# **Biofilter Media Performance Updates for WinSLAMM**

Pitt, R., S, Clark, R. Sileshi, and J. Voorhees

# Table of Contents

| Introduction                                                                   | 3  |
|--------------------------------------------------------------------------------|----|
| 1) Treatment Flow Rates for Biofilter Media Components and Mixtures            | 14 |
| Summary of Statistical Analyses of Treatment Flow Rates of Biofilter Media     | 14 |
| Flow Rates for Sand/Peat Biofilter Mixtures                                    | 15 |
| Biofilter Media Mixture Treatment Flow Rate Tests                              | 16 |
| Outlet Controls and Underdrain Spacing                                         | 17 |
| 2) Retention of Stormwater Particulates by Biofilter Media                     | 25 |
| Loading Capacity before Media Clogging                                         | 25 |
| Particulate Retention Equations                                                | 26 |
| Detailed Column Tests of Media Retention of Stormwater Particulates by Size    | 26 |
| Tests of Media Components and Mixtures for Boeing                              | 28 |
| Full-Scale Tests of Biofilter Retention of Stormwater Particles                | 31 |
| Removal of Small Stormwater Particulates                                       | 34 |
| Effects of Solids Accumulation on Flow Rate Reductions                         | 34 |
| The Role of Vegetation in Biofilters and Effects on Infiltration Rates         | 35 |
| 3) Retention of Filtered Pollutants by Biofilter Media Components and Mixtures | 36 |
| Filterable Pollutant Retention by Media Components and Mixtures                | 37 |
| Boeing Media Tests (Pitt and Clark 2010)                                       | 37 |
| Clark (2000) Dissertation Media Tests                                          | 41 |
| Millburn, NJ, Dry Well Tests (Pitt and Talebi 2014)                            | 42 |
| Wisconsin Neenah Media 2 Biofilter Tests (Bannerman, personal communication)   | 43 |

| Phosphorus Leaching from Compost Amendments                                                 | 45          |
|---------------------------------------------------------------------------------------------|-------------|
| Compost Amended Soils Tests (Pitt, et al. 1999)                                             | 45          |
| International BMP Database                                                                  | 46          |
| Retention Capacity of Filtered Pollutants in Biofilter Media Components and Mixtures        | 46          |
| Effects of Contact Time of Filtered Pollutant Retention by Biofilter Media Components and N | ∕lixtures49 |
| Numeric Example for Biofilter Media Performance Included in WinSLAMM                        | 54          |
| Step 1: Particle size distribution of the media mixture                                     | 55          |
| Step 2: Stormwater particulate removal by particle size range                               | 56          |
| Step 3: Stormwater flow rate through media                                                  | 57          |
| Step 4: Flow rate decreases due to clogging                                                 | 58          |
| Step 5: Retention of filtered pollutants                                                    | 58          |
| Step 5.1 Bacteria retention by media mixture                                                | 59          |
| Step 5.2 Residence/contact time effects on filtered pollutant removal                       | 60          |
| Step 5.3 Media capacity before breakthrough                                                 | 60          |
| Step 5.4 Media run time before breakthrough                                                 | 61          |
| References                                                                                  | 62          |
| Appendix A1: Media Test Materials and Observed Treatment Flow Rates                         | 64          |
| Appendix A2: Statistical Analyses of Sand-Based Media Treatment Flow Rates                  | 67          |
| Low Organic Matter Content and Low Compaction                                               | 67          |
| Low Organic Matter Content and Moderate Compaction                                          | 70          |
| Low Organic Matter Content and High Compaction                                              | 73          |
| High Organic Matter Content and Low Compaction                                              | 76          |
| High Organic Matter Content and Moderate Compaction                                         | 79          |
| High Organic Matter Content and High Compaction                                             | 82          |
| Appendix B: Peat-Sand Mixture Flow Rate Statistical Analyses                                | 85          |
| Fine Sandy Mixtures                                                                         | 85          |
| Coarse Sandy Mixtures                                                                       | 87          |
| Very Coarse Sandy Mixtures                                                                  | 88          |
| Annendix C1: Particulate Retention by Particle Size                                         | 90          |

| Appendix C2. Removal of Fine Stormwater Particulates by Biofilter Media              | 95  |
|--------------------------------------------------------------------------------------|-----|
| Appendix C3. Effects of Solids Accumulation on Flow Rate Reductions                  | 98  |
| Appendix C4. Kansas City EPA Demonstration Project Biofilter Performance Data        | 101 |
| Appendix C5. Fill-Scale Biofilter Tests in Neenah WI                                 | 113 |
| Particulate Retention                                                                | 113 |
| Filtered Pollutant Retention                                                         | 129 |
| Appendix D1. Filterable Pollutant Retention in Soils beneath Millburn, NJ, Dry Wells | 144 |

#### Introduction

This memo describes the data and calculations that will be used to update the WinSLAMM biofilter performance calculations. The literature and on-line resources describe many biofilter (with underdrains) and bioinfiltration (usually without underdrains with most of the stormwater "treatment" associated with infiltration) performance studies. This memo cannot do a complete review of these data, as it focuses on specific information needed to model the various parts of the pollutant retention processes. I great overview of the performance of biofilters (and other stormwater controls) is the International BMP Database. Unfortunately, few of these studies include detailed data concerning the partitioning of the particulates and pollutants by particle size and by total and filtered forms. In addition, rate kinetics associated with contact times, clogging by particulates, and retention capacity of the media for the wide variety of pollutants of interest, is also needed for modeling. This information is needed when modeling the expected behavior of these systems that rely on a wide range of media for stormwater quality improvements. In addition, the selection of which media (and combinations) to meet desired treatment objectives is also elusive. Clark and Pitt (2012) wrote a summary on targeting treatment technologies (such as media selection) with specific objectives. The use of a comprehensive model that addresses these many issues enable comparisons of alternative biofilter designs.

These updates are building on the existing performance calculations by applying expanded data from laboratory and field research mostly conducted by Pitt's research group at the University of Alabama, by Dr. Shirley Clark's research group at Penn State – Harrisburg, and the Wisconsin DNR/USGS. These tests were conducted to provide the details needed for modeling the performance of biofilters, specifically focusing on methods to predict treatment flow rates through the media, particulate retention by particle sizes, and retention of filterable pollutants. These tests also addressed issues not routinely described in the biofilter performance literature, such as maintenance issues associated with particulate clogging and breakthrough of pollutants, failure due to excessive salt loadings on media having large amounts of fines, problems associated with compaction of the media, and leaching of material from the media. Most of the data supporting these model enhancements are associated with several studies:

 Clark's master thesis and dissertation research using laboratory and pilot-scale field testing of different media (Clark 1996 and 2000; Clark and Pitt 1996).

- Pitt and Clark's research for the Boeing Co to develop biofilter media mixtures suitable for a wide range of pollutants at an industrial site being restored to open space use (Pitt and Clark 2010).
- Sileshi's dissertation on soil and sand media for biofilter treatment flow rates, underdrain design, and retention of particulate sizes (Sileshi 2013).

In addition, several full-scale biofilter monitoring projects also contained useful information and data for this summary. The Wisconsin DNR and USGS have been monitoring test biofilters to compare the performance of various media mixtures (Bannerman, personal communication). The Kansas City Demonstration Project of Green Infrastructure in Areas served by Combined Sewer (Pitt, et al. 2014) included monitoring of many biofilters throughout a large area, and examined their benefit at a large scale. During dry well performance studies, Pitt and Talebi (2012) monitored changes in stormwater pollutant concentrations as it passed through underlying soils. Pitt, et al. (1999) also conducted monitoring at compost-amended test sites to determine the removal benefits of these soil mixtures.

The data and processes are separated into three groups (Master Tables 1 through 3): flow rates, particulate retention by particle size, and retention of filterable pollutants. Master Table 1 includes particle size information that can be used to calculate flow rates through different mixtures of soils, sands, and amendments. Master Table 2 lists some characteristics of these materials: percent organic matter (affects infiltrate rates), CEC (may affect retention of cations), % fines (affects SAR failures with snowmelt), P content (indicates leaching of P from media), saturated water content, field capacity, and permanent wilting point (all affect ET losses from media), and the infiltration rates measured for each of these components and mixtures. Table 2 also shows the maximum accumulation of sediment before clogging, the particulate retention by particle size performance category (refers to sets of equations), equations or categories for removal of small particles (0.45 to 3 um) to supplement some of the field tests that did not have adequate data for these small particles, and the effects of solids accumulation on the flow rate reductions with time. Master Table 3 shows the category for filterable pollutant retention, category for bacteria retention, the media capacity for the filterable pollutants, and the categories for the effects of contact time on the retention of filterable pollutants.

Treatment flow rates of biofilter media affect the design and performance of these stormwater controls. High treatment flow rates allow smaller sized facilities, but also provide reduced contact time of the stormwater with the media, reducing the chemically active treatment in the media. Low treatment flow rates allow longer contact times with the media and usually better treatment, but require larger facilities. Chemically active media also has specific capacities (typically based on ion-exchange or sorption processes). Small biofilter facilities with smaller amounts of chemically active media will require more frequent replacement. In addition, low treatment flow rates may result in extended standing water above the treatment media, leading to nuisance conditions. The capture of particulate-associated pollutants is not as dependent on the treatment flow rates. Rapid treatment flow rates with small facility surface areas (especially in areas having high sediment loads and lacking pre-treatment), can lead to pre-mature failure due to clogging/silting. The media treatment flow rates can be moderated using outlet controls and underdrains.

The steps in sizing a biofilter facility (and selecting the treatment media) can be summarized as follows:

- 1) Characterize the stormwater to be treated (critical pollutants needing removal along with constituents that affect maintenance), along with the expected runoff volume and flow rates for the drainage area.
- 2) Determine the required removals of the constituents of concern (concentrations and masses).
- 3) Identify the chemically active media to target these constituents (including necessary contact times and other factors affecting performance, such as anaerobic conditions and degradation of the media and leaching of constituents from the media).
- 4) Inventory other site characteristics potentially affecting biofilter facility (maximum area available, depth to groundwater and seasonal changes to the water table, underlying natural soil characteristics, snowmelt SAR problems, etc.).
- 5) Prepare preliminary designs addressing these factors (size of facility, selection of media, outlet controls/underdrains, and maintenance interval).
- 6) Evaluate alternative designs using long-term continuous stormwater quality model and evaluate life-cycle costs and other decision support factors.

This memo describes the data sources and summarizes the statistical tests that were conducted to develop the different categories. Example uses of these data are also presented. The body of the memo presents information referenced in the large tables used to calculate the various factors, while the appendices present background information, including selected statistical analyses used to develop the table information.

## Master Table 1. Particle Size Characteristics of Biofilter Media Components and Mixtures

|      |                             | particle size (um) smaller t | han % distribution |        |        |       |       |       |       |       |       |       |        |        |
|------|-----------------------------|------------------------------|--------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
|      |                             | 100%                         | 90%                | 80%    | 70%    | 60%   | 50%   | 40%   | 30%   | 20%   | 10%   | 0%    | median | Cu     |
| Soil | sand                        | 1,000                        | 700                | 480    | 320    | 215   | 140   | 100   | 70    | 47    | 31    | 0     | 140.0  | 6.94   |
|      | loamy sand                  | 1,000                        | 630                | 410    | 290    | 190   | 120   | 80    | 48    | 25    | 9     | 0     | 120.0  | 21.11  |
|      | sandy loam                  | 1,000                        | 530                | 300    | 150    | 82    | 40    | 14    | 3     | 1     | 0     | 0     | 40.0   | 820.00 |
|      | loam                        | 1,000                        | 400                | 140    | 60     | 25    | 12    | 5     | 3     | 1     | 1     | 0     | 12.0   | 50.00  |
|      | silt loam                   | 1,000                        | 100                | 26     | 13     | 8     | 4     | 3     | 2     | 1     | 1     | 0     | 4.0    | 13.33  |
|      | silt                        | 1,000                        | 15                 | 12     | 9      | 6     | 4     | 3     | 2     | 2     | 1     | 0     | 4.3    | 5.45   |
|      | sandy clay loam             | 1,000                        | 590                | 310    | 190    | 100   | 54    | 26    | 5     | 1     | 0     | 0     | 54.0   | 500.00 |
|      | clay loam                   | 1,000                        | 340                | 120    | 41     | 14    | 6     | 2     | 1     | 0     | 0     | 0     | 5.5    | 140.00 |
|      | silty clay loam             | 1,000                        | 28                 | 12     | 6      | 4     | 2     | 1     | 1     | 1     | 0     | 0     | 2.3    | 40.00  |
|      | sandy clay                  | 1,000                        | 510                | 300    | 140    | 78    | 35    | 1     | 1     | 1     | 1     | 0     | 35.0   | 78.00  |
|      | silty clay                  | 1,000                        | 20                 | 8      | 4      | 2     | 1     | 1     | 0     | 0     | 0     | 0     | 1.2    | 24.44  |
|      | clay                        | 1,000                        | 110                | 12     | 2      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0.1    | 80.00  |
| Sand | fine Rhyolite sand          | 1,200                        | 680                | 535    | 490    | 420   | 390   | 330   | 310   | 260   | 225   | 140   | 390    | 1.87   |
|      | fine sand                   | 4,000                        | 410                | 380    | 330    | 315   | 290   | 240   | 220   | 140   | 110   | 70    | 290    | 2.86   |
|      | filter sand                 | 3,000                        | 1,500              | 1,200  | 1,050  | 890   | 710   | 590   | 440   | 340   | 240   | 180   | 710    | 3.71   |
|      | coarse sand                 | 3,200                        | 3,000              | 2,500  | 2,350  | 2,200 | 2,000 | 1,800 | 1,600 | 1,500 | 1,300 | 100   | 2,000  | 1.69   |
|      | gravel                      | 14,000                       | 12,000             | 11,000 | 10,250 | 9,250 | 8,350 | 7,750 | 7,000 | 6,150 | 5,250 | 1,000 | 8,350  | 1.76   |
|      | light media for green roofs | 7,000                        | 6,000              | 5,500  | 5,125  | 4,625 | 4,175 | 3,875 | 3,500 | 3,075 | 2,625 | 500   | 4,175  | 1.76   |

## Master Table 1. Particle Size Characteristics of Biofilter Media Components and Mixtures (continued)

|                                |                                                                                 | particle size (um) smaller than                                                                          | n % distribut | ion   |       |       |       |       |       |       |       |     |        |       |
|--------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-----|--------|-------|
|                                |                                                                                 | 100%                                                                                                     | 90%           | 80%   | 70%   | 60%   | 50%   | 40%   | 30%   | 20%   | 10%   | 0%  | median | Cu    |
| Amendments**                   | activated carbon                                                                | 4,850                                                                                                    | 3,150         | 2,900 | 2,650 | 2,400 | 2,150 | 1,775 | 1,575 | 1,160 | 965   | 350 | 2,150  | 2.49  |
|                                | fine zeolite                                                                    | 1,300                                                                                                    | 1,150         | 1,000 | 900   | 810   | 740   | 650   | 590   | 460   | 325   | 200 | 740    | 2.49  |
|                                | coarse zeolite                                                                  | 4,750                                                                                                    | 4,150         | 3,900 | 3,625 | 3,475 | 3,150 | 2,800 | 2,650 | 2,200 | 1,700 | 650 | 3,150  | 2.04  |
|                                | compost                                                                         | 3,200                                                                                                    | 2,300         | 1,800 | 1,200 | 1,000 | 750   | 580   | 420   | 280   | 125   | 25  | 750    | 8.00  |
|                                | peat moss                                                                       | 12,000                                                                                                   | 5,750         | 3,600 | 2,000 | 1,075 | 670   | 445   | 275   | 185   | 103   | 35  | 670    | 10.49 |
|                                | PSM (enter values<br>directly for specific<br>material)**                       |                                                                                                          |               |       |       |       |       |       |       |       |       |     |        |       |
|                                | biochar (highly<br>variable; enter values<br>directly for specific<br>material) |                                                                                                          |               |       |       |       |       |       |       |       |       |     |        |       |
| Tested<br>Mixtures             | R-SMZ                                                                           | Rhyolite sand and surface modified zeolite (75/25)                                                       |               |       |       |       |       |       |       |       |       |     | 560    | 2.07  |
|                                | R-SMZ-GAC                                                                       | Rhyolite sand, surface<br>modified zeolite, and<br>granular activated carbon<br>(33/33/33)               |               |       |       |       |       |       |       |       |       |     | 850    | 2.09  |
|                                | R-SMZ-GAC-PM                                                                    | Rhyolite sand, surface<br>modified zeolite, granular<br>activated carbon, and peat<br>moss (30/30/30/10) |               |       |       |       |       |       |       |       |       |     | 850    | 2.20  |
| Biofilter Media<br>Mixtures*** | Kansas City                                                                     | 50,000                                                                                                   | 15,000        | 9,000 | 5,400 | 3,300 | 2,000 | 1,000 | 530   | 310   | 90    | 10  | 2,000  | 40.00 |
|                                | Wisconsin 1                                                                     | 5,000                                                                                                    | 2,000         | 1,100 | 630   | 500   | 400   | 310   | 225   | 135   | 95    | 60  | 400    | 6.00  |
|                                | Wisconsin 2                                                                     | 5,000                                                                                                    | 2,400         | 1,500 | 1,150 | 800   | 600   | 440   | 335   | 250   | 130   | 60  | 600    | 5.00  |
| <u> </u>                       | North Carolina                                                                  | 5,500                                                                                                    | 2,900         | 1,700 | 1,200 | 900   | 690   | 510   | 390   | 180   | 120   | 40  | 700    | 6.00  |

<sup>\*</sup> if P high in soil, 0.25 mg/L filt P effluent

\*\*PSM amendments (phosphorus sorption materials) are not included on above list of amendments; can be added by user for specific product (Lucas' spent alum, for example)

| ***Kansas City | 30% planting soil; 20% organic compost; 50% sand ("Seattle" mix)             |
|----------------|------------------------------------------------------------------------------|
| Wisconsin 1    | Wisconsin USGS bio mix (85-88% sand, 3-5% pine bark, 8-12% silt and clay)    |
| Wisconsin 2    | Wisconsin Neenah mix (86% sand, 11% peat moss, and 3% Imbrium)               |
| North Carolina | 85 - 88% planting soil; 8 - 12% fines (silt and clay); 3 - 5% organic matter |

