 0.269 log<br>Pb inf                           | filt Pb efl = 0.840<br>filt Pb inf |

\*Average and (COV))

# Table 11. Equations to Predict Effluent Concentrations for Different Stormwater Controls at SSFL (continued)

|                |                                        | Cd               | filt Cd    | Cond                   | рН        | Тетр      | Turb      |
|----------------|----------------------------------------|------------------|------------|------------------------|-----------|-----------|-----------|
| B1, CM1, CM9,  | Wilcoxon Signed Rank Test P, inf = efl | <0.001           | 0.004      | 0.003                  | 0.290     | 0.540     | 0.530     |
| ULBF, CM8, and | number of pairs                        | 27               | 9          | 87                     | 91        | 86        | 84        |
| CM11 combined  | ANOVA P for selected equation          |                  |            | <0.001                 |           |           |           |
|                | selected efl equation or values        | 0.19 (0.49) with | mostly NDs | log cond efl = - 0.320 | efl = inf | efl = inf | efl = inf |
|                |                                        | many NDs         |            | + 0.773 log cond inf   |           |           |           |

|                 |                                        | Cd              | filt Cd          | Cond        | рН         | Тетр                  | Turb      |
|-----------------|----------------------------------------|-----------------|------------------|-------------|------------|-----------------------|-----------|
| South and North | Wilcoxon Signed Rank Test P, inf = efl | <0.001          | 0.042            | 0.053       | <0.001     | 0.008                 | 0.110     |
| Detention       | number of pairs                        | 16              | 11               | 20          | 20         | 15                    | 20        |
| Bioswales       | ANOVA P for selected equation          |                 |                  |             |            | <0.001 (efl = inf for |           |
| combined        |                                        |                 |                  |             |            | most)                 |           |
|                 | selected efl equation or values        | 0.32 (0.60) and | 0.47 (1.08) with | 0.29 (0.94) | 6.5 (0.09) | Temp efl = 1.06       | efl = inf |
|                 |                                        | many ND         | many NDs         |             |            | Temp inf              |           |

|                     |                                        | Cd        | filt Cd   | Cond             | рН        | Temp      | Turb              |
|---------------------|----------------------------------------|-----------|-----------|------------------|-----------|-----------|-------------------|
| Lower Lot Biofilter | Wilcoxon Signed Rank Test P, inf = efl | 0.250     | 0.500     | 0.086            | 0.900     | 0.870     | 0.030             |
|                     | number of pairs                        | 3         | 2         | 23               | 23        | 22        | 23                |
|                     | ANOVA P for selected equation          |           |           | <0.001 efl = inf |           |           |                   |
|                     |                                        |           |           | with scatter)    |           |           |                   |
|                     | selected efl equation or values        | efl = inf | efl = inf | cond efl = 1.15  | efl = inf | efl = inf | log turb efl =    |
|                     |                                        |           |           | cond inf         |           |           | 0.887 + 0.588 log |
|                     |                                        |           |           |                  |           |           | turb inf          |

|               |                                        | Cd        | filt Cd   | Cond            | рН        | Тетр      | Turb      |
|---------------|----------------------------------------|-----------|-----------|-----------------|-----------|-----------|-----------|
| ELV Treatment | Wilcoxon Signed Rank Test P, inf = efl | 0.500     | 1.000     | 0.031           | 0.690     | 0.940     | 0.300     |
| Train         | number of pairs                        | 2         | 2         | 6               | 7         | 7         | 7         |
|               | ANOVA P for selected equation          |           |           | 0.011           |           |           |           |
|               | selected efl equation or values        | efl = inf | efl = inf | cond efl = 2.30 | efl = inf | efl = inf | efl = inf |
|               |                                        |           |           | cond inf        |           |           |           |

#### Influent and Effluent Concentration Trends with Time

Effluent concentrations are dependent on influent concentrations, so identification of changes in effluent conditions with time due to degradation of the stormwater controls cannot be directly detected without also considering possible changes in influent concentrations. Therefore, all of the influent data from locations having historical industrial activity (or significant pavement or buildings) were combined and plotted with time (CM-8 and CM-11 background data were not used). Regression analyses with ANOVA was conducted to see if the slope of the trend line was significant, as a quick check to identify possible changes of influent concentrations since the SSFL controls were established. Figure 13 is the plot for TSS, while Appendix D contains similar plots for the other constituents analyzed. The horizontal scale is the days (Julian) while the vertical scales are the concentrations. Significant slope terms in the equations (p < 0.05) are noted on the figures. The slope term is significant for TSS (p = 0.033), with an overall average decreasing concentration of 0.026 mg/day over the 9 years of monitoring. During this period, the TSS decreased by an overall average of about 85 mg/L due to changes in site conditions. Treatment by the stormwater controls further decreased the effluent concentrations.

| Table 12. Observed concentration frends in influent samples |                       |                       |                       |  |
|-------------------------------------------------------------|-----------------------|-----------------------|-----------------------|--|
| Constituent                                                 | Significance of Trend | Slope Factor, if      | Average Overall       |  |
|                                                             |                       | Significant (all      | Concentration Change  |  |
|                                                             |                       | decreases)            | over 9 Years          |  |
| TSS                                                         | 0.033                 | 0.026 mg/day          | 85 mg/L decrease      |  |
| TCDD                                                        | 0.93                  |                       |                       |  |
| Total Cu                                                    | 0.78                  |                       |                       |  |
| Filtered Cu                                                 | 0.35                  |                       |                       |  |
| Total Pb                                                    | 0.025                 | 0.002 μg/day          | 6.6 μg/L decrease     |  |
| Filtered Pb                                                 | 0.42                  |                       |                       |  |
| Total Cd                                                    | 0.35                  |                       |                       |  |
| Conductivity                                                | <0.001                | 7 x 10⁻⁵ mS/day       | 0.23 mS decrease      |  |
| Median particle size                                        | 0.41                  |                       |                       |  |
| рН                                                          | <0.001                | 0.00035 pH units/day  | 1.1 pH units decrease |  |
| Temperature                                                 | 0.054 (marginal)      | 0.00048 degrees F/day | 1.6°F decrease        |  |
| Turbidity                                                   | 0.070 (marginal)      | 0.016 NTU/day         | 53 NTU decrease       |  |

 Table 12. Observed Concentration Trends in Influent Samples

The TSS and turbidity trends may be related to improved erosion control and vegetation reestablishment with time. The TSS and turbidity time series plots show an apparent increase during the first four years of monitoring and then a slower decrease during the remaining five years, mainly with some lower values with the data spread over a wider range compared to a narrower range in the later years.

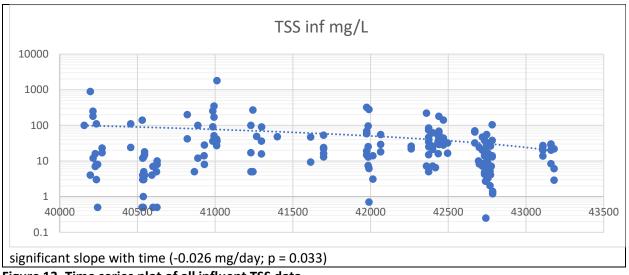



Figure 13. Time series plot of all influent TSS data.

Effluent concentration trends were examined for the four treatment groups separately for those constituents that did not have significant influent concentration trends. However, several of the constituents (filtered Pb, total Cd, and median particle size) had too few data observations for these analyses. Therefore, TCDD, along with total and filtered Cu, were analyzed for effluent concentration trends for culvert modifications (having historical industrial activity), the detention bioswales, the lower lot biofilter, and the ELV treatment train. Figure 14 is a time series plot of the effluent concentrations of total copper for the lower lot biofilter, showing a significant increasing concentration trend with time. Additional effluent concentration time series plots are also included in Appendix D.

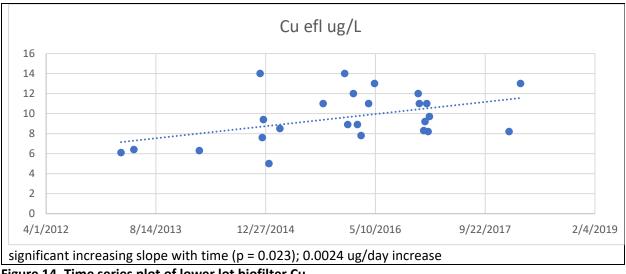



Figure 14. Time series plot of lower lot biofilter Cu.

Table 13 summarizes the significant effluent concentration trends observed for these four control groups and the constituents that did not have any observed influent calculation trends. Filtered Pb, total Cd, and median particle size had too few effluent concentration observations for effluent trend analyses for each control type, although they indicated no significant trends for influent concentrations for all sites combined. The culvert modifications and the detention bioswales had no observed significant effluent concentration trends. The lower lot biofilter system indicated significant increasing total and filtered Cu effluent concentrations with time. The ELV treatment train indicated significant decreasing concentration trends for all three of these constituents with time. It is not known why the lower lot biofilter is indicating increasing trends in effluent copper concentrations with time, especially as the influent concentrations (site wide) were not increasing.

| Constituent having no            | Significance of Trend | Slope Factor, if Significant (all       | Average Overall Concentration Change               |
|----------------------------------|-----------------------|-----------------------------------------|----------------------------------------------------|
| significant influent trends      |                       | decreases)                              | over data period                                   |
| Culvert modifications: TCDD      | 0.70                  |                                         |                                                    |
| Culvert modifications: total Cu  | 0.17                  |                                         |                                                    |
| Culvert modifications: filtered  | 0.74                  |                                         |                                                    |
| Cu                               |                       |                                         |                                                    |
| Detention bioswales: TCDD        | 0.21                  |                                         |                                                    |
| Detention bioswales: total Cu    | 0.72                  |                                         |                                                    |
| Detention bioswales: filtered Cu | 0.71                  |                                         |                                                    |
| Lower lot biofilter: TCDD        | 0.41                  |                                         |                                                    |
| Lower lot biofilter: total Cu    | 0.024 (significant    | 0.0024 ug/day increase                  | 4.4 ug/L increase over 5 years                     |
|                                  | increasing trend)     |                                         |                                                    |
| Lower lot biofilter: filtered Cu | <0.001 (significant   | 0.0046 ug/day increase                  | 8.4 ug/L increase over 5 years                     |
|                                  | increasing trend)     |                                         |                                                    |
| ELV treatment train: TCDD        | 0.034 (significant    | 1.8 X 10 <sup>-11</sup> ug/day decrease | 2.4 X 10 <sup>-8</sup> ug/L decrease after 4 years |
|                                  | decreasing trend)     |                                         |                                                    |
| ELV treatment train: total Cu    | 0.020 (significant    | 0.0028 ug/day decrease                  | 4.1 ug/L decrease after 4 years                    |
|                                  | decreasing trend)     |                                         |                                                    |
| ELV treatment train: filtered Cu | 0.015 (significant    | 0.0011 ug/day decrease                  | 1.6 ug/L decrease after 4 years                    |
|                                  | decreasing trend)     |                                         |                                                    |

**Table 13 Observed Concentration Trends in Effluent Samples** 

It is not known why the lower lot biofilter indicated increasing trends in effluent copper concentrations with time, especially as the influent concentrations (site wide) were not increasing. Figure 15 is a plot of the lower lot biofilter influent trends alone, compared to the effluent trends. The influent total Cu did not indicate any significant trend (p = 0.24), while the effluent total Cu has a significant increasing trend (p = 0.024). This figure indicates much scatter for the influent trends (as typical for stormwater), but with less scatter for the effluent trends (as expected for a well-operating stormwater control). The decreased scatter in the effluent concentration time series allows a greater confidence in the trend compared to the influent time series that has greater scatter.