Master Table 1b. Percent in Size Range

|                          |      |               |               |      |              | Sc   | oil                   |              |                       |               |               |      |                          |              |                | Sand           |        |                                      |
|--------------------------|------|---------------|---------------|------|--------------|------|-----------------------|--------------|-----------------------|---------------|---------------|------|--------------------------|--------------|----------------|----------------|--------|--------------------------------------|
| media size<br>range (um) | sand | loamy<br>sand | sandy<br>loam | loam | silt<br>loam | silt | sandy<br>clay<br>loam | clay<br>loam | silty<br>clay<br>loam | sandy<br>clay | silty<br>clay | clay | fine<br>Rhyolite<br>sand | fine<br>sand | filter<br>sand | coarse<br>sand | gravel | light<br>media<br>for green<br>roofs |
| <3                       | 0    | 0             | 30            | 30   | 40           | 40   | 25                    | 43           | 53                    | 42            | 63            | 72   | 0                        | 0            | 0              | 0              | 0      | 0                                    |
| 3 - 12                   | 4    | 10            | 8             | 20   | 29           | 40   | 9                     | 15           | 27                    | 5             | 20            | 8    | 0                        | 0            | 0              | 0              | 0      | 0                                    |
| 13 - 30                  | 6    | 12            | 10            | 8    | 12           | 12   | 8                     | 7            | 11                    | 1             | 9             | 3    | 0                        | 0            | 0              | 0              | 0      | 0                                    |
| 31 - 60                  | 16   | 13            | 7             | 12   | 7            | 3    | 9                     | 8            | 2                     | 7             | 2             | 3    | 0                        | 1            | 0              | 0              | 0      | 0                                    |
| 61 - 150                 | 26   | 20            | 15            | 12   | 5            | 2    | 14                    | 10           | 1                     | 17            | 2             | 6    | 0                        | 21           | 0              | 1              | 0      | 0                                    |
| 151 - 300                | 18   | 18            | 10            | 6    | 4            | 1    | 14                    | 5            | 1                     | 8             | 2             | 3    | 28                       | 33           | 15             | 1              | 0      | 0                                    |
| 301 - 1,000              | 30   | 27            | 20            | 12   | 3            | 2    | 21                    | 12           | 5                     | 20            | 2             | 5    | 68                       | 37           | 52             | 4              | 0      | 3                                    |
| 1,001 - 2,000            | 0    | 0             | 0             | 0    | 0            | 0    | 0                     | 0            | 0                     | 0             | 0             | 0    | 4                        | 4            | 28             | 44             | 3      | 3                                    |
| 2,001 - 3,000            | 0    | 0             | 0             | 0    | 0            | 0    | 0                     | 0            | 0                     | 0             | 0             | 0    | 0                        | 2            | 5              | 40             | 2      | 12                                   |
| 3,001 - 4,000            | 0    | 0             | 0             | 0    | 0            | 0    | 0                     | 0            | 0                     | 0             | 0             | 0    | 0                        | 2            | 0              | 10             | 2      | 25                                   |
| 4,001 - 6,000            | 0    | 0             | 0             | 0    | 0            | 0    | 0                     | 0            | 0                     | 0             | 0             | 0    | 0                        | 0            | 0              | 0              | 11     | 47                                   |
| 6,001 - 8,000            | 0    | 0             | 0             | 0    | 0            | 0    | 0                     | 0            | 0                     | 0             | 0             | 0    | 0                        | 0            | 0              | 0              | 26     | 10                                   |
| >8,000                   | 0    | 0             | 0             | 0    | 0            | 0    | 0                     | 0            | 0                     | 0             | 0             | 0    | 0                        | 0            | 0              | 0              | 56     | 0                                    |
| median                   | 140  | 120           | 40            | 12   | 4            | 4    | 54                    | 6            | 2                     | 35            | 1             | 0    | 390                      | 290          | 710            | 2,000          | 8,350  | 4,175                                |
| Cu                       | 7    | 21            | 820           | 50   | 13           | 5    | 500                   | 140          | 40                    | 78            | 24            | 80   | 2                        | 3            | 4              | 2              | 2      | 2                                    |

Master Table 1b. Percent in Size Range (cont.)

| Waster Table 15. Percent |           |              | Amendments |         |      | Biofilter Media Mixtures |           |           |         |  |  |
|--------------------------|-----------|--------------|------------|---------|------|--------------------------|-----------|-----------|---------|--|--|
|                          | granular  |              |            |         |      |                          |           |           | North   |  |  |
|                          | activated |              | coarse     |         |      | Kansas City              | Wisconsi  | Wisconsi  | Carolin |  |  |
| media size range (um)    | carbon    | fine zeolite | zeolite    | compost | peat | media                    | n 1 media | n 2 media | a media |  |  |
| <3                       | 0         | 0            | 0          | 0       | 0    | 0                        | 0         | 0         | 0       |  |  |
| 3 - 12                   | 0         | 0            | 0          | 0       | 0    | 1                        | 0         | 0         | 0       |  |  |
| 13 - 30                  | 0         | 0            | 0          | 0       | 1    | 2                        | 0         | 0         | 0       |  |  |
| 31 - 60                  | 0         | 0            | 0          | 1       | 2    | 4                        | 0         | 0         | 4       |  |  |
| 61 - 150                 | 0         | 0            | 0          | 10      | 12   | 8                        | 22        | 13        | 12      |  |  |
| 151 - 300                | 1         | 6            | 0          | 9       | 17   | 4                        | 17        | 11        | 7       |  |  |
| 301 - 1,000              | 9         | 74           | 3          | 40      | 28   | 21                       | 40        | 39        | 40      |  |  |
| 1,001 - 2,000            | 36        | 20           | 12         | 25      | 10   | 10                       | 11        | 22        | 19      |  |  |
| 2,001 - 3,000            | 36        | 0            | 29         | 12      | 5    | 5                        | 3         | 7         | 8       |  |  |
| 3,001 - 4,000            | 13        | 0            | 40         | 3       | 7    | 8                        | 3         | 4         | 2       |  |  |
| 4,001 - 6,000            | 5         | 0            | 16         | 0       | 9    | 8                        | 4         | 4         | 8       |  |  |
| 6,001 - 8,000            | 0         | 0            | 0          | 0       | 2    | 6                        | 0         | 0         | 0       |  |  |
| >8,000                   | 0         | 0            | 0          | 0       | 7    | 23                       | 0         | 0         | 0       |  |  |
| median                   | 2,150     | 740          | 3,150      | 750     | 670  | 2,000                    | 400       | 600       | 700     |  |  |
| Cu                       | 2.5       | 2.5          | 2          | 8       | 10.5 | 40                       | 6         | 5         | 6       |  |  |

Master Table 2: Physical Characteristics, Flow Rates, and Retention of Stormwater Particulates by Biofilter Media Components and Mixtures

|      |                                   | %<br>organic<br>matter | CEC<br>(meq/100<br>g) | % fines<br>(silt<br>and<br>clay) | P<br>content* | Saturation<br>water<br>content %<br>(porosity) | Field<br>capacity<br>(%) | Permanent<br>Wilting<br>Point (%) | Infiltration<br>Rate (in/hr) | max. accum of<br>sediment before<br>clogging<br>(kg/m2);<br>average for<br>mixtures | particulate retention by part. size (category); interpolate by median size | removal of small<br>particles<br>(category) | effects of<br>solids accum<br>on flow rate<br>reduc.<br>(category) |
|------|-----------------------------------|------------------------|-----------------------|----------------------------------|---------------|------------------------------------------------|--------------------------|-----------------------------------|------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Soil | sand                              | 1                      | 2.5                   | 2.5                              | low           | 38                                             | 8                        | 2.5                               | 13                           | 10                                                                                  | fine                                                                       | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | loamy sand                        | 5                      | 5                     | 5                                | high          | 39                                             | 13.5                     | 4.5                               | 2.5                          | 10                                                                                  | fine                                                                       | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | sandy loam                        | 10                     | 8                     | 25                               | high          | 40                                             | 19.5                     | 6.5                               | 1                            | 10                                                                                  | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | loam                              | 15                     | 12                    | 17                               | high          | 43                                             | 34                       | 14                                | 0.15                         | 10                                                                                  | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | silt loam                         | 10                     | 12                    | 15                               | high          | 43                                             | 34                       | 14                                | 0.15                         | 10                                                                                  | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | silt                              | 10                     | 15                    | 5                                | high          | 42                                             | 30                       | 12                                | 0.3                          | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | sandy clay<br>loam                | 10                     | 15                    | 25                               | high          | 42                                             | 26.5                     | 10.5                              | 0.5                          | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | clay loam                         | 10                     | 20                    | 32                               | high          | 50                                             | 34.5                     | 17                                | 0.1                          | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | silty clay<br>loam                | 10                     | 20                    | 33                               | high          | 50                                             | 34.5                     | 17                                | 0.1                          | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | sandy clay                        | 5                      | 25                    | 41                               | low           | 40                                             | 34                       | 17                                | 0.05                         | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | silty clay                        | 2                      | 30                    | 47                               | low           | 55                                             | 33.5                     | 18                                | 0.015                        | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | clay                              | 1                      | 30                    | 66                               | low           | 55                                             | 33.5                     | 18                                | 0.015                        | 5                                                                                   | WI media 2                                                                 | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
| Sand | fine<br>Rhyolite<br>sand          | 0.3                    | 2.5                   | 0                                | low           | 38                                             | 8                        | 2.5                               | 13                           | 35                                                                                  | Boeing Rhyolite                                                            | Boeing Rhyolite                             | granular                                                           |
|      | fine sand                         | 0                      | 2.5                   | 0                                | low           | 38                                             | 8                        | 2.5                               | 13                           | 10                                                                                  | fine                                                                       | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | filter sand                       | 0                      | 2.5                   | 0                                | low           | 38                                             | 8                        | 2.5                               | 13                           | 20                                                                                  | Boeing site filter sand                                                    | Boeing site filter sand                     | granular                                                           |
|      | coarse<br>sand                    | 0                      | 1                     | 0                                | low           | 32                                             | 4                        | 0                                 | 40                           | 35                                                                                  | intermediate                                                               | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | gravel                            | 0                      | 1                     | 0                                | low           | 32                                             | 4                        | 0                                 | 40                           | very large<br>(settle)                                                              | coarse                                                                     | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |
|      | light media<br>for green<br>roofs | 0                      | 1                     | 0                                | low           | 50                                             | 20                       | 5                                 | 13                           | very large<br>(settle)                                                              | coarse                                                                     | y = 1.65x for 0.45<br>to 3 um               | granular                                                           |

# Master Table 2: Physical Characteristics, Flow Rates, and Retention of Stormwater Particulates by Biofilter Media Components and Mixtures (continued)

|                             |                                                                                    | %<br>organic<br>matter | CEC<br>(meq/100<br>g) | % fines<br>(silt<br>and<br>clay) | P<br>content* | Saturation<br>water<br>content %<br>(porosity) | Field<br>capacity<br>(%) | Permanent<br>Wilting<br>Point (%) | Infiltration<br>Rate (in/hr)  | max. accum of<br>sediment before<br>clogging<br>(kg/m2);<br>average for | particulate<br>retention by<br>part. size<br>(category);<br>interpolate by | removal of small<br>particles<br>(category) | effects of<br>solids accum.<br>on flow rate<br>reduc.<br>(category) |
|-----------------------------|------------------------------------------------------------------------------------|------------------------|-----------------------|----------------------------------|---------------|------------------------------------------------|--------------------------|-----------------------------------|-------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
|                             |                                                                                    |                        |                       |                                  |               |                                                |                          |                                   |                               | mixtures                                                                | median size                                                                |                                             |                                                                     |
| Amendments**                | activated carbon                                                                   | 0                      | 6                     | 0                                | low           | 32                                             | 4                        | 0                                 | 40                            | 38                                                                      | Boeing GAC                                                                 | Boeing GAC                                  | granular                                                            |
|                             | fine zeolite                                                                       | 0                      | 7                     | 0                                | low           | 32                                             | 4                        | 0                                 | 40                            | 28                                                                      | Boeing SMZ                                                                 | Boeing SMZ                                  | granular                                                            |
|                             | coarse zeolite                                                                     | 0                      | 7                     | 0                                | low           | 32                                             | 4                        | 0                                 | 40                            | 17                                                                      | Boeing site<br>Zeolite                                                     | Boeing site Zeolite                         | granular                                                            |
|                             | compost                                                                            | 35                     | 18                    | 0                                | very<br>high  | 61                                             | 55                       | 5                                 | 3                             | 20                                                                      | intermediate                                                               | y = 1.65x for 0.45<br>to 3 um               | compost-<br>sand                                                    |
|                             | peat moss                                                                          | 35                     | 22                    | 0                                | low           | 78                                             | 59                       | 5                                 | use<br>peat/sand<br>equations | 20                                                                      | Boeing peat                                                                | Boeing peat                                 | granular                                                            |
|                             | PSM (enter<br>values directly<br>for specific<br>material)**                       |                        |                       |                                  |               |                                                |                          |                                   |                               |                                                                         |                                                                            |                                             |                                                                     |
|                             | biochar (highly<br>variable; enter<br>values directly<br>for specific<br>material) |                        |                       |                                  |               |                                                |                          |                                   |                               |                                                                         |                                                                            |                                             |                                                                     |
| Tested Mixtures             | R-SMZ                                                                              | 0                      | 5                     | 0                                | low           | 43                                             | 4                        | 0                                 | 25                            | 38                                                                      | Boeing R-SMZ                                                               | Boeing R-SMZ                                | granular                                                            |
|                             | R-SMZ-GAC                                                                          | 0                      | 5                     | 0                                | low           | 41                                             | 4                        | 0                                 | 25                            | 53                                                                      | Boeing R-SMZ-<br>GAC                                                       | Boeing R-SMZ-<br>GAC                        | granular                                                            |
|                             | R-SMZ-GAC-PM                                                                       | 5                      | 8                     | 0                                | low           | 43                                             | 10                       | 0.5                               | 25                            | 55                                                                      | Boeing R-SMZ-<br>GAC-PM                                                    | Boeing R-SMZ-<br>GAC-PM                     | granular                                                            |
| Biofilter Media<br>Mixtures | Kansas City                                                                        | 15                     | 10                    | 41                               | very<br>high  | 40                                             | 12                       | 10                                | 0.55 (hand compaction)        | 15                                                                      | KC biofilter                                                               | KC biofilter                                | granular                                                            |
|                             | Wisconsin 1                                                                        | 4                      | 10                    | 10                               | low           | 40                                             | 10                       | 5                                 | 25.1 (hand compaction)        | 35                                                                      | fine                                                                       | y = 1.65x for 0.45<br>to 3 um               | granular                                                            |
|                             | Wisconsin 2                                                                        | 11                     | 10                    | 0                                | low           | 40                                             | 10                       | 5                                 | 20.5 (hand compaction)        | 35                                                                      | WI media 2                                                                 | WI media 2                                  | granular                                                            |
|                             | North Carolina                                                                     | 1.5                    | 9                     | 10                               | low           | 40                                             | 7                        | 5                                 | 18.7 (hand compaction)        | 35                                                                      | intermediate                                                               | y = 1.65x for 0.45<br>to 3 um               | granular                                                            |

# Master Table 3. Retention of Filterable Pollutants by Biofilter Media Components and Mixtures

|      |                                      | Filterable pollutant retention | Bacteria retention | media capacity     | contact time effects |
|------|--------------------------------------|--------------------------------|--------------------|--------------------|----------------------|
| Soil | sand                                 | Millburn NJ                    | Clark dissert sand | Clark dissert sand | Boeing R-sand        |
|      | loamy<br>sand                        | Millburn NJ                    | Clark dissert sand | Clark dissert sand | Boeing R-sand        |
|      | sandy<br>loam                        | Millburn NJ                    | Clark dissert sand | Clark dissert sand | Boeing R-sand        |
|      | loam                                 | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | silt loam                            | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | silt                                 | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | sandy<br>clay loam                   | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | clay loam                            | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | silty clay<br>loam                   | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | sandy<br>clay                        | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | silty clay                           | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
|      | clay                                 | Millburn NJ                    | Clark dissert loam | Clark dissert sand | Boeing R-sand        |
| Sand | fine<br>Rhyolite<br>sand             | Boeing R-sand                  | Clark dissert sand | Boeing R-sand      | Boeing R-sand        |
|      | fine sand                            | Boeing site sand               | Clark dissert sand | Boeing site sand   | Boeing R-sand        |
|      | filter<br>sand                       | Boeing site sand               | Clark dissert sand | Boeing site sand   | Boeing R-sand        |
|      | coarse<br>sand                       | Boeing site sand               | Clark dissert sand | Boeing site sand   | Boeing R-sand        |
|      | gravel                               | no removal                     | no removal         | no removal         | no removal           |
|      | light<br>media for<br>green<br>roofs | no removal                     | no removal         | no removal         | no removal           |

# Master Table 3. Retention of Filterable Pollutants by Biofilter Media Components and Mixtures (continued)

|                             |                                                                                          | Filterable pollutant retention                                                 | Bacteria retention         | media capacity             | contact time effects          |
|-----------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------|
| Amendments**                | activated carbon                                                                         | Boeing GAC                                                                     | no removal                 | Boeing GAC                 | Boeing GAC                    |
|                             | fine zeolite                                                                             | Boeing SMZ                                                                     | Clark dissert zeolite-sand | Boeing SMZ                 | Boeing SMZ                    |
|                             | coarse<br>zeolite                                                                        | Boeing site zeolite                                                            | no removal                 | Boeing site zeolite        | Boeing site zeolite           |
|                             | compost                                                                                  | Clark dissert compost-sand and EPA compost report/BMP Database for P increases | Clark dissert compost-sand | Clark dissert compost-sand | Clark dissert compost-sand    |
|                             | peat moss                                                                                | Boeing PM                                                                      | Clark dissert peat-sand    | Boeing PM                  | Boeing PM                     |
|                             | PSM (enter<br>values<br>directly for<br>specific<br>material)**                          | direct entry                                                                   |                            |                            |                               |
|                             | biochar<br>(highly<br>variable;<br>enter values<br>directly for<br>specific<br>material) | direct entry for filt P                                                        |                            |                            |                               |
| Tested<br>Mixtures          | R-SMZ                                                                                    | Boeing R-SMZ                                                                   | Clark dissert sand         | Boeing R-SMZ               | calculate based on components |
|                             | R-SMZ-GAC                                                                                | Boeing R-SMZ-GAC                                                               | Clark dissert sand         | Boeing R-SMZ-GAC           | calculate based on components |
|                             | R-SMZ-GAC-<br>PM                                                                         | Boeing R-SMZ-GAC-PM                                                            | Clark dissert sand         | Boeing R-SMZ-GAC-PM        | calculate based on components |
| Biofilter Media<br>Mixtures | Kansas City                                                                              | WI media 2 and 0.25 mg/L filt P effluent                                       | Clark dissert loam         | massive if suitable design | long enough                   |
|                             | Wisconsin 1                                                                              | WI media 2 and 0.25 mg/L filt P effluent                                       | Clark dissert sand         | massive if suitable design | long enough                   |
|                             | Wisconsin 2                                                                              | WI media 2                                                                     | Clark dissert sand         | massive if suitable design | long enough                   |
|                             | North<br>Carolina                                                                        | WI media 2 and 0.25 mg/L filt P effluent                                       | Clark dissert loam         | massive if suitable design | long enough                   |

## 1) Treatment Flow Rates for Biofilter Media Components and Mixtures

Biofilter media treatment flow rate measurements were obtained from laboratory and field measurements. As part of his dissertation research, Sileshi (2013) conducted a large number of laboratory column tests examining treatment flow rates for various mixtures of stormwater biofilter media. These tests and data are described in his dissertation, available at: http://unix.eng.ua.edu/~rpitt/Publications/11 Theses and Dissertations/Redi dissertation.pdf (and Sileshi, et al. 2014a, 2014b, 2017, and 2018. This memo summarizes these data and presents some additional statistical analyses to assist in the selection of treatment media having targeted treatment flow rates, and to evaluate monitoring data from existing biofilter facilities. Sileshi (2013) found that the biofilter media treatment flow rates were mostly affected by the median particle size (D50) and uniformity coefficient (D60/D10) of the media, and the amount of organic matter. As expected, larger particles with small uniformity coefficients had the largest treatment flow rates. Compaction had minor effects if the organic matter content was low, but had significant effects on the flow rates for high organic matter content. The master table includes the actual typical treatment flow rates, with no references to various categories for other information, except for the peat/sand equations. The following presents the equations used to calculate the treatment flow rates for mixtures of media that are not included on this table, based on their calculated median particle size (D50) and uniformity coefficient (Cu) for different amounts of organic matter and compaction.