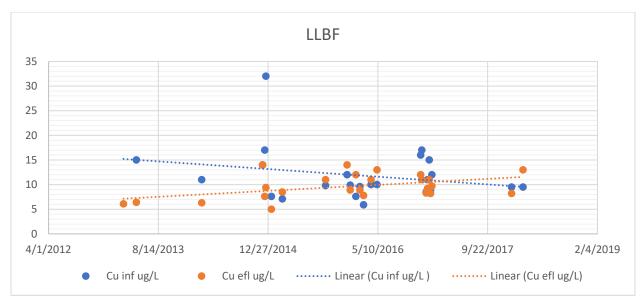
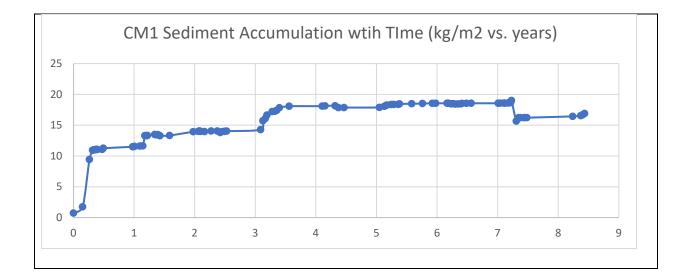




Figure 15. Influent and effluent concentration time series for total copper at the lower lot biofilter system.

#### Sediment Accumulation with Time

Time series plots of accumulated sediment in several of the stormwater controls were also prepared. SWMM was calibrated for the SSFL 009 watershed outfall data, which was then used to calculate the annual stormwater flow quantity to each of these stormwater controls. SWMM was also used to calculate the fraction of the flow that was treated by the controls, and how much was bypassed during high flow periods. The sediment retention was calculated based on the difference between the influent and effluent concentrations TSS concentrations for each event. This TSS concentration retention was calculated for each event. These were then multiplied by the treated flow volume to obtain the mass TSS retained for each event. These were then used to calculate the accumulative sediment load retained for each control device and plotted as time series, as shown in Figures 16 and 17.



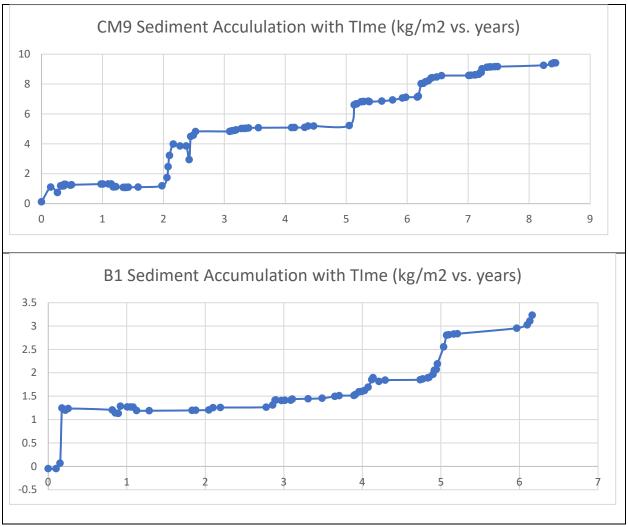



Figure 16. Time series of sediment retention in SSFL culvert modification stormwater controls.

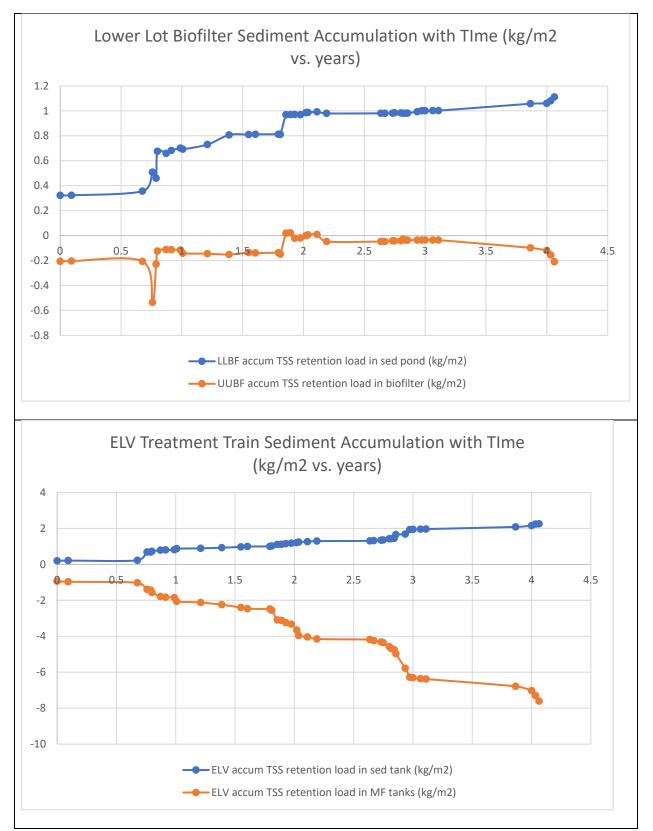



Figure 17. Time series of sediment retention in SSFL lower lot biofilter system and ELV treatment train stormwater controls.

The sediment accumulation for CM-1 shown in Figure 16 indicates a large accumulation of material during the first year of operation. The accumulation then increases until about the fourth year of operation where it levels off, with possible scour of material occurring during the 7<sup>th</sup> year. The apparent total sediment accumulation capacity for this stormwater control appears to be about 20 kg/m<sup>2</sup> of media surface area. The sediment accumulations at the CM-9 and B-1 locations are also seen to have periodic short periods of large accumulations of sediment, again during the first year of operation at B-1. Both of these culvert modifications appear to be continuing to collect material after 8 years of operation, with total accumulation amounts in CM-9 of about 10 kg/m<sup>2</sup> and 3 kg/m<sup>2</sup> at B-1. With an assumed total capacity of 20 kg/m<sup>2</sup>, B-9 may have about another 8 years of operation before needing replacement, while B-1 may have another 30+ years of operation before replacement.

The sediment accumulation time series for the lower lot biofilter system and at the ELV treatment train are shown in Figure 17. These plots show accumulations for the sediment and the biofilter/filter sections of the treatment systems separately as these controls also included a sampling port between the two unit processes. In both cases, the sediment accumulations in the sediment pond/tank sections are only about 1 or 2 kg/m<sup>2</sup> over the four years of operation. The lower lot biofilter shows only small net accumulation changes with time in the biofilter, while the ELV shows large losses of sediment material from the filter, likely due to washout of fines from the media mixture.

The November 2018 Woolsey fire is expected to cause additional mobilization of sediment to the stormwater controls at SSFL until the area becomes well stabilized and re-vegetated. Continued monitoring will indicate any changes in accumulation of material and increased maintenance or replacement of the controls.

As noted previously, the residual analyses for the constituent time series equations did not indicate any break-through of monitored constituents during the monitoring period. One of the features of the media testing and selection was that the sediment accumulation would cause clogging well before break-through of the constituents of concern.

#### Conclusions

Stormwater biofilters and bioretention controls have been extensively studied and are accepted

#### Maintenance

Table XX. Stormwater Control Maintenance Schedule

| BMPs Implemented                                  | Quantity<br>Implemented | Routine<br>Maintenance   | Repair/<br>Upgrade |  |  |
|---------------------------------------------------|-------------------------|--------------------------|--------------------|--|--|
| Mechanical/Chemical<br>Treatment Systems          | 2                       | After major storm events | Annually as needed |  |  |
| Structural BMPs                                   | 5                       | After major storm events | Annually as needed |  |  |
| Structural BMPs with<br>Advanced Media            | 16                      | After major storm events | Annually as needed |  |  |
| Fiber Rolls and Silt Fencing                      | ~19 Linear Miles        | Annually as needed       | Annually as needed |  |  |
| Rolling Dips and Water Gravel<br>Bars             | ~1400 Linear Feet       | Annually as needed       | Annually as needed |  |  |
| Check Dams                                        | ~1000 Linear Feet       | Annually as needed       | Annually as needed |  |  |
| Erosion Control, Hydroseed,<br>and Jute Straw Mat | ~760 Acres              | Annually as needed       | Annually as needed |  |  |

• Expected years to needed media replacement (based on total suspended solids loading) is evaluated annually for each media filter

- Inspections are also conducted 72-hours after each rain event to make note of extended ponding
- CM-1 media replacement is currently recommended per the TSS loading estimate and ponding observations; CM-1 to be reconstructed later this summer
- Other media filters are estimated to have 2 to 30+ years of useful media life remaining

## Acknowledgements

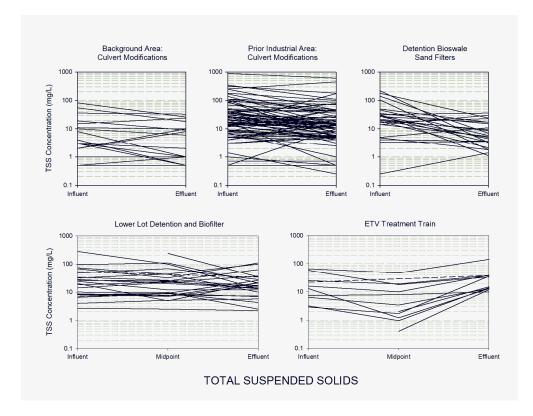
#### References

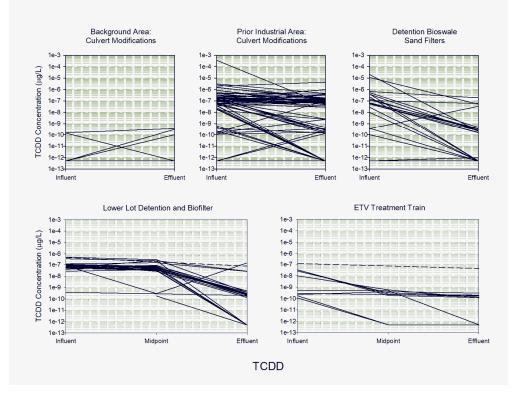
Additional Information (e.g., NPDES Permit, Panel Presentations, and Technical Reports): www.boeing.com/principles/environment/santa\_susana

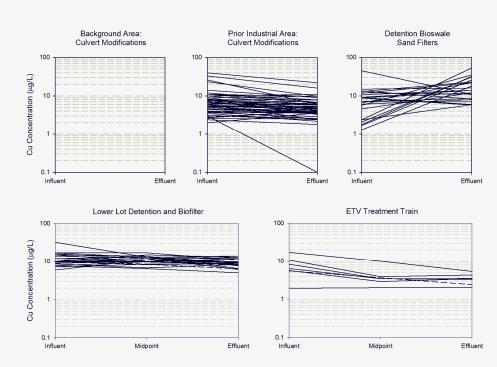
| Control   |               | Sample        | TSS inf | TSS efl | TSS %   | TCDD inf | TCDD efl | TCDD %  | Cu inf | Cu efl | Cu %    | filt Cu inf | filt Cu efl | filt Cu % |
|-----------|---------------|---------------|---------|---------|---------|----------|----------|---------|--------|--------|---------|-------------|-------------|-----------|
| Location  |               | Date          | mg/L    | mg/L    | reduc   | ug/L     | ug/L     | reduc   | ug/L   | ug/L   | reduc   | ug/L        | ug/L        | reduc     |
| CM8 and   | count         | 22            | 22      | 22      | 18      | 12       | 12       | 2       | 0      | 0      | 0       | 0           | 0           | 0         |
| CM11      | % ND          |               | 14      | 23      |         | 75       | 75       |         |        |        |         |             |             |           |
|           | min           | 1/20/2010     | 1       | 1       |         | 1.0E-12  | 1.0E-12  |         |        |        |         |             |             |           |
|           | max           | 3/21/2011     | 82      | 33      |         | 3.7E-10  | 3.5E-10  |         |        |        |         |             |             |           |
|           | median        |               | 3       | 3       |         | 1.0E-12  | 1.0E-12  |         |        |        |         |             |             |           |
|           | COV           |               | 1.57    | 1.22    |         | 2.04     | 1.99     |         |        |        |         |             |             |           |
|           | Wilcoxon Sign | ned Rank Test |         |         | 0.090   |          |          | 0.450   |        |        |         |             |             |           |
| B1, CM1,  | count         | 126           | 118     | 88      | 74      | 111      | 81       | 56      | 99     | 62     | 56      | 88          | 43          | 38        |
| CM9, and  | % ND          |               | 7       | 9       |         | 20       | 26       |         | 1      | 3      |         | 0           | 0           |           |
| ULBF      | min           | 12/11/2009    | 1       | 1       |         | 1.0E-12  | 1.0E-12  |         | 0.1    | 0.1    |         | 1.0         | 0.9         |           |
|           | max           | 3/22/2018     | 1,800   | 610     |         | 3.6E-04  | 4.3E-06  |         | 39.7   | 22.0   |         | 20.0        | 8.5         |           |
|           | median        |               | 16      | 13      | 37.3    | 5.9E-08  | 2.6E-09  | 73.4    | 5.2    | 4.1    | 20.8    | 3.2         | 3.2         | 19.4      |
|           | COV           |               | 3.02    | 2.38    |         | 9.91     | 4.01     |         | 0.89   | 0.68   |         | 0.76        | 0.55        |           |
|           | Wilcoxon Sign | ned Rank Test |         |         | < 0.001 |          |          | < 0.001 |        |        | < 0.001 |             |             | < 0.001   |
| Southern  | count         | 38            | 25      | 36      | 23      | 26       | 36       | 20      | 26     | 36     | 24      | 26          | 36          | 24        |
| and       | % ND          |               | 4       | 0       |         | 12       | 44       |         | 0      | 0      |         | 0           | 0           |           |
| Northern  | min           | 5/15/2015     | 1       | 1       |         | 1.0E-12  | 1.0E-12  |         | 1.3    | 5.8    |         | 0.7         | 3.8         |           |
| bioswales | max           | 3/2/2018      | 220     | 36      |         | 2.1E-05  | 1.9E-07  |         | 44.9   | 53.0   |         | 164.1       | 47.0        |           |
|           | median        |               | 27      | 6       | 62.5    | 6.6E-08  | 1.6E-10  | 99.7    | 8.9    | 16.0   | -42.5   | 5.2         | 12.0        | -87.4     |
|           | COV           |               | 1.24    | 0.94    |         | 3.31     | 3.08     |         | 0.91   | 0.59   |         | 2.50        | 0.65        |           |
|           | Wilcoxon Sign | ned Rank Test |         |         | < 0.001 |          |          | < 0.001 |        |        | 0.007   |             |             | 0.004     |
| Lower Lot | count         | 25            | 24      | 25      | 24      | 24       | 25       | 24      | 24     | 25     | 24      | 24          | 25          | 24        |
| Biofilter | % ND          |               | 0       | 0       |         | 0        | 28       |         | 0      | 0      |         | 0           | 0           |           |
|           | min           | 3/8/2013      | 3       | 2       |         | 3.8E-10  | 1.0E-12  |         | 5.9    | 5.0    |         | 3.8         | 1.6         |           |
|           | max           | 3/2/2018      | 280     | 110     |         | 4.7E-07  | 1.5E-07  |         | 32.0   | 14.0   |         | 15.0        | 12.0        |           |
|           | median        |               | 22      | 17      |         | 7.6E-08  | 2.2E-10  | 99.6    | 10.0   | 9.2    |         | 8.4         | 7.2         | 23.3      |
|           | COV           |               | 1.52    | 1.08    |         | 1.07     | 2.92     |         | 0.45   | 0.26   |         | 0.35        | 0.40        |           |
|           | Wilcoxon Sign | ned Rank Test |         |         | 0.550   |          |          | < 0.001 |        |        | 0.120   |             |             | 0.003     |
| ELV       | count         | 13            | 10      | 13      | 10      | 10       | 13       | 9       | 9      | 11     | 7       | 10          | 13          | 10        |
| Treatment | % ND          |               | 0       | 0       |         | 0        | 38       |         | 22     | 27     |         | 0           | 0           |           |
| Train     | min           | 2/28/2014     | 3       | 7       |         | 1.1E-10  | 1.0E-12  |         | 0.1    | 0.1    |         | 1.6         | 1.3         |           |
|           | max           | 3/22/2018     | 66      | 144     |         | 1.2E-07  | 4.4E-08  |         | 17.2   | 5.3    |         | 10.1        | 3.7         |           |
|           | median        |               | 15      | 15      |         | 5.3E-09  | 1.2E-10  | 99.3    | 5.6    | 2.4    | 56.4    | 4.2         | 2.1         | 42.8      |
|           | COV           |               | 1.02    | 1.13    |         | 1.66     | 3.50     |         | 0.88   | 0.72   |         | 0.64        | 0.30        |           |
|           | Wilcoxon Sign | ned Rank Test |         |         | 0.074   |          |          | 0.004   |        |        | 0.031   |             |             | 0.014     |