## Summary of Statistical Analyses of Treatment Flow Rates of Biofilter Media

Appendix A1 lists the characteristics of the media that were tested in the laboratory column tests by Sileshi (2013). The 22 test mixtures (including four Tuscaloosa area soils and three biofilter media mixtures from biofilter facilities) were prepared to cover the typical range of biofilter media characteristics: the median sizes ranged from 270 to 1,900 micrometers and the uniformity coefficients ranges from 1.3 to 39. The organic matter content ranged from a low of 1.5 to a high of about 50%. Each test was conducted in triplicate and the resulting saturated flows in the columns are shown, along with their coefficients of variation for three levels of compaction. About 200 column tests were conducted to obtain these data. The test methods, detailed chemical and physical analyses and other supporting information are all described by Sileshi (2013).

Appendix A2 presents the statistical analyses of these data, building on the factorial test results and preliminary analyses presented by Sileshi (2013). The following lists the resulting significant regression equations developed to calculate the expected saturated flows (Fc, cm/hr) in log10 space, based on the D50 (micrometers) and Cu values. These equations are divided by organic matter content (low is <10% organic matter and high is >10%) and level of compaction. It is expected that the lowest level of compaction is most commonly used for biofilter facilities, but field monitoring has identified situations having high compaction levels. Compaction (listed below as hand compaction, the lowest level of compaction, proctor compaction, and modified proctor compaction, the highest level of compaction normally available) is most important for media mixtures having high organic matter content.

Low Organic Matter Content (<10% OM):

- hand log Fc =  $-1.72 \times 10^{-6} (D50)^2 + 0.00410 (Cu)^2 + 0.00469 (D50) 0.162 (Cu)$
- proctor log Fc =  $-1.291 \times 10^{-6} (D50)^2 + 0.00356(Cu)^2 + 0.00407(D50) 0.175(Cu)$
- modified proctor log Fc = 0.00162(D50) 0.0590(Cu)

High Organic Matter Content (>10% OM):

- hand log Fc = 1.84 + 0.000522 (D50) 0.0648(Cu)
- proctor log Fc = 1.31 + 0.000683(D50) 0.0594(Cu)
- modified proctor log Fc = 1.28 + 0.000640(D50) 0.070(Cu)

The calculated log Fc values need to be transformed to obtain the cm/sec values by raising 10 to these powers. Appendix A2 contains full regression analyses and analyses of variance indicating the significance of the equation terms. The regression behaviors are all reasonable and all coefficients and equations are significant, with the exception of the squared Cu and Cu terms in the low organic matter low compaction equation which have marginally significant p values at the 0.08 and 0.09 levels, compared to the other coefficients that have significant p values <0.05.

## Flow Rates for Sand/Peat Biofilter Mixtures

Sileshi (2013) also conducted many tests examining the treatment flow rate for sand mixtures having varying amounts of peat. In all cases, the peat should not exceed 50% of the mixture to prevent compaction and subsequent failure. The following sets of equations are for peat mixed with fine to coarse sand (<2,000  $\mu$ m D50), or poorly graded sand (Cu>10), and for very coarse sand (>5,000  $\mu$ m D50), for three levels of compaction. In most cases, biofilters would have minimal compaction of the media. For median sand sizes between 2,000 and 5,000  $\mu$ m, interpolate between the two equations for the appropriate compaction. Appendix B presents the data from Sileshi (2013) and the plots and regressions for this information.

Sand and Peat mixture equations: x is fraction of peat (not percentage) y is infiltration rate (Fc), in/hr

Fine and poorly graded sand plus peat mixtures ( $<2,000 \, \mu m$  median size, or Cu >10):

- minimal to normal compaction (hand compaction): y=108x<sup>2</sup> 28.9x + 7.73
- moderate compaction (standard compaction):  $y=14.4x^2 + 0.50x + 3.21$
- severe compaction (modified proctor compaction):  $y=6.0x^2+1.23x+2.42$

Table 1. Examples:

|                                                 | infiltration rate (Fc), in/hr |      |     |  |  |  |
|-------------------------------------------------|-------------------------------|------|-----|--|--|--|
| amount of peat in mixture (fraction of total)   | 0.1                           | 0.25 | 0.5 |  |  |  |
| minimal to normal compaction (hand compaction)  | 5.9                           | 7.3  | 20  |  |  |  |
| moderate compaction (standard compaction)       | 3.4                           | 4.2  | 7.1 |  |  |  |
| severe compaction (modified proctor compaction) | 2.6                           | 3.1  | 4.5 |  |  |  |

Very coarse sand plus peat mixtures (>5,000 μm median size):

- minimal to normal compaction (hand compaction):  $y=-780x^2-314x+444$
- moderate compaction (standard compaction): y=113x<sup>2</sup> 933x + 488
- severe compaction (modified proctor compaction): y=3263x² -2835x + 645

Table 2. Examples:

|                                                 | infiltration rate (Fc), in/hr |      |      |  |  |  |  |
|-------------------------------------------------|-------------------------------|------|------|--|--|--|--|
| amount of peat in mixture (fraction of total)   | 0.1                           | 0.25 | 0.5  |  |  |  |  |
| minimal to normal compaction (hand compaction)  | 405                           | 317  | 92.3 |  |  |  |  |
| moderate compaction (standard compaction)       | 396                           | 262  | 50.0 |  |  |  |  |
| severe compaction (modified proctor compaction) | 394                           | 140  | 43.0 |  |  |  |  |

## **Biofilter Media Mixture Treatment Flow Rate Tests**

Pitt and Clark (2010) conducted a series of tests while developing treatment media for an industrial site in Southern California. Table 3 shows the results of extensive column tests using stormwater for these components and candidate mixtures. Detailed study descriptions and results are available at: <a href="http://unix.eng.ua.edu/~rpitt/Publications/5">http://unix.eng.ua.edu/~rpitt/Publications/5</a> Stormwater Treatment/Media for stormwater treatment/media%20report%20SSFL%20May%2010%202010.pdf

Table 3. Treatment Flow Rates for Media and Mixtures for Santa Susana Field Laboratory Biofilter Media Development

| Media, ranked by clogging potential          | Typical flow rate |                         |       |  |  |  |  |
|----------------------------------------------|-------------------|-------------------------|-------|--|--|--|--|
|                                              | m/day             | gal/min/ft <sup>2</sup> | in/hr |  |  |  |  |
| Granular Activated Carbon (GAC) (50/50       | 15                | 0.035                   | 25    |  |  |  |  |
| with sand)                                   |                   |                         |       |  |  |  |  |
| Peat moss (50/50 with sand)                  | 15                | 0.035                   | 25    |  |  |  |  |
| Rhyolite sand                                | 15                | 0.035                   | 25    |  |  |  |  |
| Site sand                                    | 5                 | 0.012                   | 8.3   |  |  |  |  |
| Site zeolite (50/50 with sand)               | 15                | 0.035                   | 25    |  |  |  |  |
| Surface modified zeolite (SMZ) (50/50 with   | 13                | 0.03                    | 21. 5 |  |  |  |  |
| sand)                                        |                   |                         |       |  |  |  |  |
| Rhyolite sand and surface modified zeolite   | 15                | 0.035                   | 25    |  |  |  |  |
| Rhyolite sand, surface modified zeolite, and | 15                | 0.035                   | 25    |  |  |  |  |
| granular activated carbon                    |                   |                         |       |  |  |  |  |
| Rhyolite sand, surface modified zeolite,     | 15                | 0.035                   | 25    |  |  |  |  |
| granular activated carbon, and peat moss     |                   |                         |       |  |  |  |  |

## **Outlet Controls and Underdrain Spacing**

Sileshi (2013) also examined the use of underdrains for flow control in biofilters. Underdrains are used in biofilters to decrease the standing water duration to prevent nuisance conditions from developing, and for consistent flow control. Some regulations restrict standing water to less than 24 hrs, for example. However, if an underdrain is used (and if not needed to meet this standing water criterion), short-circuiting of the infiltration will occur with substantial decreases in runoff volume reduction performance. Therefore, underdrains should be evaluated using continuous WinSLAMM model analyses to produce production functions to help determine the need for underdrains and associated performance effects.

The depth of the drains below the ground surface determines the hydraulic head (h) of the water, driving flow to the drains (assuming saturated overlying soil), while the distance between the drains and the restrictive layer determine the cross-sectional area that is available for water flow. Hydraulic conductivity of the soil is an essential and invariably used parameter in all drain spacing equations (Raju, et al. 2012). The Hooghoudt (1940) equation can be used to determine the underdrain design attributes to meet specific ponding time criterion. Important soil properties needed to use the Hooghoudt equation include the saturated hydraulic conductivity ( $K_s$ ) and the depth to a restrictive layer ( $d_e$ ).

The Hooghoudt equation is expressed as (refer to Figure 1 for a schematic of the parameters):

$$s = \sqrt{\frac{4.\,k_s(m^2 + 2.\,d_e.\,m)}{q/24}}$$

Where:

s spacing between drains (ft)

q amount of water that the underdrain carries away (in/day),

 $K_s$  average saturated hydraulic conductivity of the facility media (in/hr),

 $d_e$  effective depth (ft) (the height of the underdrain above the biofilter bottom),

m depth of water, or head, created over the pipes (ft), in the drainage layer (to bottom of media layer) (Irrigation Association 2000).

A conversion factor of 24 is used to convert hours to days. The values for the effective depth are determined from various figures and tables. The equation above is used to compute the drain spacing.

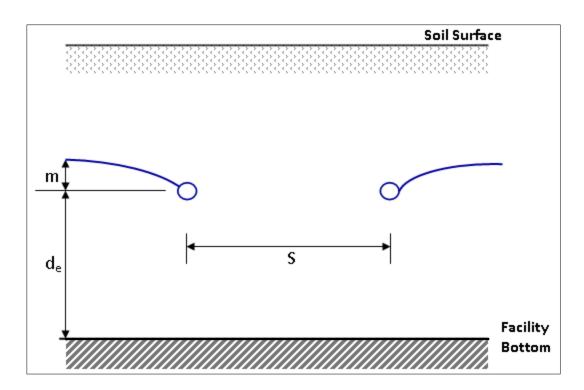



Figure 1. Scheme of Hooghoudt Equation

The value of q is determined by the amount of water that the underdrain must carry away in 24 hours (or whatever other time criterion is used). The water removal rate, q (inches per day) is commonly called the drainage coefficient. For subsurface drainage systems, drainage coefficients are usually expressed as a depth of water removed per 24 hr over the drained area (in/day or mm/day), and for surface drainage systems, as a rate of flow per unit area drained. The drainage rate of a drainage system is affected by the soil properties, water table depth, depth of the drains, and the spacing between drains.

The hydraulic conductivity (Ks) of the media depends on the grain size and the type and amount of water (including entrapped air) present in the media matrix. Sandy materials have larger pores, a lower water holding capacity and a higher hydraulic conductivity, diffusivity and infiltration rate compared to clayey-sized materials, which have smaller micropores. Saturated hydraulic conductivity, Ks, describes water movement through saturated media. It has units with dimensions of length per time (m/s, cm/s, ft/day, in/hr). Table 4 shows saturated hydraulic conductivity of sand for different grain sizes.

Table 4. Saturated Hydraulic Conductivity (in/hr) of Different Grain Size Sand (US EPA 1986)

|                                 | Degree of Sorting |          |      |  |  |  |  |  |
|---------------------------------|-------------------|----------|------|--|--|--|--|--|
| Grain size class                | Poor              | Moderate | Well |  |  |  |  |  |
| medium sand                     | 33.5              | 40       | 47   |  |  |  |  |  |
| medium to coarse sand           | 37                | 47       | -    |  |  |  |  |  |
| medium to very coarse sand      | 42                | 49-56    | -    |  |  |  |  |  |
| coarse sand                     | 40                | 54       | 67   |  |  |  |  |  |
| coarse sand to very coarse sand | 47                | 67       | -    |  |  |  |  |  |
| very coarse sand                | 54                | 74       | 94   |  |  |  |  |  |

<sup>\*</sup>A hyphen indicates that no data are available

For a sand to be classified as well graded,  $C_u \le 6$  and  $1 < C_c < 3$ , where  $C_u$  and  $C_c$  are the coefficient of uniformity and coefficient of curvature respectively and were calculated using the following equations:

$$C_u = \frac{D_{60}}{D_{10}}$$

$$C_c = \frac{D_{30}^2}{D_{10}D_{60}}$$

where  $D_{60}$  is the grain diameter at 60% passing,  $D_{10}$  is the grain diameter at 10% passing, and  $D_{30}$  is the grain diameter at 30% passing. Table 4 indicates that the saturated hydraulic conductivity of medium to very coarse sized sand ranges from 33 to 94 in/hr. Washed concrete sand with everything passing the #10 sieve (2 mm) and no more than 10% passing the #40 sieve (0.42 mm) is a suitable drainage layer material.

Sileshi (2013) provided design guidance to determine the number of restricted flow SmartDrains required for different biofilter areas ranging from 100 to 10,000 ft<sup>2</sup> and with saturated conductivities ( $K_s$ ) of the drainage layer material ranging from 30 to 100 in/hr (recommend  $K_s$  ranges for filter sand used in SmartDrain<sup>TM</sup> field application). Typical  $K_s$  values for conventional underdrains range from 10 to 500 in/hr. The biofilter facility examined for these calculations has a 2 ft engineered soil layer, 1 ft medium to coarse sand drainage layer, and a maximum ponding depth of 1.5 ft, as shown in Figure 2. The porosity of the engineered media and drainage layers are 0.44 and 0.3, respectively.

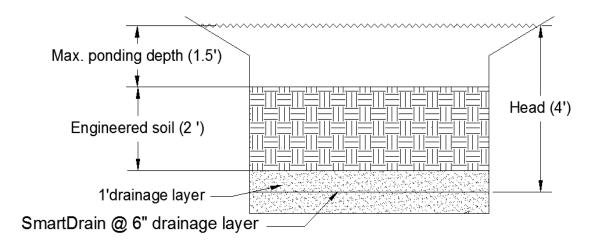
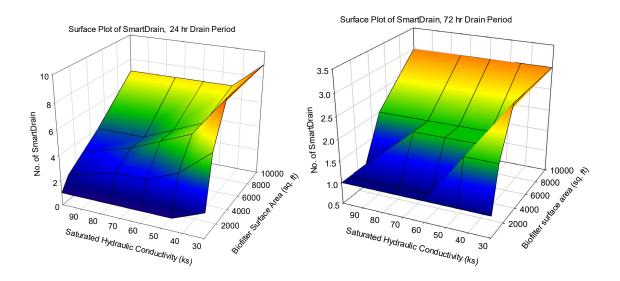




Figure 2. Cross-Section of a Typical Biofilter Facility

Figure 3 shows three dimensional plots of the required number of SmartDrains or conventional underdrains required for different biofilter sizes and saturated hydraulic conductivities. For low values of hydraulic conductivities of the media, the number of SmartDrains or conventional underdrains required in the field increases, as expected. These plots consider the number of underdrains needed for the basic infiltration rates of the devices, ensuring that the underdrains can carry away the infiltration water within the 24 or 72 hour time periods, and the spacing of the underdrains to insure that the water can reach the underdrains within the stated time, as shown in the basic equations.



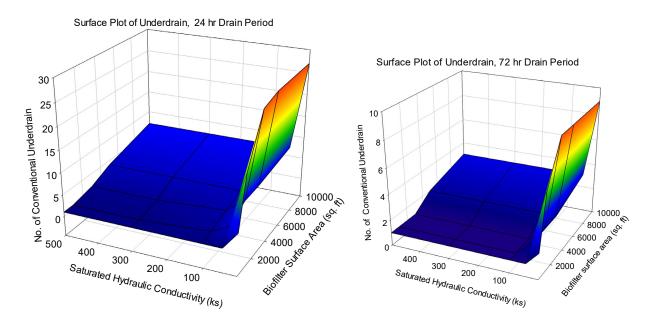



Figure 3. Three Dimensional Plots of No. of SmartDrains or Conventional Underdrains Required for Different Biofilter Area and Saturated Hydraulic Conductivities.

The following is an example calculation, from Sileshi (2013), showing biofilter dewatering calculations, as reflected on the above 3D figures.

Biofilter storage volume ( $ft^3$ ) = Ponding storage ( $ft^3$ ) + Engineered media storage ( $ft^3$ ) + Drainage layer storage above underdrain ( $ft^3$ ) = surface area\*ponding depth + surface area\*engineered media depth\*engineered media porosity + 0.5\*surface area\*drainage layer\*drainage layer porosity

Note: the underdrain is installed at the center of drainage layer.

The restricted flow SmartDrain flow rate (as used in this example) was determined by Sileshi (2013) to be:

$$Q = 0.0286 + 0.0015(L) + 0.0246(H)$$

Where:  $Q = Predicted flowrate (L/s) [28.32 L per ft^3]$ 

L = SmartDrain length (ft)H = SmartDrain head (in)

Table 5. Design parameters used for example calculation

| Biofilter    |            |                  |            | Porosity of | Porosity of |
|--------------|------------|------------------|------------|-------------|-------------|
| surface area | J          | Engineered       | Drainage   | media mix   | drainage    |
| (ft²)        | depth (ft) | media depth (ft) | layer (ft) | (%)         | layer (%)   |
| 100          | 1.5        | 2                | 1          | 0.44        | 0.3         |

Required drainage rate = storage volume /drain time

Storage volume = 
$$100 \text{ ft}^2*1.5 \text{ ft} + 100 \text{ ft}^2*2 \text{ ft}*0.44 + 100 \text{ ft}^2*0.5 \text{ ft}*0.3$$
  
=  $253 \text{ ft}^3$ 

Required drainage rate for 24 hr ponding period= 253 ft $^3$ / (24 hr\*3600 s/hr) = 0.003 cfs

This drainage rate needs to be converted to q which has units of in/day by dividing the drainage rate by the surface area of the biofilter facility (100ft<sup>2</sup>) and using appropriate unit conversions. Therefore:

$$q = [(0.003 \text{ ft}^3/\text{sec})/(100 \text{ ft}^2)](86,400 \text{ sec/day})(12 \text{ in/ft}) = 31 \text{ in/day}$$

The example below rounds this down to 30 in/day. It should be noted that as the area of the biofilter facility increases, the required drainage rate increases the same (area increases are the same as volume increases), assuming the depth characteristics remain the same. Therefore, in the example below, the q values remains the same as the biofilter areas increase.