# Appendix A: Stormwater Characteristics and Treatment Performance

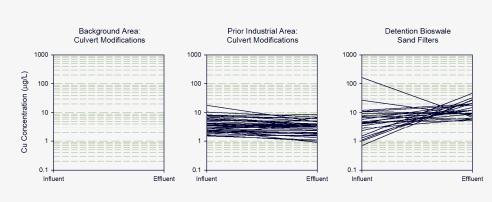
| Control         |                           | Pb inf | Pb efl | Pb %    | filt Pb inf | filt Pb efl | filt Pb % | Cd inf | Cd efl | Cd %    | filt Cd inf | filt Cd efl | filt Cd % |
|-----------------|---------------------------|--------|--------|---------|-------------|-------------|-----------|--------|--------|---------|-------------|-------------|-----------|
| Location        |                           | ug/L   | ug/L   | reduc   | ug/L        | ug/L        | reduc     | ug/L   | ug/L   | reduc   | ug/L        | ug/L        | reduc     |
| CM8 and         | count                     | 10     | 10     | 9       | 0           | 0           | 0         | 0      | 0      | 0       | 0           | 0           | 0         |
| CM11            | % ND                      | 10     | 20     |         |             |             |           |        |        |         |             |             |           |
|                 | min                       | 0.2    | 0.2    |         |             |             |           |        |        |         |             |             |           |
|                 | max                       | 11.0   | 7.0    |         |             |             |           |        |        |         |             |             |           |
|                 | median                    | 0.6    | 0.3    |         |             |             |           |        |        |         |             |             |           |
|                 | COV                       | 1.39   | 1.36   |         |             |             |           |        |        |         |             |             |           |
|                 | Wilcoxon Signed Rank Test |        |        | >0.5    |             |             |           |        |        |         |             |             |           |
| B1, CM1,        | count                     | 117    | 88     | 70      | 88          | 43          | 19        | 101    | 65     | 28      | 88          | 43          | 7         |
| CM9, and        | % ND                      | 10     | 8      |         | 41          | 56          |           | 61     | 83     |         | 85          | 98          |           |
| ULBF            | min                       | 0.1    | 0.1    |         | 0.1         | 0.1         |           | 0.1    | 0.1    |         | 0.1         | 0.1         |           |
|                 | max                       | 55.0   | 39.0   |         | 12.0        | 0.8         |           | 1.1    | 0.5    |         | 0.5         | 0.3         |           |
|                 | median                    | 3.0    | 1.8    | 39.2    | 0.5         | 0.5         | 45.9      | 0.3    | 0.2    | 31.9    | 0.2         | 0.3         | 18.2      |
|                 | COV                       | 1.67   | 1.63   |         | 1.64        | 0.40        |           | 0.69   | 0.49   |         | 0.43        | 0.35        |           |
|                 | Wilcoxon Signed Rank Test |        |        | < 0.001 |             |             | < 0.001   |        |        | < 0.001 |             |             | 0.004     |
| Southern        | count                     | 26     | 36     | 22      | 26          | 36          | 5         | 26     | 36     | 17      | 26          | 36          | 11        |
| and<br>Northern | % ND                      | 8      | 14     |         | 77          | 86          |           | 31     | 100    |         | 54          | 94          |           |
|                 | min                       | 0.5    | 0.5    |         | 0.5         | 0.5         |           | 0.3    | 0.3    |         | 0.3         | 0.3         |           |
| bioswales       | max                       | 23.3   | 3.0    |         | 26.4        | 5.0         |           | 6.2    | 1.3    |         | 4.9         | 2.5         |           |
|                 | median                    | 2.8    | 1.3    | 62.0    | 0.5         | 0.5         |           | 0.5    | 0.3    | 65.9    | 0.3         | 0.3         | 17.9      |
|                 | COV                       | 1.06   | 0.51   |         | 3.01        | 0.98        |           | 1.43   | 0.60   |         | 1.67        | 1.08        |           |
|                 | Wilcoxon Signed Rank Test |        |        | < 0.001 |             |             | 0.063     |        |        | < 0.001 |             |             | 0.042     |
| Lower Lot       | count                     | 24     | 25     | 24      | 24          | 25          | 3         | 24     | 25     | 3       | 24          | 25          | 2         |
| Biofilter       | % ND                      | 0      | 0      |         | 88          | 48          |           | 88     | 100    |         | 92          | 96          |           |
|                 | min                       | 0.8    | 0.7    |         | 0.3         | 0.4         |           | 0.3    | 0.1    |         | 0.3         | 0.1         |           |
|                 | max                       | 20.0   | 5.6    |         | 2.5         | 2.5         |           | 0.8    | 0.5    |         | 1.3         | 1.3         |           |
|                 | median                    | 2.0    | 2.6    |         | 0.5         | 0.5         |           | 0.3    | 0.3    |         | 0.3         | 0.3         |           |
|                 | COV                       | 1.22   | 0.54   |         | 0.80        | 0.63        |           | 0.42   | 0.27   |         | 0.72        | 0.76        |           |
|                 | Wilcoxon Signed Rank Test |        |        | 0.880   |             |             | 1.000     |        |        | 0.250   |             |             | 0.500     |
| ELV             | count                     | 10     | 13     | 10      | 10          | 13          | 10        | 10     | 13     | 2       | 10          | 13          | 2         |
| Treatment       | % ND                      | 0      | 0      |         | 0           | 8           |           | 80     | 92     |         | 80          | 92          |           |
| Train           | min                       | 0.8    | 0.6    |         | 0.2         | 0.1         |           | 0.1    | 0.1    |         | 0.1         | 0.1         |           |
|                 | max                       | 50.2   | 3.7    |         | 1.0         | 1.3         |           | 0.3    | 0.3    |         | 0.6         | 0.5         |           |
|                 | median                    | 3.6    | 1.3    | 34.4    | 0.5         | 0.4         |           | 0.1    | 0.1    |         | 0.1         | 0.1         |           |
|                 | COV                       | 1.81   | 0.58   |         | 0.47        | 0.78        |           | 0.34   | 0.25   |         | 0.78        | 0.61        |           |
|                 | Wilcoxon Signed Rank Test |        |        | 0.008   |             |             | 0.084     |        |        | 0.500   |             |             | 1.000     |


| Control Location |                        |         | Hg inf<br>ug/L | Hg efl<br>ug/L | Hg %<br>reduc | filt Hg inf<br>ug/L | filt Hg efl<br>ug/L | filt Hg %<br>reduc | Cond<br>inf mS | Cond<br>efl mS | Cond %<br>reduc | Grain<br>size inf<br>um | Grain<br>size efl<br>um | Grain size<br>% reduc |
|------------------|------------------------|---------|----------------|----------------|---------------|---------------------|---------------------|--------------------|----------------|----------------|-----------------|-------------------------|-------------------------|-----------------------|
| CM8 and CM11     | count                  |         | 0              | 0              | 0             | 0                   | 0                   | 0                  | 20             | 20             | 19              | 0                       | 0                       | 0                     |
|                  | % ND                   |         |                |                |               |                     |                     |                    | 0              | 0              |                 |                         |                         |                       |
|                  | min                    |         |                |                |               |                     |                     |                    | 0.006          | 0.001          |                 |                         |                         |                       |
|                  | max                    |         |                |                |               |                     |                     |                    | 0.300          | 0.133          |                 |                         |                         |                       |
|                  | median                 |         |                |                |               |                     |                     |                    | 0.077          | 0.078          |                 |                         |                         |                       |
|                  | COV                    |         |                |                |               |                     |                     |                    | 0.73           | 0.53           |                 |                         |                         |                       |
|                  | Wilcoxon Signe<br>Test | ed Rank |                |                |               |                     |                     |                    |                |                | 0.210           |                         |                         |                       |
| B1, CM1, CM9,    | count                  |         | 102            | 65             | 6             | 87                  | 43                  | 2                  | 105            | 82             | 70              | 16                      | 7                       | 7                     |
| and ULBF         | % ND                   |         | 93             | 89             |               | 95                  | 95                  |                    | 0              | 0              |                 | 0                       | 0                       |                       |
|                  | min                    |         | 0.05           | 0.05           |               | 0.05                | 0.05                |                    | 0.010          | 0.014          |                 | 7.1                     | 6.7                     |                       |
|                  | max                    | Ì       | 0.98           | 1.70           |               | 0.49                | 0.10                |                    | 1.800          | 0.757          |                 | 100.7                   | 71.1                    |                       |
|                  | median                 |         | 0.10           | 0.10           |               | 0.10                | 0.10                |                    | 0.074          | 0.078          | 15.4            | 31.6                    | 10.0                    |                       |
|                  | COV                    |         | 0.86           | 1.57           |               | 0.58                | 0.18                |                    | 1.52           | 1.19           |                 | 0.66                    | 1.08                    |                       |
|                  | Wilcoxon Signe         | ed Rank |                |                |               |                     |                     |                    |                |                |                 |                         |                         |                       |
|                  | Test                   |         |                |                | 0.44          |                     |                     | 0.50               |                |                | 0.006           |                         |                         | 0.270                 |
| Southern and     | count                  |         | 26             | 36             | 0             | 26                  | 36                  | 0                  | 23             | 34             | 19              | 17                      | 12                      | 9                     |
| Northern         | % ND                   |         | 100            | 94             |               | 100                 | 94                  |                    | 0              | 0              |                 | 0                       | 0                       |                       |
| bioswales        | min                    |         | 0.10           | 0.10           |               | 0.10                | 0.10                |                    | 0.005          | 0.008          |                 | 7.9                     | 4.9                     |                       |
|                  | max                    |         | 0.11           | 0.24           |               | 0.11                | 0.12                |                    | 0.913          | 1.330          |                 | 347.1                   | 24.6                    |                       |
|                  | median                 |         | 0.10           | 0.10           |               | 0.10                | 0.10                |                    | 0.064          | 0.223          |                 | 15.1                    | 14.5                    |                       |
|                  | COV                    |         | 0.02           | 0.22           |               | 0.01                | 0.05                |                    | 1.56           | 0.94           |                 | 1.59                    | 0.41                    |                       |
|                  | Wilcoxon Signe<br>Test | ed Rank |                |                |               |                     |                     |                    |                |                | 0.053           |                         |                         | 0.120                 |
| Lower Lot        | count                  |         | 24             | 25             | 1             | 24                  | 25                  |                    | 24             | 24             | 23              | 9                       | 9                       | 8                     |
| Biofilter        | % ND                   |         | 96             | 100            |               | 100                 | 100                 |                    | 0              | 0              |                 | 0                       | 0                       |                       |
|                  | min                    |         | 0.10           | 0.10           |               | 0.10                | 0.10                |                    | 0.006          | 0.056          |                 | 1.0                     | 0.0                     |                       |
|                  | max                    |         | 0.20           | 0.10           |               | 0.10                | 0.10                |                    | 0.400          | 0.799          |                 | 16.2                    | 47.7                    |                       |
|                  | median                 |         | 0.10           | 0.10           |               | 0.10                | 0.10                |                    | 0.110          | 0.155          |                 | 13.4                    | 2.9                     |                       |
|                  | COV                    |         | 0.26           | 0.00           |               | 0.00                | 0.00                |                    | 0.76           | 0.85           |                 | 0.37                    | 1.90                    |                       |
|                  | Wilcoxon Signe<br>Test | ed Rank |                |                |               |                     |                     |                    |                |                | 0.086           |                         |                         | 0.300                 |
| ELV Treatment    | count                  | Ì       | 10             | 13             |               | 8                   | 12                  |                    | 7              | 7              | 7               |                         |                         |                       |
| Train            | % ND                   | İ       | 100            | 92             |               | 100                 | 92                  |                    | 0              | 0              |                 |                         |                         |                       |
|                  | min                    |         | 0.05           | 0.05           |               | 0.05                | 0.05                |                    | 0.020          | 0.042          |                 |                         |                         |                       |
|                  | max                    | İ       | 0.10           | 0.10           |               | 0.10                | 0.10                |                    | 0.053          | 0.129          |                 | 1                       |                         |                       |
|                  | median                 |         | 0.05           | 0.05           |               | 0.05                | 0.05                |                    | 0.030          | 0.076          | -194.1          |                         |                         |                       |
|                  | COV                    |         | 0.34           | 0.36           |               | 0.37                | 0.31                |                    | 0.38           | 0.40           |                 |                         |                         |                       |

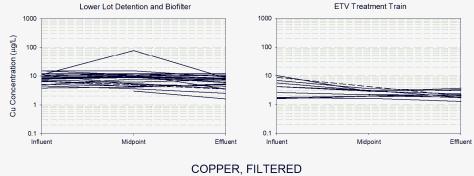

| Wilcoxon Signed Rank |  |  |  |  |       |  |  |
|----------------------|--|--|--|--|-------|--|--|
| Test                 |  |  |  |  | 0.031 |  |  |

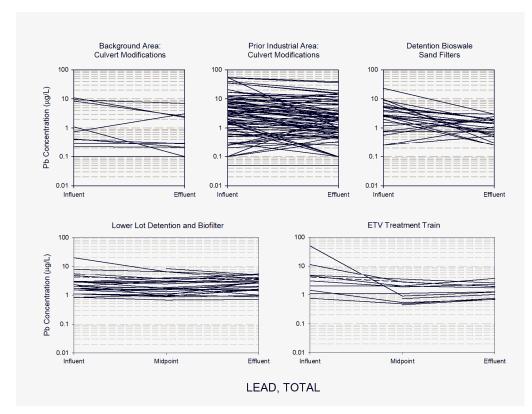

| Control Location      |                      | pH inf | pH efl | pH %<br>reduc | Temp inf<br>oF | Temp efl<br>oF | Temp %<br>reduc | Turb<br>inf NTU | Turb efl<br>NTU | Turb %<br>reduc |
|-----------------------|----------------------|--------|--------|---------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| CM8 and CM11          | count                | 20     | 20     | 19            | 18             | 18             | 17              | 17              | 18              | 13              |
|                       | % ND                 | 0      | 0      | 15            | 0              | 0              | 1/              | 0               | 0               | 15              |
|                       | min                  | 5.8    | 5.9    |               | 9.8            | 9.3            |                 | 0.5             | 2.0             |                 |
|                       | max                  | 7.7    | 7.4    |               | 17.7           | 15.4           |                 | 111.0           | 112.0           |                 |
|                       | median               | 6.8    | 6.8    |               | 10.9           | 11.0           |                 | 13.0            | 25.1            |                 |
|                       | COV                  | 0.07   | 0.06   |               | 0.18           | 0.15           |                 | 1.17            | 0.92            |                 |
|                       | Wilcoxon Signed Rank | 0.07   | 0.00   |               | 0.10           | 0.15           |                 | 1.17            | 0.52            |                 |
|                       | Test                 |        |        | 0.310         |                |                | 0.470           |                 |                 | 0.590           |
| B1, CM1, CM9,         | count                | 107    | 82     | 72            | 102            | 79             | 69              | 104             | 77              | 68              |
| and ULBF              | % ND                 | 0      | 0      |               | 0              | 0              |                 | 0               | 0               |                 |
|                       | min                  | 4.2    | 4.6    |               | 6.5            | 5.9            |                 | 0.2             | 0.2             |                 |
|                       | max                  | 7.9    | 7.9    |               | 20.0           | 21.1           |                 | 777.0           | 961.0           |                 |
|                       | median               | 6.6    | 6.6    |               | 11.4           | 11.6           |                 | 37.5            | 47.5            |                 |
|                       | COV                  | 0.13   | 0.11   |               | 0.22           | 0.20           |                 | 1.44            | 1.80            |                 |
|                       | Wilcoxon Signed Rank | 0.10   | 0.11   |               | 0.22           | 0.20           |                 |                 | 1.00            |                 |
|                       | Test                 |        |        | 0.290         |                |                | 0.730           |                 |                 | 0.460           |
| Southern and          | count                | 23     | 34     | 20            | 21             | 26             | 17              | 23              | 34              | 20              |
| Northern<br>bioswales | % ND                 | 0      | 0      |               | 0              | 0              |                 | 0               | 0               |                 |
|                       | min                  | 3.8    | 5.2    |               | 7.0            | 7.7            |                 | 2.1             | 0.1             |                 |
|                       | max                  | 7.3    | 7.9    |               | 21.3           | 23.5           |                 | 151.9           | 139.0           |                 |
|                       | median               | 5.2    | 6.5    | -25.1         | 11.7           | 12.5           | -3.4            | 44.6            | 17.6            |                 |
|                       | COV                  | 0.17   | 0.09   |               | 0.29           | 0.31           |                 | 0.74            | 1.06            |                 |
|                       | Wilcoxon Signed Rank |        |        |               |                |                |                 |                 |                 |                 |
|                       | Test                 |        |        | < 0.001       |                |                | 0.008           |                 |                 | 0.110           |
| Lower Lot             | count                | 24     | 24     | 23            | 23             | 23             | 22              | 24              | 24              | 23              |
| Biofilter             | % ND                 | 0      | 0      |               | 0              | 0              |                 | 0               | 0               |                 |
|                       | min                  | 5.4    | 5.8    |               | 7.5            | 8.0            |                 | 5.9             | 11.0            |                 |
|                       | max                  | 8.0    | 8.0    |               | 21.3           | 22.1           |                 | 900.0           | 311.0           |                 |
|                       | median               | 7.0    | 6.9    |               | 13.0           | 13.2           |                 | 35.2            | 85.3            | -75.6           |
|                       | COV                  | 0.12   | 0.08   |               | 0.22           | 0.21           |                 | 1.87            | 0.79            |                 |
|                       | Wilcoxon Signed Rank |        |        |               |                |                |                 |                 |                 |                 |
|                       | Test                 |        |        | 0.900         |                |                | 0.870           |                 |                 | 0.030           |
| ELV Treatment         | count                | 7      | 7      | 7             | 7              | 7              | 7               | 7               | 7               | 7               |
| Train                 | % ND                 | 0      | 0      |               | 0              | 0              |                 | 0               | 0               |                 |
|                       | min                  | 6.3    | 6.1    |               | 6.7            | 6.8            |                 | 2.3             | 35.0            |                 |
|                       | max                  | 7.7    | 8.2    |               | 13.4           | 13.0           |                 | 250.0           | 191.0           |                 |
|                       | median               | 7.3    | 7.2    |               | 12.2           | 12.0           |                 | 72.6            | 95.2            |                 |
|                       | COV                  | 0.07   | 0.10   |               | 0.25           | 0.21           |                 | 1.08            | 0.61            |                 |

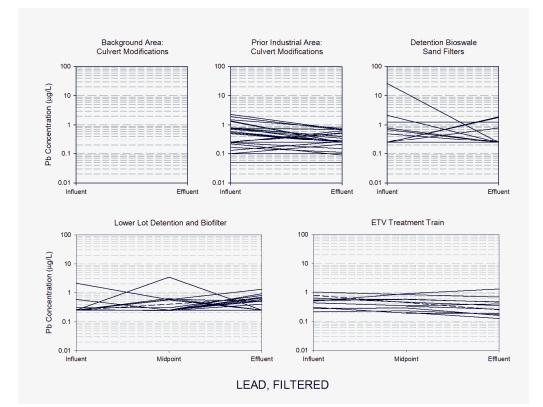
| Wilcoxon Signed Rank |  |       |  |       |  |       |
|----------------------|--|-------|--|-------|--|-------|
| Test                 |  | 0.690 |  | 0.940 |  | 0.300 |