Assume the 100 ft<sup>2</sup> biofilter has a square geometry, so the SmartDrain length =  $\sqrt{\text{biofilter surface area}}$  = 10 ft

SmartDrain drainage rate:

$$Q(L/S) = 0.0286 + 0.0015(L) + 0.0246(H)$$

Given: SmartDrain length = 10 ft with a head = 48 in

$$Q = 0.0286 + 0.0015(10) + 0.0246(48) = 1.22 L/s$$

To convert to cfs:

$$Q = 0.0353*Q (L/s) = 0.043 cfs$$

Minimum number of SmartDrains = 0.003 cfs/0.043 cfs = 0.07 (use 1 as need to roundup to next largest full integer value). A single SmartDrain 10 ft long has a much greater flow capacity than this small biofilter facility.

Maximum spacing of underdrains to ensure that the infiltrating water reaches the underdrain without causing ponding. Therefore, using the Hooghoudt equation:

$$S = \sqrt{\frac{4.k_s(m^2 + 2.d_e.m)}{q_{/24}}}$$

Where:

s maximum spacing between drains (ft)

q amount of water that the underdrain carries away (in/day),

 $K_s$  average saturated hydraulic conductivity of the drainage layer media (in/hr),

 $d_e$  effective depth (ft) (height of underdrains above the pond bottom),

m depth of water, or head, created over the pipes (ft).

### Design values for the Dewatering Equation

| d <sub>e</sub> (ft) | m (ft) | q (in/day) | $K_s$ (in/hr) |
|---------------------|--------|------------|---------------|
| 0.5                 | 0.5    | 30         | 30            |

The maximum spacing between tile drains using the design parameters given above:

$$S = \sqrt{\frac{4*30in/hr((0.5ft)^2 + 2*0.5ft*0.5ft)}{30in/day/24}} = 8 \text{ ft}$$

Minimum No. of SmartDrain for 100 ft<sup>2</sup> biofilter having a square geometry in example:

$$= \left(\frac{\text{Biofilter length}}{\text{SmartDrain spacing}}\right) * \left(\frac{\text{Biofilter width}}{\text{SmartDrain spacing}}\right)$$

$$= \left(\frac{10 \text{ ft}}{8 \text{ ft}}\right) * \left(\frac{10 \text{ ft}}{8 \text{ ft}}\right) = 2$$

Need to use the largest number of underdrains indicated by either option. Therefore, for a 100 ft<sup>2</sup> biofilter having a square geometry (10 ft by 10 ft), two SmartDrain strips are required.

A design example for various biofilter sizes, hydraulic conductivities, and 24 hour drain periods are summarized in Table 6 through 8.

Table 6. An Example Calculation Showing a Biofilter Facility Hydraulics and Design of Dewater Using SmartDrain (SD).

| •          |         |            | Porosity |            | Porosity  |          |         |          |            |
|------------|---------|------------|----------|------------|-----------|----------|---------|----------|------------|
|            | Ponding | Engineered | of       |            | of        | Head     | Storage | Drainage | Required   |
| surface    | depth   | media      | media    | Drainage   | drainage  | above SD | volume  | time     | drainage   |
| area (ft²) | (ft)    | layer (ft) | mix (%)  | layer (ft) | layer (%) | (ft)     | (ft³)   | (hr)     | rate (cfs) |
| 100        | 1.5     | 2          | 0.44     | 1          | 0.3       | 4        | 253     | 24       | 0.003      |
| 1000       | 1.5     | 2          | 0.44     | 1          | 0.3       | 4        | 2530    | 24       | 0.029      |
| 3000       | 1.5     | 2          | 0.44     | 1          | 0.3       | 4        | 7590    | 24       | 0.088      |
| 5000       | 1.5     | 2          | 0.44     | 1          | 0.3       | 4        | 12650   | 24       | 0.146      |
| 10000      | 1.5     | 2          | 0.44     | 1          | 0.3       | 4        | 25300   | 24       | 0.293      |

Table 7. Minimum No. of SmartDrain (SD) Required for a Biofilter Basin Having a Square Geometry

|                | Q (L/s), from<br>factorial |         |         | Drain volume<br>(cf)/SM = | Min. No. of | Example max.<br>spacing (= sqrt.<br>(A)/min No. of |
|----------------|----------------------------|---------|---------|---------------------------|-------------|----------------------------------------------------|
| SD length (ft) | design                     | Q (gpm) | Q (cfs) | [Q*t]                     | SD          | SD)                                                |
| 10             | 1.22                       | 19.41   | 0.043   | 3734.32                   | 1           | 10                                                 |
| 32             | 1.26                       | 19.92   | 0.044   | 3833.24                   | 1           | 32                                                 |
| 55             | 1.29                       | 20.47   | 0.046   | 3939.15                   | 2           | 27                                                 |
| 71             | 1.32                       | 20.85   | 0.046   | 4012.07                   | 4           | 18                                                 |
| 100            | 1.36                       | 21.55   | 0.048   | 4146.06                   | 7           | 14                                                 |

Table 8. Biofilter Basin Dewatering and Minimum No. of SmartDrain (SD) Required for a Biofilter Basin Based On SmartDrain Spacing.

| Baseu OII 3II                                     | iai tbi aiii spaciiig.                                                   |                                                               |                              |                                  |                |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|----------------------------------|----------------|--|--|
| q - the amount<br>of water that<br>the underdrain | K <sub>s</sub> -the average<br>saturated<br>hydraulic<br>conductivity of | de-the difference in elevation between the tile drain and the | m- head,                     | S-the max.                       | Min. number of |  |  |
| carries away                                      | the facility                                                             | والمام و موسوم مراما                                          |                              |                                  | CD (           |  |  |
| carries away                                      | the facility                                                             | impermeable                                                   | created over                 | spacing between                  | SD for square  |  |  |
| (in/day)                                          | media (in/hr)                                                            | layer (ft)                                                    | the tiles (ft)               | spacing between tile drains (ft) | geometry       |  |  |
|                                                   | <b>.</b>                                                                 | •                                                             |                              |                                  | •              |  |  |
| (in/day)                                          | media (in/hr)                                                            | layer (ft)                                                    | the tiles (ft)               | tile drains (ft)                 | geometry       |  |  |
| (in/day)<br>30                                    | media (in/hr)                                                            | layer (ft)                                                    | the tiles (ft)               | tile drains (ft)                 | geometry 2     |  |  |
| (in/day)<br>30<br>30                              | media (in/hr)<br>30<br>45                                                | layer (ft)<br>0.5<br>0.5                                      | the tiles (ft)<br>0.5<br>0.5 | tile drains (ft)<br>8<br>10      | geometry 2 1   |  |  |

Note: The largest number of SmartDrain was selected for the final model.

The accompanying spreadsheet (CEC SAR loading and underdrains Pitt Sept 28 2017.xlsx) performs many of these calculations to assist in the initial sizing of a biofilter facility based on the media flow rates and other features. Pitt, et al. (2008) describes how some of these relationships were developed. Continuous

modeling with WinSLAMM is needed to produce production functions that consider flow routing through the device and infiltration and performance expectations for a wide range of events.

## 2) Retention of Stormwater Particulates by Biofilter Media

Sileshi (2013), as part of the comprehensive investigation of biofilter media, also examined the retention of stormwater particulates of different particle sizes. This information is also available from a number of other research projects, as summarized below.

## **Loading Capacity before Media Clogging**

The values in Table 9 are from the detailed media tests

Table 9. Clogging Conditions Observed during Long-Term Full-Depth Column Tests (Pitt and Clark 2010)

| Media, ranked by clogging potential                                                        | Cumulative load to initial maintenance, at 5 m/d (kg/m²)* | Cumulative load to clogging, if no maintenance at 1 m/d (kg/m²)* |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|
| Granular Activated<br>Carbon (GAC)                                                         | 7 (35)                                                    | 7.5 (38)                                                         |
| Peat moss                                                                                  | 3.3 (17)                                                  | 4 (20)                                                           |
| Rhyolite sand                                                                              | 6.5 33)                                                   | 7 (35)                                                           |
| Site sand                                                                                  | 0.3 (1.5)                                                 | 2 (10)                                                           |
| Site zeolite                                                                               | 3.1 (15)                                                  | 3.5 (17)                                                         |
| Surface modified zeolite (SMZ)                                                             | 4.8 (24)                                                  | 5.5 (28)                                                         |
| Rhyolite sand and surface modified zeolite                                                 | 7.5 (38)                                                  | 7.5 (38)                                                         |
| Rhyolite sand, surface<br>modified zeolite, and<br>granular activated carbon               | 9.7 (49)                                                  | 10.5 (53)                                                        |
| Rhyolite sand, surface<br>modified zeolite, granular<br>activated carbon, and<br>peat moss | 10.5 (53)                                                 | 11 (55)                                                          |
| *Column study results and                                                                  | estimated full-scale results, wi                          | th 5X factor in                                                  |

parentheses

The Master Table shows the recommended maximum retention for each of the media and mixtures.

#### **Particulate Retention Equations**

Four main data sources and groups of information are presented as 13 different categories for the particulate retention calculations:

Sileshi (2013) column tests:

Fine textured mixtures

Intermediate textured mixtures

Coarse textured mixtures

Boeing media tests (Pitt and Clark 2010):

Boeing GAC (granular activated carbon)

Boeing peat

Boeing site filter sand (a coarse textured sand)

Boeing Rhyolite sand (a fine textured sand)

**Boeing site Zeolite** 

Boeing R-SMZ (mixture of Rhyolite sand and surface modified zeolite (75/25))

Boeing R-SMZ-GAC (mixture of Rhyolite sand, surface modified zeolite, and granular activated carbon (33/33/33))

Boeing R-SMZ-GAC-PM (mixture of Rhyolite sand, surface modified zeolite, granular activated carbon, and peat moss (30/30/30/10))

Kansas City EPA Demonstration Project biofilters (Pitt, et al. 2014):

Biofilter media (30% planting soil; 20% organic compost; 50% sand ("Seattle" mix))

Wisconsin DNR/USGS biofilter media tests (Bannerman, personal communication):

Neenah WI mix 2 (86% sand, 11% peat moss, and 3% Imbrium)

The following tables present these data, while Appendix C1 includes some of the basic information and statistical analyses.

#### Detailed Column Tests of Media Retention of Stormwater Particulates by Size

The following tables summarize the Sileshi (2013) laboratory column test results (fine, intermediate, and coarse categories). There were no large particle sizes found in the effluent from these columns for stormwater particles larger than about 300  $\mu$ m. Most of the other size categories have consistent effluent concentrations that did not change as the influent concentrations changed (the same concentrations for all influent concentrations). However, the COV values are moderate to high, as typical for most stormwater, and should be used to statistically vary the effluent concentrations using Monte Carlo options. For the very coarse biofilter media material, the silts will be retained in the voids of the media.

Table 10. Low to High Concentrations (100 to 800 SSC mg/L), fine media (about 300 um) (data from Sileshi 2013)

| >1000 um     |                                       | 300 to 10 | 300 to 1000 um |           | 100 to 300 um 30 to 100 um |                | .00 um | 10 to 30 um |       | 3 to 10 um |       | 1 to 3 um |     | total          |           |
|--------------|---------------------------------------|-----------|----------------|-----------|----------------------------|----------------|--------|-------------|-------|------------|-------|-----------|-----|----------------|-----------|
| inf          | efl                                   | inf       | efl            | inf       | efl                        | inf            | efl    | inf         | efl   | inf        | efl   | inf       | efl | inf            | efl       |
| no sign regr | no sign regression no sign regression |           | gression       | no sign r | egression                  | intercept sign |        | intercept   |       | intercept  |       | no likely |     | intercept sign |           |
|              |                                       |           |                |           |                            |                |        | sign        |       | sign       |       | removal   |     |                |           |
| mean         | efl = 0                               | mean      | efl = 0        | mean      | efl = 0.06                 | mean           | efl =  | mean        | efl = | mean       | efl = |           |     | mean           | efl = 4.5 |
|              |                                       |           |                |           |                            |                | 0.30   |             | 1.55  |            | 2.43  |           |     |                |           |
| COV          | n/a                                   | COV       | n/a            | COV       | 1.33                       | COV            | 0.5    | COV         | 0.66  | COV        | 0.3   |           |     | COV            | 0.39      |

Effluent particle size data are not available for the intermediate and very coarse media. Therefore, the particle size distributions for the effluent for the fine media were used to distribute the total SSC concentration for these coarser textured media. For this reason, these data are only used in the absence of other information for the other media components and mixtures.

Table 11. Low to High Concentrations (50 to 500 SSC mg/L), intermediate media (about 1000 to 2000 um) (data from Sileshi 2013)

|          | _       |           | •       |          | O. 7.      |          | •            |      | , ,   |              |       |                      |     |            |      |
|----------|---------|-----------|---------|----------|------------|----------|--------------|------|-------|--------------|-------|----------------------|-----|------------|------|
| >1000 um |         | 300 to 10 | 000 um  | 100 to 3 | 300 um     | 30 to 10 | 30 to 100 um |      | 0 um  | m 3 to 10 um |       | 1 to 3 um            |     | total      |      |
| inf      | efl     | inf       | efl     | inf      | efl        | inf      | efl          | inf  | efl   | inf          | efl   | inf                  | efl | inf        | efl  |
|          |         |           |         |          |            |          |              |      |       |              |       | no likely<br>removal |     | no sign    | 1    |
|          |         |           |         |          |            |          |              |      |       |              |       |                      |     | regression |      |
| mean     | efl = 0 | mean      | efl = 0 | mean     | efl = 0.70 | mean     | efl = 3.33   | mean | efl = | mean         | efl = |                      |     | mean       | 49.6 |
|          |         |           |         |          |            |          |              |      | 17.1  |              | 26.8  |                      |     |            |      |
|          |         |           |         |          |            |          |              |      |       |              |       |                      |     | COV        | 0.63 |
|          |         |           |         |          |            |          |              |      |       |              |       |                      |     |            |      |

Table 12. Low to High Concentrations (50 to 500 SSC mg/L) Very Coarse Media (pea gravel and coarse gravel; >5,000 um D50) (data from Sileshi 2013)

| >1000 um |         | 300 to 1 | L000 um | 100 to 3 | 300 um     | 30 to 10 | 00 um      | 10 to 3 | 0 um  | 3 to 10 | um    | 1 to 3  | um   | total   |           |
|----------|---------|----------|---------|----------|------------|----------|------------|---------|-------|---------|-------|---------|------|---------|-----------|
| inf      | efl     | inf      | efl     | inf      | efl        | inf      | efl        | inf     | efl   | inf     | efl   | inf     | efl  | inf     | efl       |
|          |         |          |         |          |            |          |            |         |       |         |       | no like | ely  | no sign | intercept |
|          |         |          |         |          |            |          |            |         |       |         |       | remov   | al 💮 |         |           |
|          |         |          |         |          |            |          |            |         |       |         |       |         |      | y = 1.6 | 9 x       |
| mean     | efl = 0 | mean     | efl = 0 | mean     | efl = 6.17 | mean     | efl = 29.4 | mean    | efl = | mean    | efl = |         |      | mean    | 438       |
|          |         |          |         |          |            |          |            |         | 150   |         | 237   |         |      |         |           |
|          |         |          |         |          |            |          |            |         |       |         |       |         |      | COV     | 0.75      |

#### Tests of Media Components and Mixtures for Boeing

An extensive series of laboratory and pilot-scale tests were conducted by Pitt and Clark (2010) as part of a research project to test and develop a high-performance biofilter media mixture to treat a wide range of stormwater pollutants at an aerospace test facility for the Boeing Co. that is being restored. The research report describes the series of different tests conducted with these media, including the long-term column tests reported here. Stormwater particulate retention for different particle sizes were an important part of these tests. The following tables show the resulting regression equations that were developed and recommended for use in the WinSLAMM biofilter calculations, as noted on the master table. Clark and Pitt (2009a) also describe a power equation for particulate retention in the media, while Clark, et al. (2006) summarizes some of the earlier test results.

Table 13. Removals for Granular Activated Carbon for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted otherwise                  | p that effluent equals influent* | regression equation<br>(or Y = constant,<br>and COV also<br>shown)** | Mean Influent Concentration (approximate range)*** | Mean Effluent<br>Concentration*** | Reduction (%)*** |
|-----------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------|
| < 0.45 um particles, mg/L                                 | 0.5                              | Y = X                                                                | 199 (80 to 250)                                    | 202                               | 0                |
| 0.45 to 3 um particles, mg/L                              | 0.014                            | Y = 3.3 (0.62)                                                       | 9.9 (3 to 22)                                      | 3.3                               | 67               |
| 3 to 12 um particles, mg/L                                | 0.009                            | Y = 1.2 (0.69)                                                       | 50.6 (22 to 90)                                    | 1.2                               | 98               |
| 12 to 30 um particles, mg/L                               | 0.009                            | Y = 0.71 (0.53)                                                      | 54.5 (18 to 90)                                    | 0.62                              | 99               |
| 30 to 60 um particles, mg/L                               | 0.009                            | Y = 2.0 (0.73)                                                       | 37.4 (3 to 80)                                     | 1.1                               | 97               |
| 60 to 120 um particles, mg/L                              | 0.009                            | Y = 0.96 (0.86)                                                      | 20.0 (2 to 58)                                     | 0.62                              | 97               |
| 120 to 250 um particles, mg/L                             | 0.009                            | Y = 0.44 (1.3)                                                       | 5.1 (0 to 17)                                      | 0.3                               | 94               |
| 250 to 1180 um particles, mg/L (no particles found >1180) | 0.021                            | Y = 2.6 (0.56)                                                       | 13.9 (3 to 45)                                     | 2.5                               | 82               |
| SSC, mg/L                                                 | 0.009                            | Y = 10.2 (0.27)                                                      | 191 (50 to 400)                                    | 9.7                               | 95               |
| TSS (0.45 to 75 μm), mg/L                                 | 0.009                            | Y = 6.3 (0.22)                                                       | 161 (50 to 310)                                    | 6.5                               | 96               |

<sup>\*</sup> calculated using the sign test, ties ignored in the count; "no data" is when no samples were analyzed