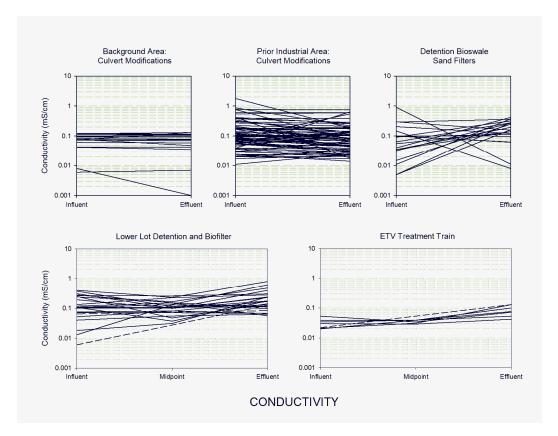

## **Appendix B: Line Performance Plots**

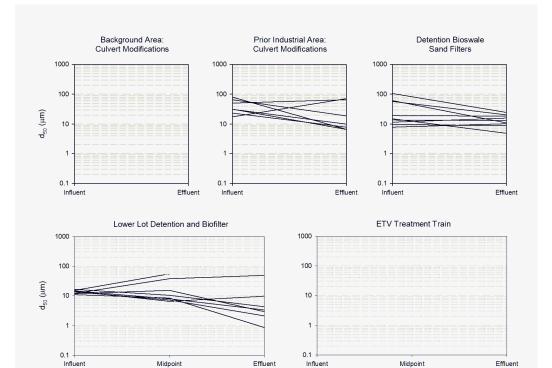






COPPER, TOTAL





Lower Lot Detention and Biofilter

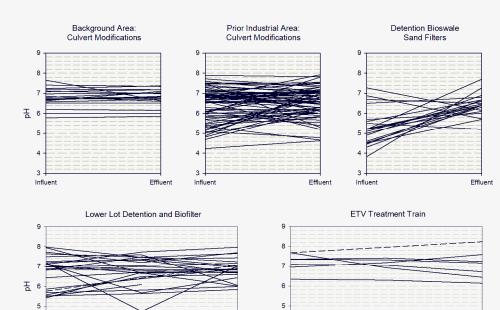




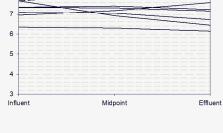







MEDIAN GRAIN SIZE

Midpoint


Effluent

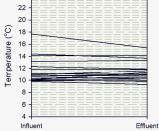
Effluent

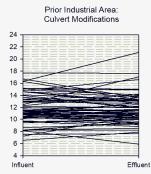
Midpoint



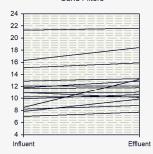


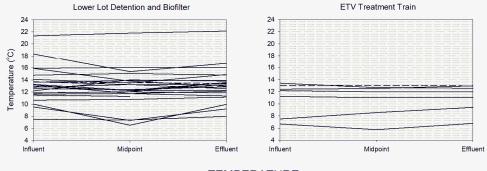



Background Area: Culvert Modifications

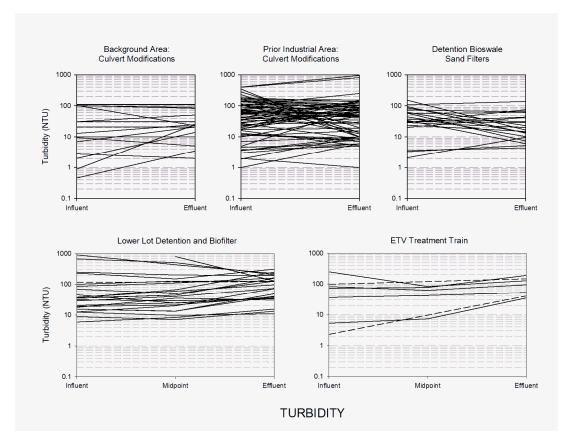

Midpoint