Table 14. Removals for Peat Moss for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted otherwise                  | p that effluent equals influent* | regression equation<br>(or Y = constant,<br>and COV also<br>shown)** | Mean Influent Concentration (approximate range)*** | Mean Effluent<br>Concentration*** | Reduction (%)*** |  |
|-----------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------|--|
| < 0.45 um particles, mg/L                                 | 0.12                             | Y = X                                                                | 199 (80 to 250)                                    | 216                               | 0*               |  |
| 0.45 to 3 um particles, mg/L                              | 0.31                             | Y = X                                                                | 10.6 (3 to 22)                                     | 4.7                               | 0*               |  |
| 3 to 12 um particles, mg/L                                | 0.064                            | Y = 0.50 (0.7)                                                       | 54.9 (22 to 90)                                    | 0.5                               | 99               |  |
| 12 to 30 um particles, mg/L                               | 0.009                            | Y = 1.3 (1.7)                                                        | 54.5 (18 to 90)                                    | 1.3                               | 98               |  |
| 30 to 60 um particles, mg/L                               | 0.009                            | Y = 1.6 (0.9)                                                        | 37.4 (3 to 80)                                     | 1.6                               | 96               |  |
| 60 to 120 um particles, mg/L                              | 0.021                            | Y = 1.8 (1.4)                                                        | 20.0 (2 to 58)                                     | 1                                 | 95               |  |
| 120 to 250 um particles, mg/L                             | 0.014                            | Y = 0.27 (1.0)                                                       | 5.1 (0 to 17)                                      | 0.27                              | 95               |  |
| 250 to 1180 um particles, mg/L (no particles found >1180) | 0.088                            | Y = 4.7 (0.92)                                                       | 13.9 (3 to 45)                                     | 3.5                               | 75               |  |
| SSC, mg/L                                                 | 0.045                            | Y =7.0 (0.3)                                                         | 206 (50 to 400)                                    | 9.9                               | 94               |  |
| TSS (0.45 to 75 μm), mg/L                                 | 0.045                            | Y = 7.1 (0.5)                                                        | 171 (50 to 310)                                    | 7.1                               | 96               |  |

<sup>\*\* &</sup>lt;LOD substituted with half of the detection limits for these calculations; if predicted effluent is > influent, then use influent concentration (except for pH, and when significant increases are noted in the % removal column)

<sup>\*\*\* &</sup>lt;LOD substituted with half of the detection limits for these calculations

Table 15. Removals for Rhyolite Sand for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted     | p that    | regression equation | Mean Influent          | Mean Effluent    | Reduction (%)*** |
|------------------------------------|-----------|---------------------|------------------------|------------------|------------------|
| otherwise                          | effluent  | (or Y = constant,   | Concentration          | Concentration*** |                  |
|                                    | equals    | and COV also        | (approximate range)*** |                  |                  |
|                                    | influent* | shown)**            |                        |                  |                  |
| < 0.45 um particles, mg/L          | 0.2       | Y = X               | 199 (80 to 250)        | 228              | 0*               |
| 0.45 to 3 um particles, mg/L       | 0.25      | Y = X               | 10.6 (3 to 22)         | 6.1              | 0*               |
| 3 to 12 um particles, mg/L         | 0.009     | Y = 1.7 (0.7)       | 54.9 (22 to 90)        | 1.7              | 97               |
| 12 to 30 um particles, mg/L        | 0.009     | Y = 1.21 (1.2)      | 54.5 (18 to 90)        | 1.2              | 98               |
| 30 to 60 um particles, mg/L        | 0.009     | Y = 4.1 (1.2)       | 37.4 (3 to 80)         | 2.4              | 94               |
| 60 to 120 um particles, mg/L       | 0.021     | Y = 1.94 (1.5)      | 20.0 (2 to 58)         | 1.07             | 95               |
| 120 to 250 um particles, mg/L      | 0.009     | Y = 0.44 (1.3)      | 5.1 (0 to 17)          | 0.31             | 94               |
| 250 to 1180 um particles, mg/L (no | 0.045     | Y = 5.3 (0.90)      | 13.9 (3 to 45)         | 3.8              | 73               |
| particles found >1180)             |           |                     |                        |                  |                  |
| SSC, mg/L                          | 0.014     | Y = 7.30 (0.5)      | 206 (50 to 400)        | 13.4             | 93               |
| TSS (0.45 to 75 μm), mg/L          | 0.009     | Y = 3.52 (0.6)      | 171 (50 to 310)        | 10.2             | 94               |

## Table 16. Removals for Site Sand for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted otherwise                  | p that effluent equals influent* | regression equation<br>(or Y = constant,<br>and COV also<br>shown)** | Mean Influent Concentration (approximate range)*** | Mean Effluent<br>Concentration*** | Reduction (%)*** |
|-----------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------|
| < 0.45 um particles, mg/L                                 | 0.25                             | Y = X                                                                | 199 (80 to 250)                                    | 202                               | 0*               |
| 0.45 to 3 um particles, mg/L                              | 0.04                             | Y = 3.2 (1.0)                                                        | 9.9 (3 to 22)                                      | 3.2                               | 68               |
| 3 to 12 um particles, mg/L                                | 0.022                            | Y = 1.7 (0.26)                                                       | 50.6 (22 to 90)                                    | 2.4                               | 95               |
| 12 to 30 um particles, mg/L                               | 0.022                            | Y = 1.6 (1.2)                                                        | 54.5 (18 to 90)                                    | 1.6                               | 97               |
| 30 to 60 um particles, mg/L                               | 0.022                            | Y = 1.8 (1.1)                                                        | 37.4 (3 to 80)                                     | 1.8                               | 95               |
| 60 to 120 um particles, mg/L                              | 0.022                            | Y = 0.067X                                                           | 20.0 (2 to 58)                                     | 1.3                               | 94               |
| 120 to 250 um particles, mg/L                             | 0.022                            | Y = 0.002X                                                           | 5.1 (0 to 17)                                      | 0.3                               | 94               |
| 250 to 1180 um particles, mg/L (no particles found >1180) | 0.11                             | Y = 2.63 (0.53)                                                      | 14.4 (3 to 45)                                     | 2.6                               | 82               |
| SSC, mg/L                                                 | 0.022                            | Y =13.3 (0.49)                                                       | 191 (50 to 400)                                    | 13.3                              | 93               |
| TSS (0.45 to 75 μm), mg/L                                 | 0.022                            | Y = 9.5 (0.60)                                                       | 161 (50 to 310)                                    | 9.5                               | 94               |

## Table 17. Removals for Site Zeolite for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted     | p that    | regression equation | Mean Influent          | Mean Effluent    | Reduction (%)*** |
|------------------------------------|-----------|---------------------|------------------------|------------------|------------------|
| otherwise                          | effluent  | (or Y = constant,   | Concentration          | Concentration*** |                  |
|                                    | equals    | and COV also        | (approximate range)*** |                  |                  |
|                                    | influent* | shown)**            |                        |                  |                  |
| < 0.45 um particles, mg/L          | 0.43      | Y = X               | 198 (80 to 250)        | 183              | 0*               |
| 0.45 to 3 um particles, mg/L       | 0.031     | Y = 2.5 (1.1)       | 9.9 (3 to 22)          | 2.5              | 75               |
| 3 to 12 um particles, mg/L         | 0.009     | Y = 1.6 (0.81)      | 50.6 (22 to 90)        | 1.6              | 97               |
| 12 to 30 um particles, mg/L        | 0.009     | Y = 0.78 (1.1)      | 54.5 (18 to 90)        | 0.78             | 99               |
| 30 to 60 um particles, mg/L        | 0.009     | Y = 2.0 (1.3)       | 37.4 (3 to 80)         | 1                | 97               |
| 60 to 120 um particles, mg/L       | 0.014     | Y = 1.3 (1.5)       | 20.0 (2 to 58)         | 0.73             | 96               |
| 120 to 250 um particles, mg/L      | 0.014     | Y = 0.31 (1.5)      | 5.1 (0 to 17)          | 0.2              | 96               |
| 250 to 1180 um particles, mg/L (no | 0.064     | Y = 4.0 (0.61)      | 13.9 (3 to 45)         | 2.9              | 79               |
| particles found >1180)             |           |                     |                        |                  |                  |
| SSC, mg/L                          | 0.009     | Y =12 (0.52)        | 191 (50 to 400)        | 9.7              | 95               |
| TSS (0.45 to 75 μm), mg/L          | 0.009     | Y = 6.1 (0.53)      | 161 (50 to 310)        | 6.3              | 96               |

Table 18. Removals for Surface Modified Zeolite for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted     | p that    | regression equation | Mean Influent          | Mean Effluent    | Reduction (%)*** |
|------------------------------------|-----------|---------------------|------------------------|------------------|------------------|
| otherwise                          | effluent  | (or Y = constant,   | Concentration          | Concentration*** |                  |
|                                    | equals    | and COV also        | (approximate range)*** |                  |                  |
|                                    | influent* | shown)**            |                        |                  |                  |
| < 0.45 um particles, mg/L          | n/a       | Y = X (by           | 199 (80 to 250)        | 232              | 0*               |
|                                    |           | observation)        |                        |                  |                  |
| 0.45 to 3 um particles, mg/L       | 0.014     | Y = 0.40X           | 9.9 (3 to 22)          | 3.8              | 62               |
| 3 to 12 um particles, mg/L         | 0.009     | Y = 1.6 (0.56)      | 50.6 (22 to 90)        | 1.6              | 97               |
| 12 to 30 um particles, mg/L        | 0.009     | Y = 0.71 (0.40)     | 54.5 (18 to 90)        | 0.74             | 99               |
| 30 to 60 um particles, mg/L        | 0.009     | Y = 1.9 (0.90)      | 37.4 (3 to 80)         | 1.3              | 97               |
| 60 to 120 um particles, mg/L       | 0.009     | Y = 0.97 (1.1)      | 20.0 (2 to 58)         | 0.97             | 95               |
| 120 to 250 um particles, mg/L      | 0.009     | Y = 0.19 (1.4)      | 5.1 (0 to 17)          | 0.19             | 96               |
| 250 to 1180 um particles, mg/L (no | 0.045     | Y = 3.5 (0.52)      | 13.9 (3 to 45)         | 3.1              | 78               |
| particles found >1180)             |           |                     |                        |                  |                  |
| SSC, mg/L                          | 0.009     | Y = 7.7 (0.35)      | 191 (50 to 400)        | 11.7             | 94               |
| TSS (0.45 to 75 μm), mg/L          | 0.009     | Y = 0.047X          | 161 (50 to 310)        | 8                | 95               |

Table 19. Removals for Rhyolite Sand - Surface Modified Zeolite (R-SMZ) Mixture for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted otherwise                  | p that effluent<br>equals<br>influent* | regression equation (or Y = constant, and COV also shown)** | Mean Influent Concentration (approximate range)*** | Mean Effluent<br>Concentration*** | Reduction (%)*** |
|-----------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------|
| < 0.45 um particles, mg/L                                 | 0.25                                   | Y = X                                                       | 199 (80 to 250)                                    | 202                               | 0*               |
| 0.45 to 3 um particles, mg/L                              | 0.04                                   | Y = 3.2 (1.0)                                               | 9.9 (3 to 22)                                      | 3.2                               | 68               |
| 3 to 12 um particles, mg/L                                | 0.022                                  | Y = 1.7 (0.26)                                              | 50.6 (22 to 90)                                    | 2.4                               | 95               |
| 12 to 30 um particles, mg/L                               | 0.022                                  | Y = 1.6 (1.2)                                               | 54.5 (18 to 90)                                    | 1.6                               | 97               |
| 30 to 60 um particles, mg/L                               | 0.022                                  | Y = 1.8 (1.1)                                               | 37.4 (3 to 80)                                     | 1.8                               | 95               |
| 60 to 120 um particles, mg/L                              | 0.022                                  | Y = 0.067X                                                  | 20.0 (2 to 58)                                     | 1.3                               | 94               |
| 120 to 250 um particles, mg/L                             | 0.022                                  | Y = 0.002X                                                  | 5.1 (0 to 17)                                      | 0.3                               | 94               |
| 250 to 1180 um particles, mg/L (no particles found >1180) | 0.11                                   | Y = 2.63 (0.53)                                             | 14.4 (3 to 45)                                     | 2.6                               | 82               |
| SSC, mg/L                                                 | 0.022                                  | Y =13.3 (0.49)                                              | 191 (50 to 400)                                    | 13.3                              | 93               |
| TSS (0.45 to 75 μm), mg/L                                 | 0.022                                  | Y = 9.5 (0.60)                                              | 161 (50 to 310)                                    | 9.5                               | 94               |

Table 20. Removals for Rhyolite Sand - Surface Modified Zeolite - Granular Activated Carbon Mixture (R-SMZ-GAC) for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted     | p that effluent | regression        | Mean Influent          | Mean Effluent    | Reduction (%)*** |
|------------------------------------|-----------------|-------------------|------------------------|------------------|------------------|
| otherwise                          | equals          | equation (or Y =  | Concentration          | Concentration*** |                  |
|                                    | influent*       | constant, and COV | (approximate range)*** |                  |                  |
|                                    |                 | also shown)**     |                        |                  |                  |
| < 0.45 um particles, mg/L          | 0.25            | Y = X             | 199 (80 to 250)        | 225              | 0*               |
| 0.45 to 3 um particles, mg/L       | 0.16            | Y = X             | 9.9 (3 to 22)          | 7.2              | 0*               |
| 3 to 12 um particles, mg/L         | 0.009           | Y = 4.0 (0.5)     | 54.9 (22 to 90)        | 2.9              | 95               |
| 12 to 30 um particles, mg/L        | 0.009           | Y = 0.68 (0.76)   | 54.5 (18 to 90)        | 0.67             | 99               |
| 30 to 60 um particles, mg/L        | 0.009           | Y = 1.1 (0.70)    | 37.4 (3 to 80)         | 1                | 97               |
| 60 to 120 um particles, mg/L       | 0.009           | Y = 0.85 (0.77)   | 20.0 (2 to 58)         | 0.76             | 96               |
| 120 to 250 um particles, mg/L      | 0.009           | Y = 0.08 (1.4)    | 5.1 (0 to 17)          | 0.08             | 98               |
| 250 to 1180 um particles, mg/L (no | 0.075           | Y = 5.0 (0.66)    | 13.9 (3 to 45)         | 4.1              | 71               |
| particles found >1180)             |                 |                   |                        |                  |                  |
| SSC, mg/L                          | 0.009           | Y = 10.2 (0.24)   | 206 (50 to 400)        | 13.6             | 93               |
| TSS (0.45 to 75 μm), mg/L          | 0.009           | Y = 10.2 (0.37)   | 171 (50 to 310)        | 10.2             | 94               |

Table 21. Removals for Rhyolite Sand - Surface Modified Zeolite - Granular Activated Carbon - Peat Moss (R-SMZ-GAC-PM) for Full-Depth Column Tests (Pitt and Clark 2010)

| Constituent, mg/L unless noted     | p that effluent | regression        | Mean Influent          | Mean Effluent    | Reduction (%)*** |
|------------------------------------|-----------------|-------------------|------------------------|------------------|------------------|
| otherwise                          | equals          | equation (or Y =  | Concentration          | Concentration*** |                  |
|                                    | influent*       | constant, and COV | (approximate range)*** |                  |                  |
|                                    |                 | also shown)**     |                        |                  |                  |
| < 0.45 um particles, mg/L          | 0.2             | Y = X             | 199 (80 to 250)        | 205              | 0*               |
| 0.45 to 3 um particles, mg/L       | 0.031           | Y = 4.8 (0.70)    | 9.9 (3 to 22)          | 4.8              | 52               |
| 3 to 12 um particles, mg/L         | 0.009           | Y = 4.1 (0.86)    | 50.6 (22 to 90)        | 2.6              | 95               |
| 12 to 30 um particles, mg/L        | 0.009           | Y = 0.48 (0.57)   | 54.5 (18 to 90)        | 0.48             | 99               |
| 30 to 60 um particles, mg/L        | 0.009           | Y = 1.3 (0.79)    | 37.4 (3 to 80)         | 0.97             | 97               |
| 60 to 120 um particles, mg/L       | 0.009           | Y = 1.0 (0.71)    | 20.0 (2 to 58)         | 0.78             | 96               |
| 120 to 250 um particles, mg/L      | 0.009           | Y = 0.15 (0.88)   | 5.1 (0 to 17)          | 0.15             | 97               |
| 250 to 1180 um particles, mg/L (no | 0.009           | Y = 2.4 (0.33)    | 13.9 (3 to 45)         | 2.8              | 80               |
| particles found >1180)             |                 |                   |                        |                  |                  |
| SSC, mg/L                          | 0.009           | Y =9.2 (0.48)     | 191 (50 to 400)        | 12.6             | 93               |
| TSS (0.45 to 75 μm), mg/L          | 0.009           | Y = 14.5 (0.82)   | 161 (50 to 310)        | 14.5             | 91               |

#### Full-Scale Tests of Biofilter Retention of Stormwater Particles

The Kansas City project was an EPA-funded demonstration project to show how green infrastructure can be integrated into areas having combined sewers (Pitt, et al. 2013, and summarized by Pitt and Talebi 2013). This was an extensive project and included the construction of several hundred controls in the test area. An adjacent area with no stormwater controls was used for comparison. The monitoring program lasted for about 2 years and included more than 50 storms. However, the monitored biofilters worked very well and only six events produced underdrain flows that could be sampled and analyzed. The media was comprised of 30% planting soil, 20% organic compost, and 50% sand ("Seattle" mix). The performance data for these biofilters are summarized below and the details are shown in Appendix C4.

The Wisconsin full-scale biofilter tests were conducted in Neenah, WI (Bannerman, personal communication). These were especially constructed biofilters to compare different test mixtures and biofilter designs. The data shown below are for the mix-2, which was comprised of 86% sand, 11% peat moss, and 3% Imbrium phosphorus removal material. The biofilters were sealed and all of the treated effluent was collected by underdrains and analyzed, resulting in 44 sets of data. The performance data for these tests are shown below, and details are shown in Appendix C5.

The summary performance data shown below indicate the range of influent concentrations for each particle size category, along with the regression equations and significance of the overall equations and coefficients. In some cases, only the intercepts are significant for significant regression equations. In this case, the effluent is not related to influent concentrations and is a constant value (the COV values should be applied with a Monte Carlo procedure to account for the remaining variation). Depending on the plots, if the overall regression was not significant, the recommended effluent value is also shown as a constant (the average and COV of the monitored effluent concentrations). The larger amount of data from the Wisconsin tests indicated that most of the data were not normally distributed, so log10 transformations were used to develop those equations. The few Kansas City data did not indicate nonnormal conditions, so those data were not transformed. Sime of the equations are shown to be highly significant. However, there is still a lot of variation when the predicted effluent concentration is compared to the observed effluent concentration. Therefore, the observed effluent COV values should also be applied to these calculated effluent values using a Monte Carlo process.