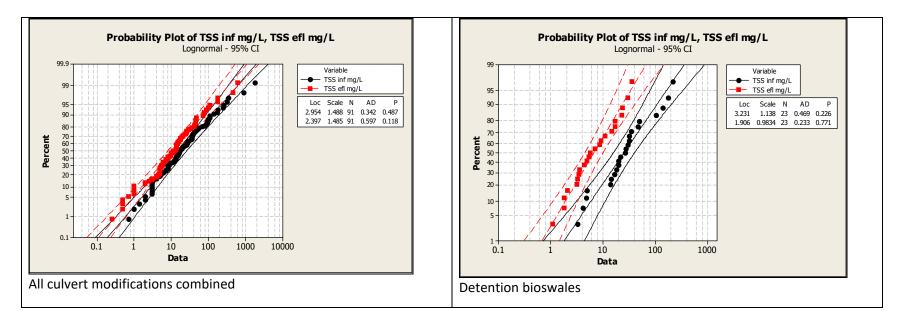
4


3

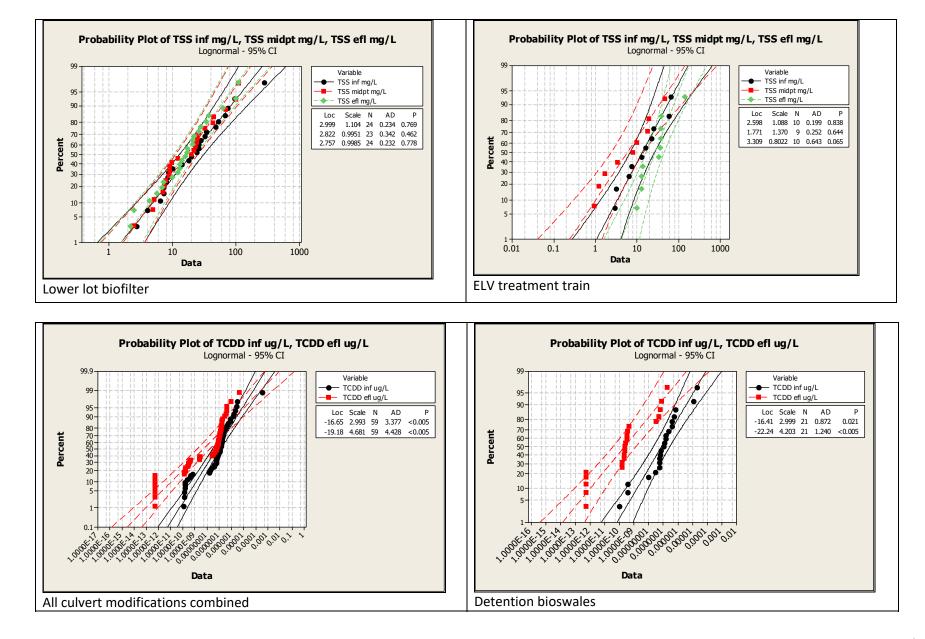

Influent

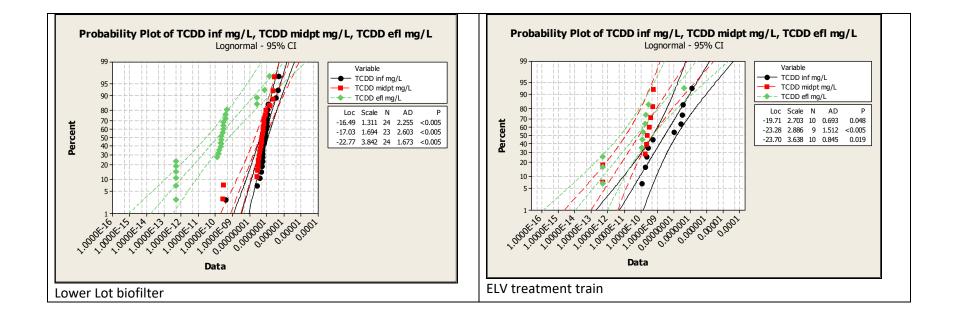


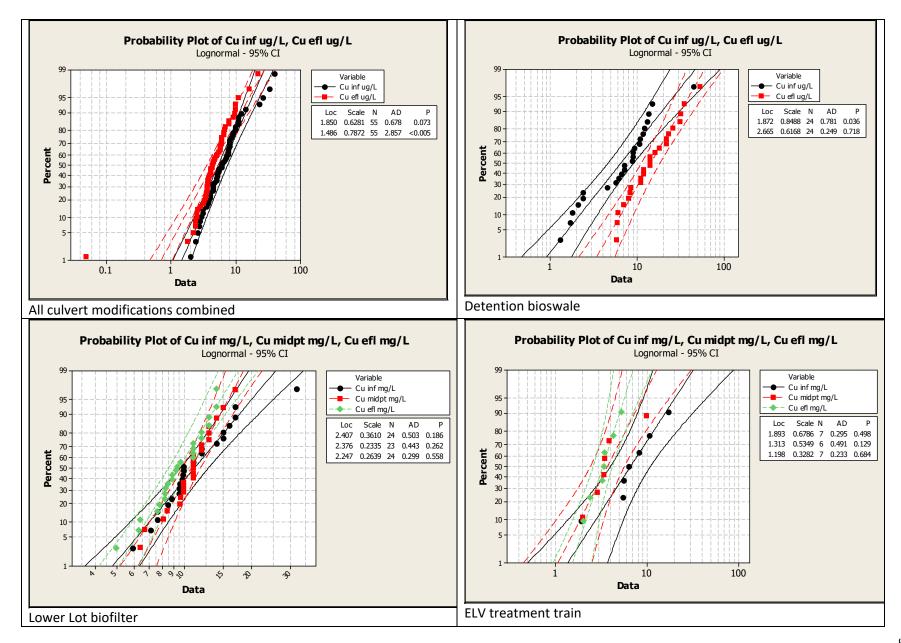


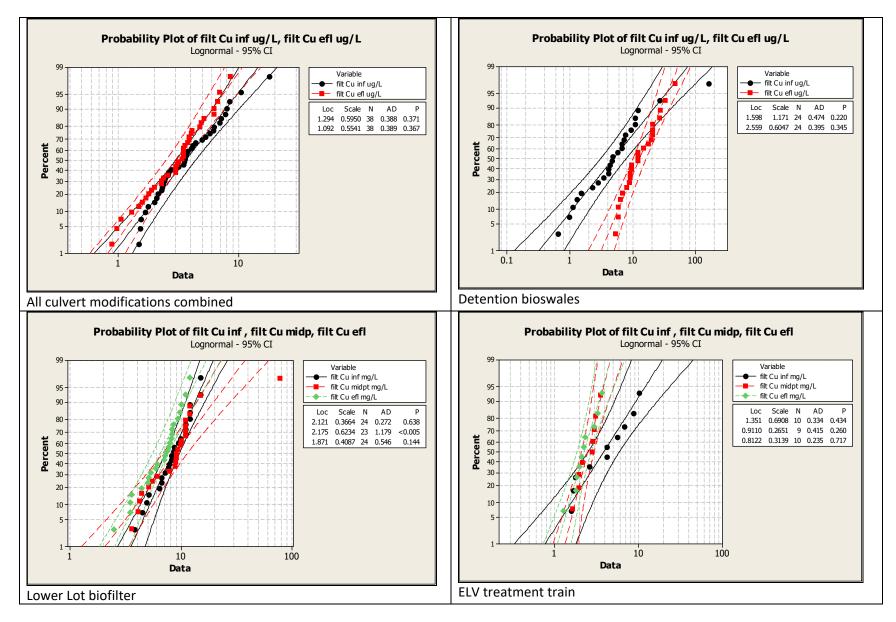


Detention Bioswale Sand Filters

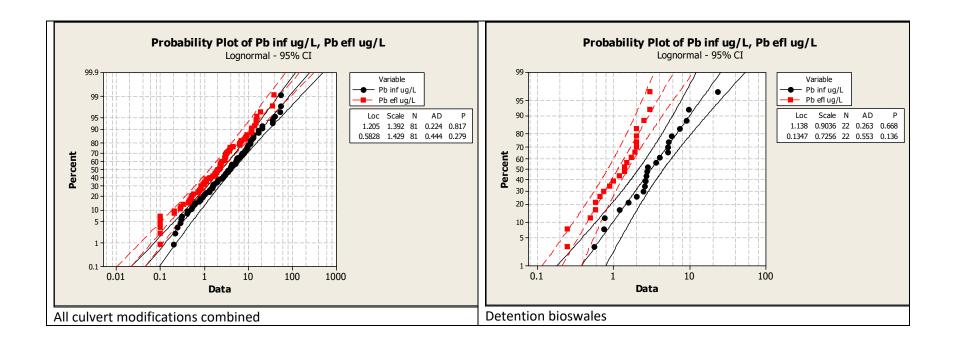


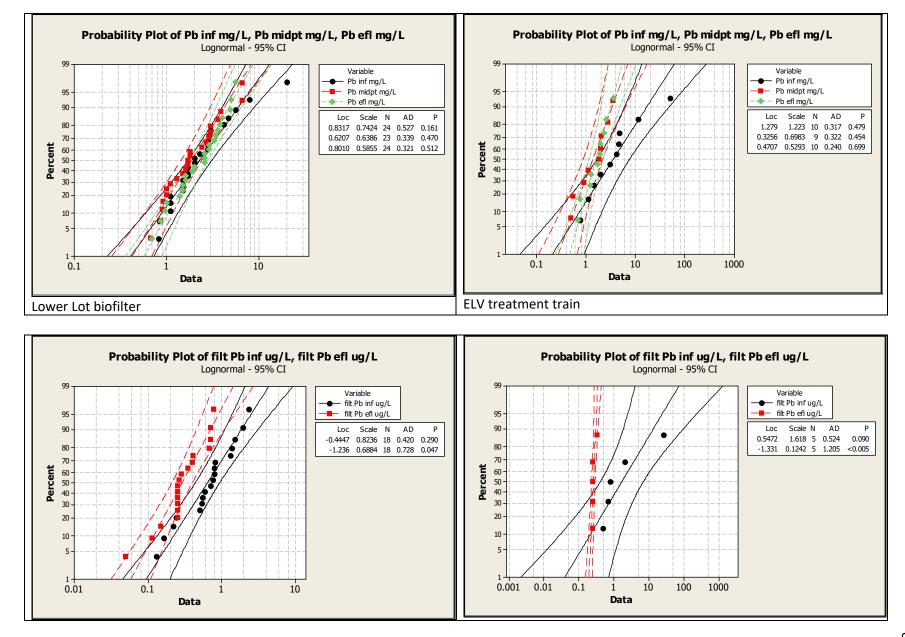


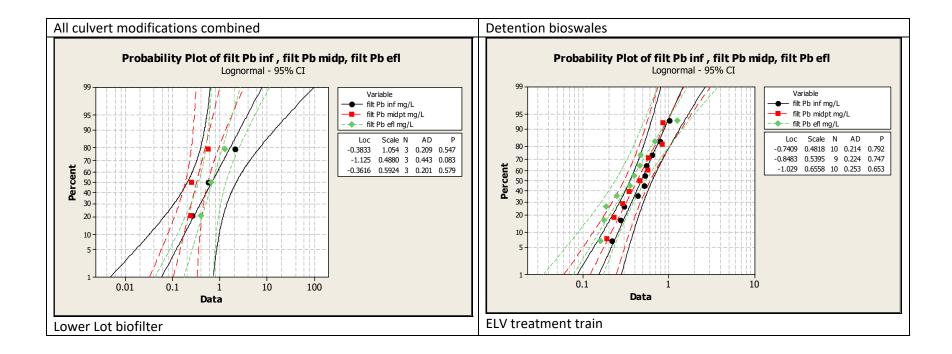


TEMPERATURE

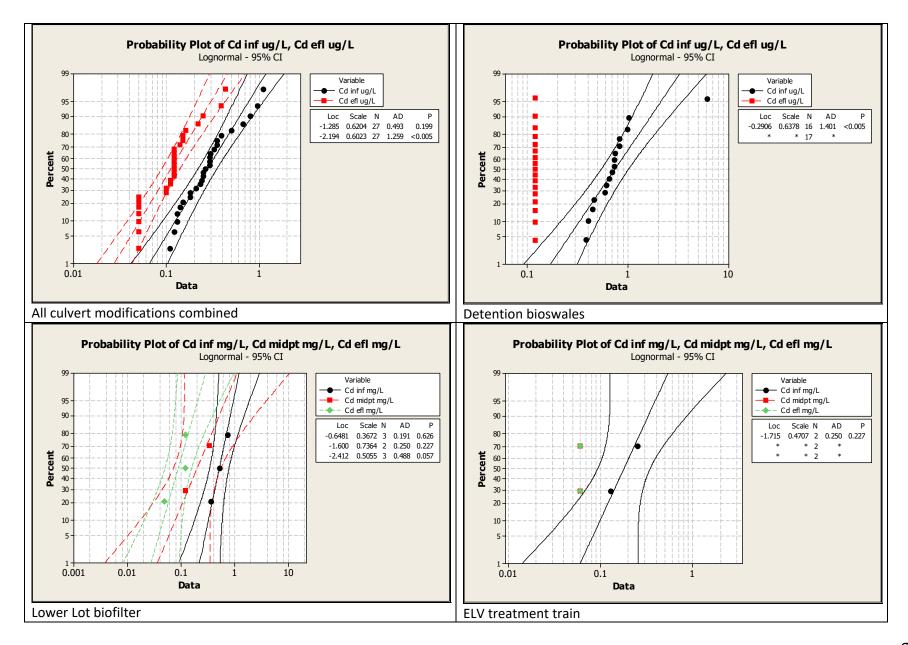


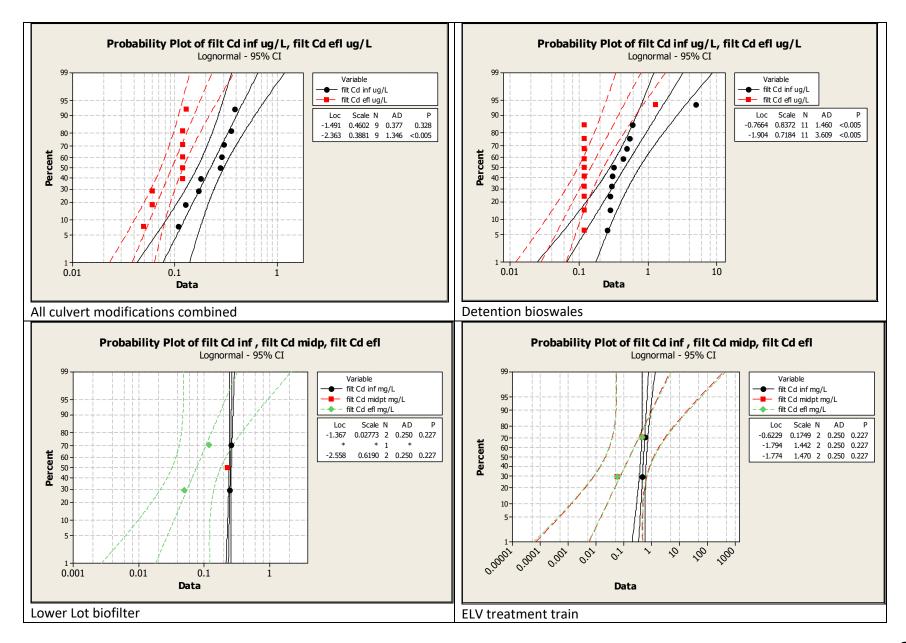



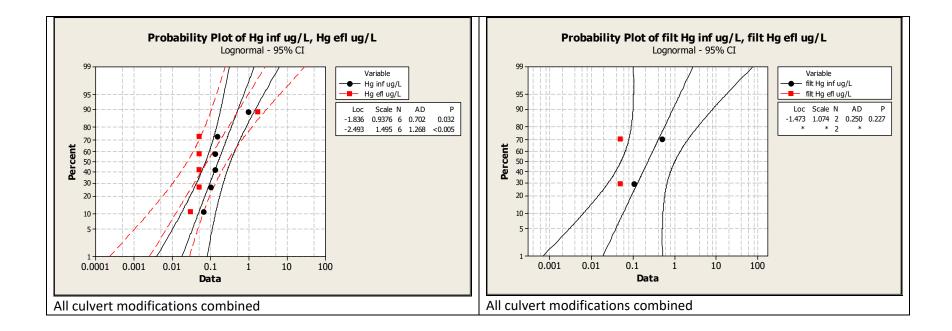


## **Appendix C: Influent and Effluent Concentration Probability Plots**

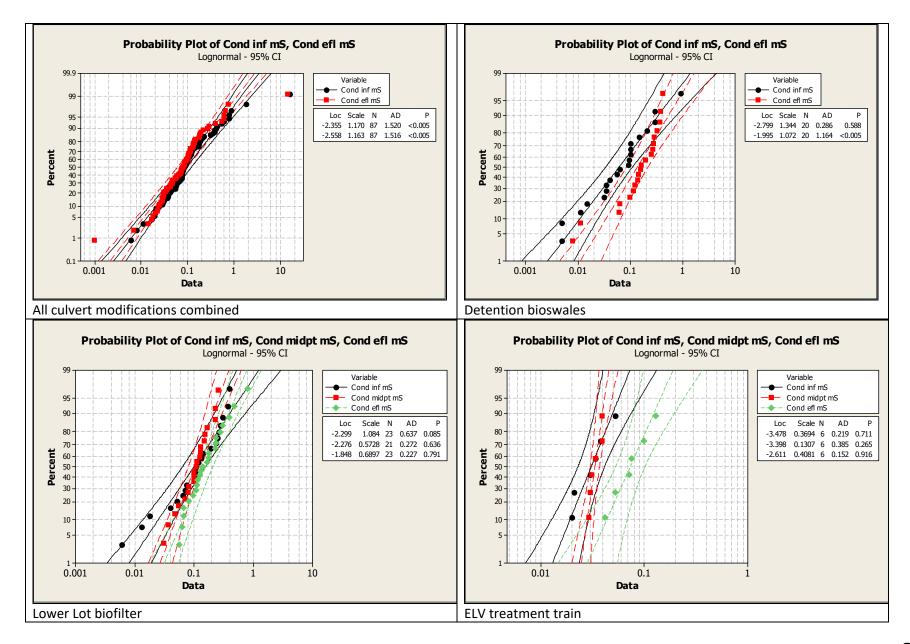