Table 22. Kansas City Biofilter Tests ("Seattle" biofilter mix) (Pitt, et al. 2014)

|             | min<br>influent<br>conc,<br>mg/L | max influent<br>conc, mg/L | median<br>reduction<br>(%) | count | influent<br>COV | effluent<br>COV | p of<br>regression<br>equation | p of<br>intercept | p of slope<br>term | final equation             |
|-------------|----------------------------------|----------------------------|----------------------------|-------|-----------------|-----------------|--------------------------------|-------------------|--------------------|----------------------------|
| 0.45 to 3   | 0.51                             | 2.86                       | -56.2                      | 6     | 0.45            | 0.31            | 0.012                          | n/a               | 0.007              | y = 1.089x                 |
| 3 to 12     | 18.8                             | 94.04                      | 55.5                       | 6     | 0.66            | 0.5             | 0.086                          | n/a               | 0.072              | y = 0.234x                 |
| 12 to 30    | 12.1                             | 202.9                      | 62.6                       | 6     | 1.12            | 0.8             | 0.0068                         | n/a               | 0.0036             | y = 0.211x                 |
| 30 to 60    | 9.44                             | 175.3                      | 65.3                       | 6     | 1.44            | 0.86            | 0.0042                         | n/a               | 0.002              | y = 0.195x                 |
| 60 to 120   | 5.6                              | 104.7                      | 73.7                       | 6     | 1.38            | 0.67            | 0.18                           | n/a               | 0.17               | y = 4.9 mg/L (COV = 0.66)  |
| 120 to 250  | 0                                | 21.9                       | 81.3                       | 6     | 1.14            | 1.06            | 0.0062                         | n/a               | 0.0033             | y = 0.20x                  |
| 250 to 1180 | 13.7                             | 112.9                      | 72.3                       | 6     | 0.69            | 0.56            | 0.098                          | n/a               | 0.085              | y = 12.6 mg/L (COV = 0.56) |
| >1180       | 0                                | 0                          | n/a                        | 6     |                 |                 |                                |                   |                    | y = 0                      |
| Total SSC   | 61                               | 595                        | 62.4                       | 6     | 0.81            | 0.51            | 0.011                          | n/a               | 0.0067             | y = 0.215x                 |

Table 23. Wisconsin Media 2 Neenah biofilter tests (mix 2 only available) (Bannerman, personal communication)

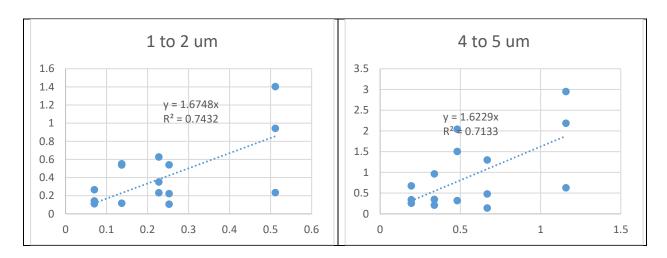

|            |          |          | •         |       |          |          |            |           |            | ·                                            |
|------------|----------|----------|-----------|-------|----------|----------|------------|-----------|------------|----------------------------------------------|
|            | min      | max      | median    | count | influent | effluent | p of       | p of      | p of slope | final equation                               |
|            | influent | influent | reduction |       | COV      | COV      | regression | intercept | term       |                                              |
|            | conc     | conc     | (%)       |       |          |          | equation   |           |            |                                              |
| 0.45 to 2  | 0.56     | 60       | 56        | 44    | 1.3      | 0.72     | 2.10E-05   | n/a       | 2.00E-05   | log effluent = 0.346 (log influent)          |
| 2 to 4     | 0.07     | 86       | 86        | 44    | 2.4      | 0.81     | 0.017      | 2.20E-11  | 0.017      | log effluent = -0.743 + 0.320 (log influent) |
| 4 to 8     | 0.03     | 36       | 89        | 44    | 1.8      | 0.88     | 0.0086     | 1.30E-17  | 0.0086     | log effluent = -1.037 + 0.319 (log influent) |
| 8 to 16    | 0.04     | 29       | 90        | 44    | 1.5      | 0.91     | 0.011      | 5.40E-15  | 0.011      | log effluent = -0.99 + 0.329 (log influent)  |
| 16 to 31   | 0.08     | 23       | 93        | 44    | 1.3      | 0.85     | 0.046      | 1.70E-12  | 0.046      | log effluent = -0.969 + 0.331 (log influent) |
| 31 to 63   | 0.96     | 52       | 88        | 44    | 1.2      | 1.2      | 0.00014    | n/a       | 0.00014    | effluent = 0.48 mg/L; COV = 1.2              |
| 63 to 125  | 0.8      | 52       | 90        | 44    | 1        | 0.92     | 0.0027     | n/a       | 0.0027     | effluent =0.65 mg/L; COV = 0.92              |
| 125 to 250 | 0.27     | 41       | 88        | 44    | 0.95     | 1.2      | 0.6        | 0.00081   | 0.6        | effluent = 0.40 mg/L; COV = 1.15             |
| 250 to 500 | 0.02     | 33       | 87        | 40    | 1.8      | 1.4      | 0.31       | 2.30E-07  | 0.31       | effluent= 0.34 mg/L; 1.4                     |
| >500       | 0.14     | 54       | 86        | 43    | 1.8      | 1.2      | 0.76       | 0.00027   | 0.76       | effluent = 0.32mg/L; COV = 1.2               |
| SSC        | 4        | 262      | 82        | 44    | 1        | 0.65     | 0.13       | 0.0011    | 0.13       | effluent = 6 mg/L; COV = 0.65                |
|            |          |          |           |       |          |          |            |           |            |                                              |

Table 24. Comments on the use of the WI Neenah biofilter equations

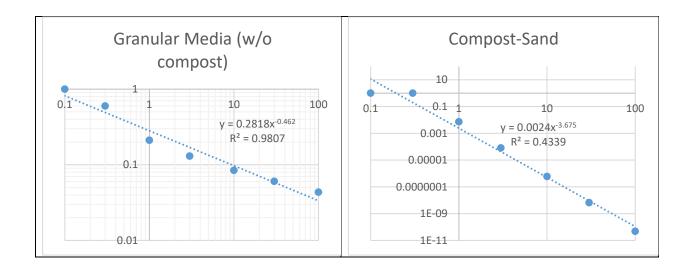
| SSC        | constant effluent conc (but not larger than influent conc)         |  |
|------------|--------------------------------------------------------------------|--|
| >500       | constant effluent conc (but not larger than influent conc)         |  |
| 250 to 500 | constant effluent conc (but not larger than influent conc)         |  |
| 125 to 250 | constant effluent conc (but not larger than influent conc)         |  |
| 63 to 125  | very small apparent slope term (but not larger than influent conc) |  |
| 31 to 63   | very small apparent slope term (but not larger than influent conc) |  |
| 16 to 31   | apply effluent COV to equation coefficients                        |  |
| 8 to 16    | apply effluent COV to equation coefficients                        |  |
| 4 to 8     | apply effluent COV to equation coefficients                        |  |
| 2 to 4     | apply effluent COV to equation coefficients                        |  |
| 0.45 to 2  | apply effluent COV to equation coefficients                        |  |

## Removal of Small Stormwater Particulates

Most of the laboratory and field monitoring tests of biofilter media have limited information for the removal of fine particulates, beyond the indication that removal is not expected, or that some media washout was observed (as indicated in Sileshi's 2013 results). During tests using pre-settled stormwater, Clark and Pitt (1999) obtained removal data for the smaller particles during long-duration pilot-scale tests in the field. The resulting plots for the 1 to 2  $\mu$ m and 4 to 5  $\mu$ m particle size removals are shown below:



These plots and analyses were prepared by combining the granular media (not found to vary significantly). The equations were highly significant based on ANOVA results. These plots were also similar and indicated a moderate flushing of these fines during these long tests. The following equation was therefore shown on the summary table for most media (that did not have specific small particle size removal data):


$$y = 1.65X$$

This equation is used for 0.45 to 3 um size for all bioretention media, indicating about 65% increase in concentrations for these small particles. Again, even though this equation is highly significant, there is still substantial variation in the results. A COV of about 0.85 and a Monte Carlo calculation is recommended to incorporate this uncertainty in the calculated effluent quality. Appendix C2 shows the basic data for these plots.

## **Effects of Solids Accumulation on Flow Rate Reductions**

As solid material accumulates in the biofilter media, the treatment flow rate decreases. Clark (2000) developed clogging equations associated with accumulated loading. The following are plots of here resulting equations for two groups of data: all granular media combined and a separate plot for compost-sand mixtures. These plots show treatment flow rates (m/day) vs. sediment accumulation (kg/m²). The granular media is seen to lose an order of magnitude of flow capacity after about 8 kg/m²

acculturation and about 2 orders of flow capacity after about 30 kg/m<sup>2</sup>. The compost-sand flow rate losses are much faster, with 1 order of magnitude of flow capacity lost after about 0.5 kg/m<sup>2</sup> of sediment accumulation and 2 orders of magnitude after about 2 kg/m<sup>2</sup>, but the initial treatment flow rates for the compost-sand mixtures are much larger. Recommend to use the above normalized reduction factors in the biofilter calculations and the previously calculated initial flow rates.



## The Role of Vegetation in Biofilters and Effects on Infiltration Rates

Vegetation in biofilters 1) involve evapotranspiration (ET) to remove runoff volume, 2) pollutant uptake in the plant systems, and 3) enhance infiltration by reducing compaction and allowing particulates to accumulate at deeper depths in the media along their root systems. Evapotranspiration can be calculated in WinSLAMM based on the density and types of plants in the biofilter. However, the runoff losses due to ET have been found to be minimal during monitoring due to the typically large amounts of runoff entering biofilters and the relatively small area for plants. ET is much more important for green roofs where the whole roof is planted and the only water entering the system is rainfall. Plant uptake of pollutants is also likely minimal for the same reasons (relatively small amounts of plants and large amounts of water). Plant uptake is much more important in wetland systems, but plant harvesting must also be considered to remove the captured pollutants from the system.

Plants, however, can extend the life of biofilters by reducing siltation by allowing sediment to accumulate through a large depth of the media, instead of forming a clogging layer on the media surface. This is most important when the critical sediment load that would cause clogging of the biofilter occurs over about 10 years, or longer. WinSLAMM checks this my examining the total accumulation after one year. If that accumulation is <1/10<sup>th</sup> of the total critical load (as indicated by calculated infiltration decrease), and if the biofilter has well established vegetation, the infiltration rate is then held constant with no additional decreases in the infiltration rate. In all other conditions (if unvegetated or if the annual accumulation rate is >1/10<sup>th</sup> of the critical load), then WinSLAMM continues to decrease the infiltration rate until clogging occurs. The following table illustrates these four conditions:

After one year, check annual rate of accumulation:

|                              | Vegetated                         | Not Vegetated                     |
|------------------------------|-----------------------------------|-----------------------------------|
| <1/10 max load in first year | hold infiltration rate constant   | continue to decrease infiltration |
|                              | after the first year and do not   | rate after each event and shut    |
|                              | decrease further                  | down when the maximum load        |
|                              |                                   | is reached                        |
| >1/10 max load in first year | continue to decrease infiltration | continue to decrease infiltration |
|                              | rate after each event and shut    | rate after each event and shut    |
|                              | down when the maximum load        | down when the maximum load        |
|                              | is reached                        | is reached                        |

#### 3) Retention of Filtered Pollutants by Biofilter Media Components and Mixtures

The final part of the biofilter calculations is to determine the retention of filtered pollutants in the media. In most cases, the retention of particulate-bound pollutants will be responsible for most of the total pollutant reductions in biofilters, but chemically-active media has also been found to reduce some of the filterable pollutant forms. If the biofilter also has significant infiltration (such as in rain gardens or bioretention facilities with no underdrains, or with high native soil infiltration capacities even with underdrains), it is likely that most of the filtered pollutant mass reductions would be associated with infiltration. The following present data associated with three aspects of filtered pollutant retention: observed concentration reductions as a function of influent concentrations (with some additional information for bacteria retention and for phosphorus leaching from compost media), media capacity, and the effects of contact time on filtered pollutant retention.

The filtered pollutant retention categories are associated with six main projects as shown below. In addition, the Boeing tests are sub-divided into nine subcategories:

Boeing granular activated carbon (GAC)

Boeing peat moss (PM)

Boeing Rhyolite sand (R-sand)

Boeing site sand

Boeing surface modified zeolite (SMZ)

Boeing site zeolite

Boeing R-SMZ

Boeing R-SMZ-GAC

Boeing R-SMZ-GAC-PM

Clark dissert compost-sand and

EPA compost amended soils report

Millburn NJ

WI media 2

Some additional information is also provided from the International BMP Database and from an EPA-sponsored research project on compost-amended soils associated with effluent phosphorus concentrations from biofilters having compost additions.

The bacteria retention categories are from Clark's (2000) dissertation and include six subcategories (carbon-sand, compost-sand, loam, peat-sand, and zeolite-sand).

The media capacity (limits for retention of the filtered pollutants) are from the Boeing project (same nine subcategories as listed above) and two subcategories (compost-sand and sand) from Clark's (2000) dissertation.

The effects of contact time on retention of filtered pollutants are from the Boeing study (GAC, PM, Rhyolite sand, site zeolite, and surface modified zeolite) and from Clark's dissertation (compost-sand).

The information associated with these topics for each category are described in the following discussions, with additional background and statistical analyses information in the appendices. As for the treatment flow calculations, the Master Tables include information for many individual components along with some mixtures. Mass-weighted values for the components are used to calculate these factors for other mixtures, with some restrictions (such as maximum amounts of peat allowed in the mixtures at 50%). Only statistically significant removals are summarized in this memo. If a constituent is not listed for one of the categories, it is assumed that no retention of filtered pollutants occur (effluent = influent).

# Filterable Pollutant Retention by Media Components and Mixtures

Boeing Media Tests (Pitt and Clark 2010)

The Boeing long-term column tests (Pitt and Clark 2010) also included detailed analyses of many pollutants in both total and filtered forms. That report statistically analyzed their retention, which are listed below for different media components and mixtures. Data are shown for conditions generally having p of about 0.05 or less (some at 0.06). Gross alpha and gross beta removals for the mixtures are shown with p values of about 0.13 due to the small number of tests available. Relationships not shown are for larger p values and in those cases, it is assumed that no statistically significant removal occurs (based on the number of samples available).

Table 25. Removals for Granular Activated Carbon for Full-Depth Column Tests (50/50 mix with filter sand)

| Constituent, mg/L unless noted | p that    | regression equation (or Y =                                                     | Mean Influent                          |
|--------------------------------|-----------|---------------------------------------------------------------------------------|----------------------------------------|
|                                |           | , ,                                                                             |                                        |
| otherwise                      | effluent  | constant, and COV also                                                          | Concentration                          |
|                                | equals    | shown)**                                                                        | (approximate range)***                 |
|                                | influent* |                                                                                 |                                        |
| рН                             | 0.063     | Y = X + 0.7                                                                     | 7.7 (7.3 to 8.2)                       |
| Ammonia, as N                  | 0.008     | Y = 0.27 (2.1)                                                                  | 2.7 (0.3 to 3.9)                       |
| Nitrite + nitrate as N         | 0.008     | Y = 0.56 (0.50)                                                                 | 6.0 (4.9 to 7.1)                       |
| Arsenic, filtered, μg/L        | 0.016     | Y = 17 (0.31)                                                                   | 33 ( <lod 109)<="" td="" to=""></lod>  |
| Aluminum, filtered, μg/L       | 0.008     | Y = 38.7 (0.30)                                                                 | 73 ( <lod 121)<="" td="" to=""></lod>  |
| Boron, filtered, μg/L          | 0.031     | all effluents <lod< td=""><td>177 (<lod 472)<="" td="" to=""></lod></td></lod<> | 177 ( <lod 472)<="" td="" to=""></lod> |
| Cadmium, filtered, μg/L        | 0.008     | n/a (most effluents <lod)< td=""><td>28 (1 to 54)</td></lod)<>                  | 28 (1 to 54)                           |
| Copper, filtered, μg/L         | 0.004     | Y = 6.8 (0.64)                                                                  | 42 (23 to 69)                          |
| Iron, filtered, μg/L           | 0.004     | Y = 14 (0.84)                                                                   | 63 (44 to 109)                         |

| Magnesium, filtered, μg/L | 0.004 | Y = 3820 (0.35)                                                 | 2480 (2140 to 3520)                   |
|---------------------------|-------|-----------------------------------------------------------------|---------------------------------------|
| Manganese, filtered, μg/L | 0.063 | Y = 0.56 (0.31)                                                 | 3.4 ( <lod 13)<="" td="" to=""></lod> |
| Nickel, filtered, μg/L    | 0.004 | Y=3.9 (0.32)                                                    | 27 (7 to 68)                          |
| Potassium, filtered, μg/L | 0.004 | Y = 10,300 (1.52)                                               | 2410 (1960 to 3250)                   |
| Chromium, filtered, μg/L  | 0.004 | Y = 1.5 (0.38)                                                  | 14 (7 to 19)                          |
| Thallium, filtered, μg/L  | 0.004 | n/a (most effluents <lod)< td=""><td>64 (27 to 94)</td></lod)<> | 64 (27 to 94)                         |
| Antimony, filtered, μg/L  | 0.004 | Y = 29.7 (0.27)                                                 | 56 (39 to 86)                         |
| Nitrate, mg/L             | 0.008 | Y = 46 (0.63)                                                   | 6.0 (4.9 to 7.1)                      |
| Phosphorus, mg/L          | 0.063 | Y = 1.2 (0.54)                                                  | 0.65 (0.42 to 1.28)                   |
| Phosphate, as P, mg/L     | 0.008 | Y = 3.7 (0.62)                                                  | 0.90 (0.45 to 1.43)                   |

<sup>\*</sup> calculated using the sign test, ties ignored in the count; "no data" is when no samples were analyzed

\*\* <LOD substituted with half of the detection limits for these calculations; if predicted effluent is >

influent, then use influent conc (except for pH, and when significant increases are noted in the %

removal column)

Table 26. Removals for Peat Moss for Full-Depth Column Tests (50/50 mix with filter sand)

| Constituent, mg/L unless  | p that    | regression equation (or Y =                                  | Mean Influent                         |
|---------------------------|-----------|--------------------------------------------------------------|---------------------------------------|
| noted otherwise           | effluent  | constant, and COV also                                       | Concentration (approximate            |
|                           | equals    | shown)**                                                     | range)***                             |
|                           | influent* |                                                              |                                       |
| рН                        | 0.008     | Y = X - 3.0                                                  | 7.7 (7.3 to 8.2)                      |
| Chloride                  | 0.008     | Y = 33 (0.15)                                                | 18 (1 to 34)                          |
| Fluoride                  | 0.008     | Y = 0.67X                                                    | 2.6 (1.7 to 3.1)                      |
| Aluminum, filtered, μg/L  | 0.004     | Y = 778 (0.48)                                               | 73 ( <lod 121)<="" td="" to=""></lod> |
| Calcium, filtered, µg/L   | 0.004     | Y = 0.40 X                                                   | 30,400 (22,150 to 42,400)             |
| Cadmium, filtered, µg/L   | 0.008     | almost all effluent <lod< td=""><td>28 (1 to 54)</td></lod<> | 28 (1 to 54)                          |
| Copper, filtered, μg/L    | 0.004     | Y = 12.3 (0.26)                                              | 42 (23 to 69)                         |
| Manganese, filtered, μg/L | 0.004     | Y = 230 (0.64)                                               | 3.4 ( <lod 13)<="" td="" to=""></lod> |
| Nickel, filtered, μg/L    | 0.035     | Y = 4.8 (0.62)                                               | 27 (7 to 68)                          |
| Chromium, filtered, μg/L  | 0.063     | Y = 3.8 (0.9)                                                | 14 (7 to 19)                          |
| Thallium, filtered, μg/L  | 0.004     | Y = 13 (0.63)                                                | 64 (27 to 94)                         |
| Antimony, filtered, μg/L  | 0.004     | Y = 8.1 (1.7)                                                | 56 (39 to 86)                         |

Table 27. Removals for Rhyolite Sand for Full-Depth Column Tests

|                                          | ,                                         |                                                             |                                                    |
|------------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|
| Constituent, mg/L unless noted otherwise | p that<br>effluent<br>equals<br>influent* | regression equation (or Y = constant, and COV also shown)** | Mean Influent Concentration (approximate range)*** |
| Ammonia, as N                            | 0.008                                     | Y = 0.38 (1.1)                                              | 2.7 (0.3 to 3.9)                                   |
| Arsenic, filtered, μg/L                  | 0.063                                     | Y = 0.258 X + 9.58                                          | 33 ( <lod 109)<="" td="" to=""></lod>              |
| Cadmium, filtered, μg/L                  | 0.008                                     | almost all effluent < LOD                                   | 28 (1 to 54)                                       |
| Nickel, filtered, μg/L                   | 0.035                                     | Y = 6 (0.43)                                                | 27 (7 to 68)                                       |
| Potassium, filtered, μg/L                | 0.004                                     | Y = 5420 (0.23)                                             | 2410 (1960 to 3250)                                |
| Sodium, filtered, μg/L                   | 0.035                                     | Y = 24,500 (0.13)                                           | 17,200 (14,200 to 27,300)                          |
| Thallium, filtered, μg/L                 | 0.004                                     | almost all effluent < LOD                                   | 64 (27 to 94)                                      |
| Phosphorus, mg/L                         | 0.008                                     | Y =0.24 (0.19)                                              | 0.65 (0.42 to 1.28)                                |

<sup>\*\*\* &</sup>lt;LOD substituted with half of the detection limits for these calculations

Table 28. Removals for Site Sand for Full-Depth Column Tests

| Constituent, mg/L unless noted otherwise | p that<br>effluent<br>equals<br>influent* | regression equation (or Y = constant, and COV also shown)**  | Mean Influent Concentration (approximate range)*** |
|------------------------------------------|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| Ammonia, as N                            | 0.063                                     | Y = 0.54X                                                    | 2.7 (0.3 to 3.9)                                   |
| Cadmium, filtered, μg/L                  | 0.031                                     | almost all effluent <lod< td=""><td>28 (1 to 54)</td></lod<> | 28 (1 to 54)                                       |
| Iron, filtered, μg/L                     | 0.031                                     | Y = 41 (0.32)                                                | 63 (44 to 109)                                     |
| Magnesium, filtered, μg/L                | 0.031                                     | Y = 3590 (0.20)                                              | 2480 (2140 to 3520)                                |
| Thallium, filtered, μg/L                 | 0.031                                     | Y = 15 (1.0)                                                 | 64 (27 to 94)                                      |
| Phosphorus, mg/L                         | 0.063                                     | Y = 0.24X                                                    | 0.65 (0.42 to 1.28)                                |
| Phosphate, as P, mg/L                    | 0.063                                     | Y = 0.48X                                                    | 0.90 (0.45 to 1.43)                                |

Table 29. Removals for Site Zeolite for Full-Depth Column Tests (50/50 mix with filter sand)

|                    | •                                                                                                                                         | sts (50) 50 mix with mice                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| p that<br>effluent | regression equation (or Y = constant, and COV also                                                                                        | Mean Influent Concentration (approximate range)*** |
| eguals             | shown)**                                                                                                                                  |                                                    |
| influent*          | ,                                                                                                                                         |                                                    |
| 0.008              | Y = 36 (0.10)                                                                                                                             | 18 (1 to 34)                                       |
| 0.008              | Y = 0.18 (1.0)                                                                                                                            | 2.7 (0.3 to 3.9)                                   |
| 0.016              | Y = 0.65X                                                                                                                                 | 0.03 (0.015 to 0.046)                              |
| 0.016              | Y = 19 (0.43)                                                                                                                             | 33 ( <lod 109)<="" td="" to=""></lod>              |
| 0.008              | Almost all effluent <lod< td=""><td>28 (1 to 54)</td></lod<>                                                                              | 28 (1 to 54)                                       |
| 0.035              | Y = 25 (0.26)                                                                                                                             | 42 (23 to 69)                                      |
| 0.035              | Y = 0.76 X                                                                                                                                | 63 (44 to 109)                                     |
| 0.004              | Y = 1400 (0.41)                                                                                                                           | 2480 (2140 to 3520)                                |
| 0.004              | Y = 3900 (0.23)                                                                                                                           | 2410 (1960 to 3250)                                |
| 0.004              | Y = 24,800 (0.23)                                                                                                                         | 17,200 (14,200 to 27,300)                          |
| 0.004              | Y = 0.86 X                                                                                                                                | 14 (7 to 19)                                       |
| 0.004              | Y = 7.5 (0.77)                                                                                                                            | 64 (27 to 94)                                      |
| 0.035              | Y = 0.72 X                                                                                                                                | 56 (39 to 86)                                      |
| 0.008              | Y = 0.19 (0.55)                                                                                                                           | 0.65 (0.42 to 1.28)                                |
| 0.016              | Y = 0.32 (0.60)                                                                                                                           | 0.90 (0.45 to 1.43)                                |
|                    | effluent equals influent*  0.008  0.008  0.016  0.016  0.008  0.035  0.035  0.004  0.004  0.004  0.004  0.004  0.004  0.004  0.005  0.008 | effluent equals influent*  0.008                   |

Table 30. Removals for Surface Modified Zeolite for Full-Depth Column Tests (50/50 mix with filter sand)

| Constituent, mg/L unless noted otherwise | p that<br>effluent<br>equals<br>influent* | regression equation (or Y = constant, and COV also shown)** | Mean Influent Concentration (approximate range)*** |
|------------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|
| рН                                       | 0.063                                     | Y = X + 0.1                                                 | 7.7 (7.3 to 8.2)                                   |
| Chloride                                 | 0.063                                     | Y = 26 (0.41)                                               | 18 (1 to 34)                                       |
| Sulfate, as SO <sub>4</sub>              | 0.063                                     | Y = 45 (0.11)                                               | 45 (39 to 51)                                      |
| Aluminum, filtered, μg/L                 | 0.008                                     | Y = 0.65 X                                                  | 73 ( <lod 121)<="" td="" to=""></lod>              |
| Cadmium, filtered, μg/L                  | 0.008                                     | almost all effluent < LOD                                   | 28 (1 to 54)                                       |
| Iron, filtered, μg/L                     | 0.004                                     | Y = 23 (0.30)                                               | 63 (44 to 109)                                     |
| Magnesium, filtered, μg/L                | 0.035                                     | Y = 3600 (0.39)                                             | 2480 (2140 to 3520)                                |
| Nickel, filtered, μg/L                   | 0.035                                     | Y = 4.8 (0.37)                                              | 27 (7 to 68)                                       |

| Potassium, filtered, μg/L | 0.035 | Y = 4400 (0.32)           | 2410 (1960 to 3250) |
|---------------------------|-------|---------------------------|---------------------|
| Chromium, filtered, µg/L  | 0.035 | Y = 12 (0.87)             | 14 (7 to 19)        |
| Thallium, filtered, μg/L  | 0.004 | almost all effluent < LOD | 64 (27 to 94)       |
| Antimony, filtered, μg/L  | 0.063 | Y = 39 (0.42)             | 56 (39 to 86)       |
| Phosphate, as P, mg/L     | 0.063 | Y = 0.68 (0.46)           | 0.90 (0.45 to 1.43) |

Table 31. Removals for Rhyolite Sand - Surface Modified Zeolite (R-SMZ) Mixture for Full-Depth Column Tests

| Constituent, mg/L unless noted otherwise | p that<br>effluent<br>equals<br>influent* | regression equation (or Y = constant, and COV also shown)**  | Mean Influent Concentration (approximate range)*** |
|------------------------------------------|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| Ammonia, as N                            | 0.008                                     | Y = 0.071 (0.57)                                             | 2.7 (0.3 to 3.9)                                   |
| Gross alpha radioactivity, pCi/L         | 0.125                                     | Y = 0.8 (0.68)                                               | 5.3 (3.9 to 6.8)                                   |
| Gross beta radioactivity, pCi/L          | 0.125                                     | Y = 5.8 (0.14)                                               | 9.4 (8.1 to 10.1)                                  |
| Radium 226 + 228, pCi/L                  | 0.125                                     | Y = 0.14 (0.5)                                               | 0.92 (0.67 to 1.2)                                 |
| Cadmium, filtered, μg/L                  | 0.008                                     | almost all effluent <lod< td=""><td>28 (1 to 54)</td></lod<> | 28 (1 to 54)                                       |
| Iron, filtered, μg/L                     | 0.004                                     | Y = 0.79 X                                                   | 63 (44 to 109)                                     |
| Magnesium, filtered, μg/L                | 0.035                                     | Y = 2970 (0.20)                                              | 2480 (2140 to 3520)                                |
| Nickel, filtered, μg/L                   | 0.035                                     | Y = 8 (0.82)                                                 | 27 (7 to 68)                                       |
| Potassium, filtered, μg/L                | 0.004                                     | Y = 4140 (0.09)                                              | 2410 (1960 to 3250)                                |
| Sodium, filtered, μg/L                   | 0.035                                     | Y = 1.1 X                                                    | 17,200 (14,200 to 27,300)                          |
| Chromium, filtered, µg/L                 | 0.035                                     | Y = 0.7 X                                                    | 14 (7 to 19)                                       |
| Thallium, filtered, μg/L                 | 0.004                                     | Y = 8.1 (0.87)                                               | 64 (27 to 94)                                      |

Table 32. Removals for Rhyolite Sand - Surface Modified Zeolite - Granular Activated Carbon Mixture (R-SMZ-GAC) for Full-Depth Column Tests

| Constituent, mg/L unless noted   | p that    | regression equation (or Y =                                                           | Mean Influent Concentration            |
|----------------------------------|-----------|---------------------------------------------------------------------------------------|----------------------------------------|
| otherwise                        | effluent  | constant, and COV also                                                                | (approximate range)***                 |
|                                  | equals    | shown)**                                                                              |                                        |
|                                  | influent* |                                                                                       |                                        |
| Chloride                         | 0.063     | Y = 30 (0.18)                                                                         | 18 (1 to 34)                           |
| Fluoride                         | 0.063     | Y = 2.2 (0.25)                                                                        | 2.6 (1.7 to 3.1)                       |
| Sulfate, as SO <sub>4</sub>      | 0.063     | Y = 37 (0.29)                                                                         | 45 (39 to 51)                          |
| Boron, μg/L                      | 0.031     | almost all effluent <lod< td=""><td>170 (<lod 509)<="" td="" to=""></lod></td></lod<> | 170 ( <lod 509)<="" td="" to=""></lod> |
| Ammonia, as N                    | 0.008     | Y = 0.013 (1.4)                                                                       | 2.7 (0.3 to 3.9)                       |
| Nitrite + nitrate as N           | 0.063     | Y = 3.0 (0.84)                                                                        | 6.0 (4.9 to 7.1)                       |
| Gross alpha radioactivity, pCi/L | 0.125     | all effluent <lod< td=""><td>5.3 (3.9 to 6.8)</td></lod<>                             | 5.3 (3.9 to 6.8)                       |

|                           |       |                                                                                      | 1                                      |
|---------------------------|-------|--------------------------------------------------------------------------------------|----------------------------------------|
| Uranium, pCi/L            | 0.125 | all eff. <lod< td=""><td>1.2 (1.1 to 1.5)</td></lod<>                                | 1.2 (1.1 to 1.5)                       |
| Radium 226 + 228, pCi/L   | 0.125 | Y = 0.31 (1.2)                                                                       | 0.92 (0.67 to 1.2)                     |
| Arsenic, filtered, μg/L   | 0.109 | Y = 14 (0.34)                                                                        | 33 ( <lod 109)<="" td="" to=""></lod>  |
| Aluminum, filtered, μg/L  | 0.008 | Y = 45 (0.39)                                                                        | 73 ( <lod 121)<="" td="" to=""></lod>  |
| Boron, filtered, μg/L     | 0.031 | all effluent <lod< td=""><td>177 (<lod 472)<="" td="" to=""></lod></td></lod<>       | 177 ( <lod 472)<="" td="" to=""></lod> |
| Cadmium, filtered, μg/L   | 0.008 | almost all effluent <lod< td=""><td>28 (1 to 54)</td></lod<>                         | 28 (1 to 54)                           |
| Copper, filtered, μg/L    | 0.004 | Y = 13 (0.40)                                                                        | 42 (23 to 69)                          |
| Iron, filtered, μg/L      | 0.008 | Y = 0.37 X                                                                           | 63 (44 to 109)                         |
| Magnesium, filtered, μg/L | 0.004 | Y = 4300 (0.39)                                                                      | 2480 (2140 to 3520)                    |
| Manganese, filtered, μg/L | 0.125 | almost all effluent <lod< td=""><td>3.4 (<lod 13)<="" td="" to=""></lod></td></lod<> | 3.4 ( <lod 13)<="" td="" to=""></lod>  |
| Nickel, filtered, μg/L    | 0.004 | Y = 0.3 X                                                                            | 27 (7 to 68)                           |
| Potassium, filtered, μg/L | 0.004 | Y = 8000 (0.23)                                                                      | 2410 (1960 to 3250)                    |
| Chromium, filtered, µg/L  | 0.004 | Y = 0.27 X                                                                           | 14 (7 to 19)                           |
| Thallium, filtered, μg/L  | 0.004 | almost all effluent <lod< td=""><td>64 (27 to 94)</td></lod<>                        | 64 (27 to 94)                          |
| Antimony, filtered, μg/L  | 0.035 | Y = 34 (0.39)                                                                        | 56 (39 to 86)                          |
| Nitrate, mg/L             | 0.063 | Y = 3.0 (0.88)                                                                       | 6.0 (4.9 to 7.1)                       |

Table 33. Removals for Rhyolite Sand - Surface Modified Zeolite - Granular Activated Carbon - Peat Moss (R-SMZ-GAC-PM) for Full-Depth Column Tests

| Constituent, mg/L unless noted otherwise | p that<br>effluent<br>equals<br>influent* | regression equation (or Y = constant, and COV also shown)**                    | Mean Influent Concentration (approximate range)*** |
|------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|
| Chloride                                 | 0.109                                     | Y = 33 (0.39)                                                                  | 18 (1 to 34)                                       |
| Ammonia, as N                            | 0.008                                     | Y = 0.037 (1.0)                                                                | 2.7 (0.3 to 3.9)                                   |
| Gross alpha radioactivity, pCi/L         | 0.125                                     | Y = 0.5 (all <lod)< td=""><td>5.3 (3.9 to 6.8)</td></lod)<>                    | 5.3 (3.9 to 6.8)                                   |
| Radium 226 + 228, pCi/L                  | 0.125                                     | Y = 0.18 (0.81)                                                                | 0.92 (0.67 to 1.2)                                 |
| Arsenic, filtered, μg/L                  | 0.016                                     | Y = 0.18 X + 13                                                                | 33 ( <lod 109)<="" td="" to=""></lod>              |
| Aluminum, filtered, μg/L                 | 0.008                                     | Y = 0.69 X                                                                     | 73 ( <lod 121)<="" td="" to=""></lod>              |
| Boron, filtered, μg/L                    | 0.031                                     | all effluent <lod< td=""><td>177 (<lod 472)<="" td="" to=""></lod></td></lod<> | 177 ( <lod 472)<="" td="" to=""></lod>             |
| Cadmium, filtered, μg/L                  | 0.008                                     | almost all effluent <lod< td=""><td>28 (1 to 54)</td></lod<>                   | 28 (1 to 54)                                       |
| Copper, filtered, μg/L                   | 0.004                                     | Y = 21 (0.55)                                                                  | 42 (23 to 69)                                      |
| Iron, filtered, μg/L                     | 0.004                                     | Y = 0.65 X                                                                     | 63 (44 to 109)                                     |
| Magnesium, filtered, μg/L                | 0.004                                     | Y = 3660 (0.26)                                                                | 2480 (2140 to 3520)                                |
| Nickel, filtered, μg/L                   | 0.004                                     | Y = 5.1 (0.46)                                                                 | 27 (7 to 68)                                       |
| Potassium, filtered, μg/L                | 0.004                                     | Y = 6700 (0.27)                                                                | 2410 (1960 to 3250)                                |
| Chromium, μg/L                           | 0.004                                     | Y = 10 (0.42)                                                                  | 64 (48 to 81)                                      |
| Thallium, filtered, μg/L                 | 0.004                                     | Y = 7.4 (0.82)                                                                 | 64 (27 to 94)                                      |
| Antimony, filtered, μg/L                 | 0.035                                     | Y = 0.33 (0.38)                                                                | 56 (39 to 86)                                      |
| Phosphate, as P, mg/L                    | 0.063                                     | Y = 1.9 (0.64)                                                                 | 0.90 (0.45 to 1.43)                                |

## Clark (2000) Dissertation Media Tests

As part of her dissertation, Clark (2000) also examined the retention of *E. coli* and enterococci bacteria in different biofilter media during long-term pilot-scale tests using pre-settled stormwater, as summarized in the Table 34. The overall ranges of observed removals was quite large. The estimated COV values should therefore be used to add this variation to the calculated effluent bacterial levels using a Monte Carlo process.

Table 34. Bacteria Removal by Filter Media

|              |             | E. coli           |          | Enterococci  |                   |          |
|--------------|-------------|-------------------|----------|--------------|-------------------|----------|
| Filter Media | Removal (%) | median<br>removal | est. COV | Removals (%) | median<br>removal | est. COV |
| Loam         | 0 – 40      | 20                | 1.1      | 25 – 75      | 50                | 0.4      |

| Peat-sand    | 35 – 96 | 66 | 0.4 | 0 – 94  | 47 | 1.1 |
|--------------|---------|----|-----|---------|----|-----|
| Compost-sand | 0 – 61  | 32 | 1.1 | 20 – 73 | 47 | 0.4 |
| Sand         | 0 – 88  | 44 | 1.1 | 16 – 89 | 53 | 1.1 |
| Zeolite-sand | 0 – 94  | 47 | 1.1 | 0-91    | 45 | 1.1 |

In addition, her tests on the compost-sand mixture in long-term column tests only indicated that filtered zinc was removed with suitable statistical relevance (removal rate of 82% COV = 0.24), as shown on Table 35.

Table 35. Average Percent Pollutant Removal (COV) in Laboratory-Scale Filters (only significant removals shown) (Source: Clark 1996)

| Parameter           | Carbon-Sand | Peat-Sand | Zeolite-Sand | Compost-<br>Sand |
|---------------------|-------------|-----------|--------------|------------------|
| Toxicity (filtered) | 83 (0.41)   | 63 (0.5)  | 100 (0)      |                  |
| Color (filtered)    | 26 (0.68)   |           |              |                  |
| Carbonate           | 47 (0.77)   | 100 (0)   |              |                  |
| Bicarbonate         | 23 (1.15)   | 100 (0)   |              |                  |
| Chloride            |             | 17 (0.29) | 7 (0.47)     |                  |
| Nitrate             | 97 (0.04)   |           |              |                  |
| Sulfate             |             | 5 (0.92)  |              |                  |
| Hardness            |             | 52 (0.26) |              |                  |
| Dissolved Solids    |             | 45 (0.29) |              |                  |
| Zinc (filtered)     | 48 (0.78)   | 58 (0.57) | 62 (0.46)    | 82 (0.24)        |
| COD (filtered)      | 85 (0.4)    |           |              |                  |

<sup>\*</sup>Only percent removals greater than zero are shown in this table.