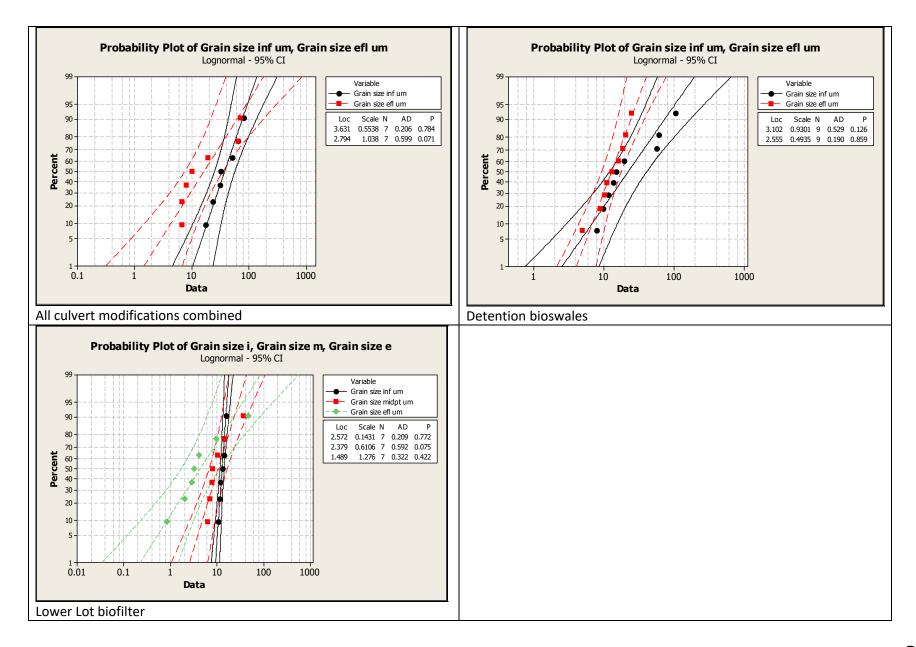



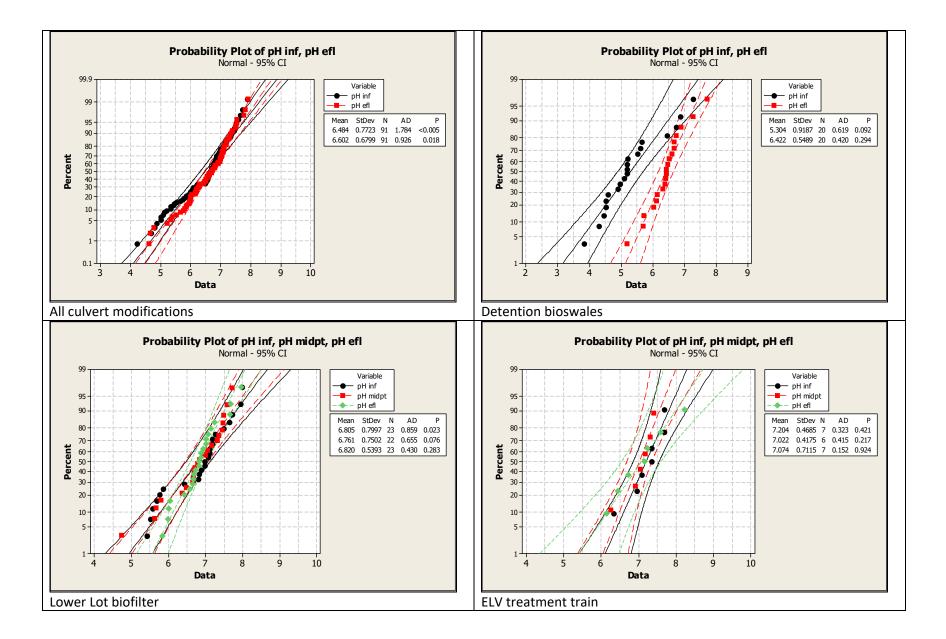



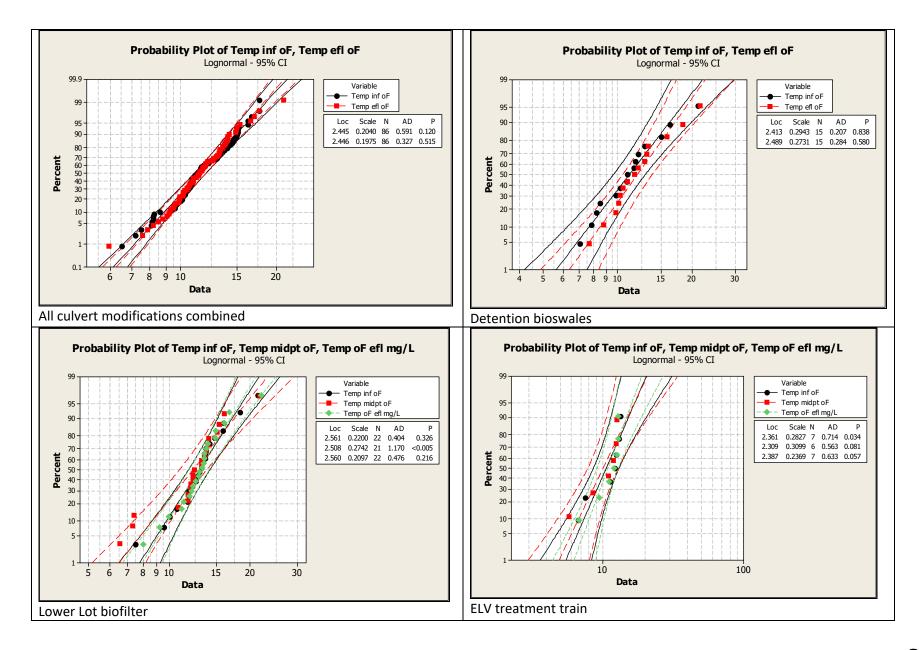



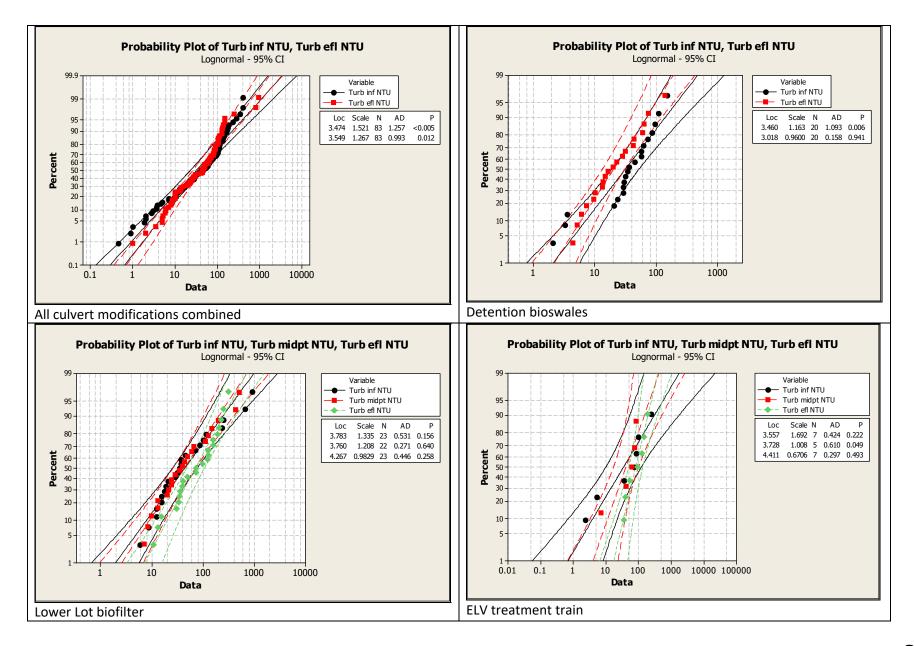



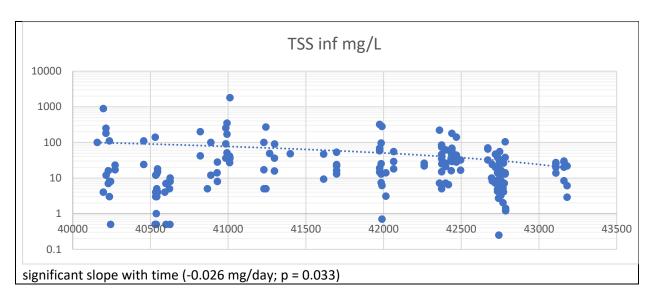



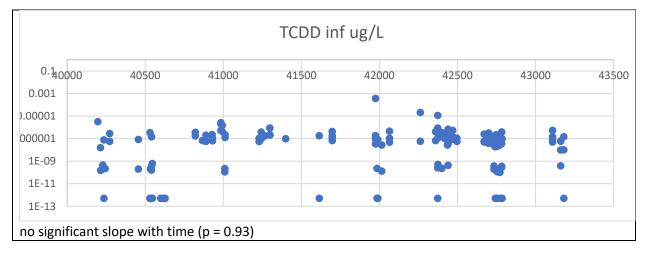



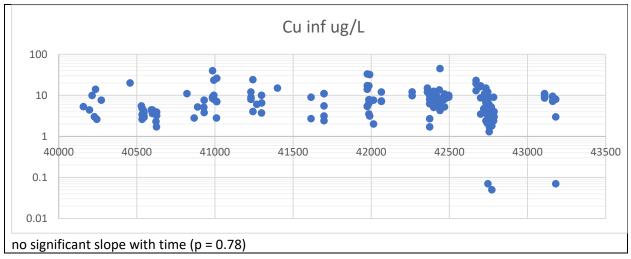



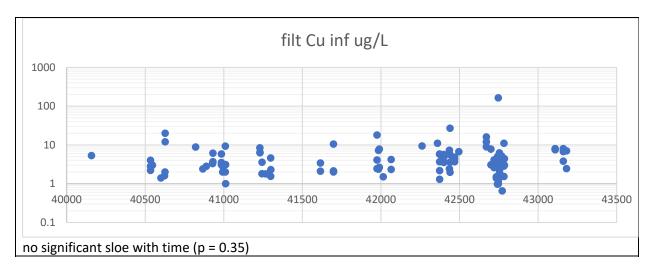


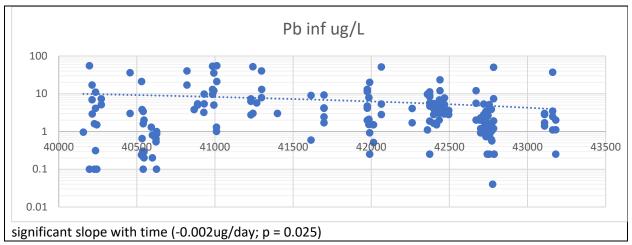



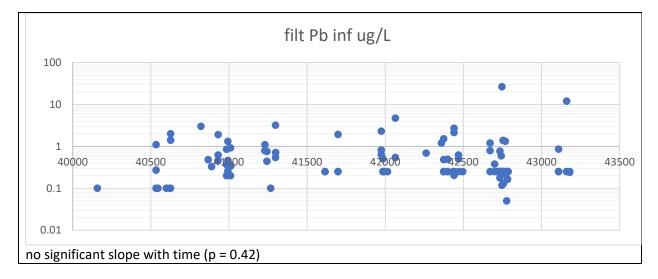




# Appendix D: Influent and Effluent Concentration Trends with Time





All sites combined, except for background sites (CM-8 and CM-11) removed