#### Millburn, NJ, Dry Well Tests (Pitt and Talebi 2014)

Pitt and Talebi (2014) (summarized in Talebi and Pitt 2013) conducted tests in Millburn, New Jersey, investigating the performance of dry wells. As part of this research, tests were conducted to examining the retention of pollutants in the underlying soils. Samples were obtained immediately below the dry well and also deeper, indicating the differences in concentrations as the infiltrating passed through the soils. Data from three dry wells were combined, resulting in about 28 sets of data. Most of the dry well monitored sites had "BowtB" soil type (Boonton - Urban land, Boonton substratum complex, terminal moraine, well drained). These soils are all A and B soils and are classified as fine sandy loam, loamy sand, and gravelly fine sandy loam. The shallow monitoring well underdrain was constructed directly below the dry well near the surface of the gravel layer a deeper one was installed at least 0.6 m (2 ft) below the bottom of the gravel layer (the NJ state requirement for closest groundwater). The deep monitoring location was at least 1.2 m (4 ft) below the bottom of the dry well, as shown on Figure 4. Water samples were manually pumped from these monitoring well underdrains during or immediately after the rains and analyzed for a range of typical stormwater pollutants.

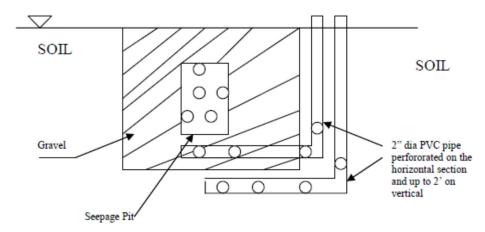



Figure 4. Millburn, NJ, dry well monitoring schematic.

## Wisconsin Neenah Media 2 Biofilter Tests (Bannerman, personal communication)

Additional biofilter data investigating the retention of filtered pollutants is available from the Wisconsin Neenah DNR/USGS tests (Bannerman, personal communication). The following summarizes the observed retention relationships for the media 2 mixture (86% sand, 11% peat moss, and 3% Imbrium phosphorus removal media). These Wisconsin data are combined from three biofilters, having media depths of 1 to 3 ft (no significant differences were noted for the different depths). The influent TDS and chloride values had many non-detectable values, while the effluent values all increased. The increases were due to leaching of salts from the media, even during the long-term monitoring.

Table 36. Summary of Filtered Pollutant Retention in Soils beneath Millburn, NJ, Dry Wells

|                           | % of      | % of     | min      | max      | median    | count      | influent | p of       | p of      | p of slope | final equation                                 |
|---------------------------|-----------|----------|----------|----------|-----------|------------|----------|------------|-----------|------------|------------------------------------------------|
|                           | influent  | effluent | influent | influent | reduction | (including | COV      | regression | intercept | term       |                                                |
|                           | values ND | values   | conc     | conc     | (%)       | ND)        |          | equation   |           |            |                                                |
|                           |           | ND       |          |          |           |            |          |            |           |            |                                                |
| total coliforms, #/100mL  | 0%        | 0%       | 43       | 36,294   | -21       | 28         | 0.98     | 9.65E-05   | 4.62E-06  | 9.65E-05   | log10 effluent = 0.473(log10 influent) + 2.23  |
| E. coli, #/100mL          | 0%        | 0%       | 1        | 7,183    | 4         | 27         | 2.60     | 1.42E-05   | 0.012     | 1.42E-05   | log10 effluent = 0.668(log10 influent) + 0.745 |
| filtered N, mg/L          | 7%        | 0%       | 1        | 17       | 0         | 27         | 0.93     | 0.42       | 0.000012  | 0.42       | effluent = influent                            |
| NO3+NO2, mg/L             | 0%        | 0%       | 0.1      | 1.95     | -29       | 26         | 0.27     | 1.80E-02   | n/a       | 1.80E-02   | log10 effluent = 0.382(log10 influent)         |
| filtered phosphorus, mg/L | 0%        | 0%       | 0.04     | 0.67     | 6         | 28         | 0.12     | 7.60E-13   | n/a       | 4.26E-13   | log10 effluent = 0.893(log10 influent)         |
| filtered COD, mg/L        | 0%        | 0%       | 19       | 73       | -6        | 28         | 0.35     | 2.05E-23   | n/a       | 4.77E-24   | effluent = influent (slope = 0.99!)            |
| filtered Pb, mg/L         | 12%       | 18%      | 0.003    | 0.31     | -16       | 17         | 0.08     | 1.15E-08   | n/a       | 5.80E-09   | log10 effluent = 0.854 (log influent)          |
| filtered Cu, mg/L         | 25%       | 25%      | 0.01     | 0        | -63       | 4          | 0.02     | 3.40E-02   | n/a       | 1.34E-02   | log10 effluent = 0.813 (log influent)          |
| filtered Zn, mg/L         | 23%       | 8%       | 0.01     | 0        | -50       | 13         | 0.04     | 4.70E-01   | 0.0165    | 4.70E-01   | effluent = influent                            |

Table 37. Summary of Filtered Pollutant Retention in WI media 2 Biofilters (Wisconsin Neenah mix (86% sand, 11% peat moss, and 3% Imbrium))

|                             | % of      | % of      | min      | max      | median    | count      | influent | p of       | p of      | p of     | final equation                            |
|-----------------------------|-----------|-----------|----------|----------|-----------|------------|----------|------------|-----------|----------|-------------------------------------------|
|                             | influent  | effluent  | influent | influent | reduction | (including | COV      | regression | intercept | slope    |                                           |
|                             | values ND | values ND | conc     | conc     | (%)       | ND)        |          | equation   |           | term     |                                           |
| TDS (mg/L)                  | 69%       | 0%        | <50      | 152      | -320      | 48         | 0.8      | 5.00E-16   | n/a       | 6.00E-17 | log effluent = 1.187(log influent)        |
| Filtered phosphorus (mg/L)  | 0%        | 0%        | 0.008    | 0.06     | 7.5       | 44         | 0.5      | 0.013      | 0.046     | 0.013    | log effluent = 0.548(log influent)-0.7297 |
| Filtered copper (ug/L)      | 7%        | 57%       | <2       | 6        | 58        | 14         | 0.4      | 0.65 (few  | 0.0296    | 0.66     | effluent = 3 μg/L (COV = 0.24)            |
|                             |           |           |          |          |           |            |          | data)      |           |          |                                           |
| Filtered zinc (ug/L)        | 0%        | 44%       | 3        | 27       | 70        | 25         | 0.8      | 8.60E-06   | n/a       | 5.40E-06 | log effluent = 0.467 (log influent)       |
| Ammonia (mg/L)              | 2%        | 39%       | 0.15     | 1.7      | 90        | 41         | 0.6      | 0.026      | 8.10E-06  | 0.026    | log effluent = 1.049(log influent)-1.0028 |
| Nitrate plus nitrite (mg/L) | 0%        | 4%        | 0.061    | 0.59     | 17        | 23         | 0.7      | 0.00898    | 0.0226    | 0.00898  | log effluent = 0.557(log influent)-0.358  |
| Chloride (mg/L)             | 42%       | 4%        | <1       | 11       | -140      | 24         | 1.3      | 3.70E-07   | n/a       | 1.90E+07 | log effluent = 1.728 (log influent)       |
| Fecal coliforms (#/100 mL)  | 5%        | 16%       | 1        | 17,000   | 71        | 19         | 2.9      | 0.00418    | 0.03      | 0.0042   | log effluent = 0.446(log influent)+0.801  |
| E. coli (#/100 mL)          | 17%       | 9%        | 1        | 1,842    | -29       | 23         | 3.6      | 0.042      | 0.015     | 0.042    | log effluent = 0.442(log influent)+0.799  |
| Enterococci (#/100 mL)      | 0%        | 0%        | 4        | 4,200    | 11        | 27         | 1.6      | 3.40E-08   | 0.00035   | 3.40E-08 | log effluent = 0.596(log influent)+0.70   |

#### **Phosphorus Leaching from Compost Amendments**

The addition of compost to biofilter mixtures has been shown to add phosphorus to the underdrain flows due to leaching of the nutrients from the material. In most cases, relatively small amounts of compost is added (just a few inches of material to the top of the biofilter to support plant growth, or about 10% of the mixture, for example). The International BMP Database includes effluent concentrations from many typical biofilters indicating about 0.25 mg/L filtered phosphorus in the effluent (see below). An extreme example of compost amendments is illustrated in the EPA report by Pitt, et al. (1999) (summarized below), where soil and compost was mixed 50/50, with phosphate subsurface concentrations of about 1.8 mg/L (compared to about 0.17 mg/L for soil only test plots), as shown below. Until further information is available, the calculated filtered phosphorus effluent concentration would be 0.25 mg/L at 10% compost additions, and 1.6 mg/L at 50% (maximum) compost additions.

#### Compost Amended Soils Tests (Pitt, et al. 1999)

A series of compost-amended soil (50/50 compost/soil mixtures) test plots were constructed in the Seattle area and monitored for several years by Pitt, et al. (2000). These test plots were sealed so no infiltration occurred. All of the underflow water was collected and analyzed and compared to the surface runoff concentrations for both amended and non-amended test plots. One of the notable findings was the subsurface flows from the compost amended soils had phosphate concentrations of 1.8 mg/L (COV = 1.02), compared to 0.17 mg/L (COV = 2.0) for subsurface flows from test plots of non-amended soils, as shown on Table 38. Therefore, for biofilters having significant compost material added (about 50%), the effluent concentrations of phosphorus is expected to be about 1.5 mg/L, with COV values of about 1.

Table 38. Average Concentrations (and COV) Values for Surface and Subsurface Runoff from Compost Amended and Non-Amended Test Plots (Pitt, et al. 1999)

| Constituent (mg/L,                    | Soil-o         | nly Plots        | Soil plus Co   | mpost Plots      |
|---------------------------------------|----------------|------------------|----------------|------------------|
| unless noted)                         | Surface Runoff | Subsurface Flows | Surface Runoff | Subsurface Flows |
| PO <sub>4</sub> -P                    | 0.27 (1.4)     | 0.17 (2.0)       | 1.9 (1.0)      | 1.8 (1.2)        |
| TP                                    | 0.49 (1.0)     | 0.48 (2.2)       | 2.7 (0.9)      | 2.5 (1.1)        |
| NH <sub>4</sub> -N                    | 0.65 (1.7)     | 0.23 (1.3)       | 4.1 (1.8)      | 3.5 (3.0)        |
| NO <sub>3</sub> -N                    | 0.96 (1.4)     | 1.2 (2.5)        | 3.0 (1.6)      | 6.2 (2.8)        |
| TN                                    | 2.5 (0.9)      | 1.9 (0.7)        | 8.4 (1.5)      | 10 (2.1)         |
| Cl                                    | 2.4 (1.0)      | 2.1 (0.9)        | 6.7 (1.1)      | 5.0 (1.6)        |
| SO <sub>4</sub> -S                    | 0.68 (1.1)     | 0.95 (2.0)       | 1.5 (0.9)      | 2.4 (1.4)        |
| Al                                    | 11 (1.8)       | 1.7 (2.1)        | 0.7 (1.6)      | 2.4 (1.6)        |
| Ca                                    | 12 (1.5)       | 17 (0.7)         | 18 (1.1)       | 35 (1.1)         |
| Cu                                    | 0.01 (0.8)     | 0.01 (1.6)       | 0.02 (1.2)     | 0.02 (0.9)       |
| Fe                                    | 4.6 (1.4)      | 2.8 (1.6)        | 1.2 (1.5)      | 2.6 (0.9)        |
| K                                     | 5.4 (1.0)      | 4.6 (0.8)        | 30 (1.3)       | 34 (1.6)         |
| Mg                                    | 3.9 (0.8)      | 5.0 (0.6)        | 5.8 (1.2)      | 10 (1.1)         |
| Mn                                    | 0.75 (2.9)     | 0.41 (2.8)       | 0.36 (1.9)     | 0.80 (2.4)       |
| Na                                    | 3.8 (0.9)      | 3.4 (0.5)        | 3.2 (0.8)      | 4.6 (1.2)        |
| S                                     | 1.1 (0.8)      | 1.3 (1.5)        | 2.5 (0.8)      | 4.7 (1.6)        |
| Zn                                    | 0.2 (1.2)      | 0.05 (2.2)       | 0.14 (1.1)     | 0.03 (1.8)       |
| Si                                    | 26 (1.7)       | 8.9 (0.5)        | 4.2 (1.1)      | 11 (0.7)         |
| 10 <sup>th</sup> percentile size (μm) | 2.9 (0.7)      | 3.1 (0.4)        | 2.8 (0.3)      | 3.5 (0.6)        |
| 50 <sup>th</sup> percentile size (μm) | 12 (1.0)       | 13 (0.6)         | 15 (0.4)       | 14 (0.7)         |
| 90 <sup>th</sup> percentile size (μm) | 45 (0.5)       | 41 (0.5)         | 46 (0.4)       | 47 (0.6)         |
| Toxicity (% light decrease)           | 25 (0.7)       | 13 (0.5)         | 16 (0.8)       | 10 (1.1)         |

#### International BMP Database

The International BMP Database includes many summaries of observed influent and effluent concentrations from biofilters. Table 39 summarizes these overall performance expectations for different categories of stormwater controls. The biofilters and grass strip category includes typical compost additions (usually several inches top dressing). The dissolved phosphorus effluent concentrations were about 0.25 mg/L.

Table 39. Treated Stormwater Phosphorus Concentrations (from 2014 International BMP Database report)

|                              | Total Phosphorus (            | (mg/L)                                                   | Dissolved Phospho             | rus (mg/L)                                      | Orthophosphate (              | mg/L)                                  |
|------------------------------|-------------------------------|----------------------------------------------------------|-------------------------------|-------------------------------------------------|-------------------------------|----------------------------------------|
|                              | median effluent concentration | 75 <sup>th</sup> percentile<br>effluent<br>concentration | median effluent concentration | 75th<br>percentile<br>effluent<br>concentration | median effluent concentration | 75th percentile effluent concentration |
| Biofilters – grass strips    | 0.17 (increased)              | 0.33 (increase)                                          | 0.25 (increase)               | 0.38<br>(increase)                              | 0.06 (increase)               | 0.14 (increase)                        |
| Biofilters – grass swales    | 0.17 (increased               | 0.28 (increase)                                          | 0.07                          | 0.25                                            | 0.08 (increase)               | 0.13 (increase)                        |
| Bioretention                 | 0.24 (increase)               | 0.60 (increase)                                          | NA                            | NA                                              | 0.26 (increase)               | 0.48 (increase)                        |
| Composite                    | 0.13                          | 0.22                                                     | 0.08                          | 0.13                                            | no significant change         | no significant change                  |
| Detention basins             | 0.2                           | 0.32                                                     | no significant change         | no significant change                           | NA                            | NA                                     |
| Media filters                | 0.09                          | 0.16                                                     | no significant change         | no significant change                           | no significant change         | no significant change                  |
| Porous pavement              | 0.1                           | 0.16                                                     | 0.05 (increase)               | 0.08<br>(increase)                              | 0.07 (increase)               | 0.1                                    |
| Retention pond               | 0.09                          | 0.2                                                      | 0.07                          | 0.14                                            | 0.02                          | 0.06                                   |
| Wetland basin                | 0.09                          | 0.2                                                      | 0.05                          | 0.13                                            | no significant change         | no significant change                  |
| Wetland basin/retention pond | 0.09                          | 0.2                                                      | 0.06                          | 0.14                                            | 0.024                         | 0.07                                   |
| Wetland channel              | no significant change         | no significant change                                    | no significant change         | no significant change                           | 0.06 (increase)               | 0.08 (increase)                        |

#### Retention Capacity of Filtered Pollutants in Biofilter Media Components and Mixtures

There are usually limits on how much of the filtered pollutants can be retained by the biofilter media. Extensive capacity tests were conducted by Pitt and Clark (2000) as part of the Boeing biofilter media development research. These were determined by long-term column tests to identify when breakthrough occurred. The capacities were determined by knowing the amount of pollutant loaded onto the columns during the tests.

Table 40. Media Capacities for Filtered Pollutants for Biofilter Media Components and Mixtures (Pitt and Clark 2000)

|                     |           |                  |           |           |              |           |           |         |         | Site Sand- |
|---------------------|-----------|------------------|-----------|-----------|--------------|-----------|-----------|---------|---------|------------|
|                     |           |                  |           |           |              |           |           |         |         | GAC-Site   |
|                     |           |                  | Rhyolite  |           |              |           |           | R-SMZ-  | R-SMZ-  | Zeolite    |
|                     | GAC       | <b>Peat Moss</b> | Sand      | Site Sand | Site Zeolite | SMZ       | R-SMZ     | GAC     | GAC-PM  | Layered    |
|                     | .,        | .,               | .,        | .,        | .,           | .,        |           | mg      | mg      | mg         |
|                     | mg pol/gm | mg pol/gm        | mg pol/gm | mg pol/gm | mg pol/gm    | mg pol/gm | mg pol/gm | pol/gm  | pol/gm  | pol/gm     |
|                     | media     | media            | media     | media     | media        | media     | media     | media   | media   | media      |
| Sulfate             | 0.64312   | -0.00001         | 0.02962   | 0.01563   | 0.06703      | 0.09118   | 0.04722   | 0.27368 | 0.05495 | 0.31247    |
| Calcium, Filtered   | 0.37527   | 6.35465          | 0.12236   | 0.01754   | 0.25430      | 0.08183   | 0.05581   | 0.07213 | 0.13782 | 0.08118    |
| Chloride            | 0.00997   | -0.00001         | 0.00000   | 0.00000   | 0.00000      | 0.00000   | 0.00000   | 0.00000 | 0.00663 | 0.00000    |
| Fluoride            | 0.02609   | 0.30338          | 0.01578   | 0.00252   | 0.03110      | 0.01247   | 0.00632   | 0.00777 | 0.00955 | 0.00791    |
| Potassium, Filtered | 0.00000   | 0.00212          | 0.00000   | 0.00005   | 0.00000      | 0.00000   | 0.00000   | 0.00000 | 0.00000 | 0.00000    |
| Sodium, Filtered    | 0.03348   | -0.00001         | 0.00000   | 0.00793   | 0.00000      | 0.02424   | 0.00000   | 0.00000 | 0.00000 | 0.00000    |
| Ammonia             | 0.23577   | 0.05586          | 0.12236   | 0.00073   | 0.21827      | 0.16521   | 0.06593   | 0.08856 | 0.10205 | 0.06681    |
| Nitrate             | 0.52873   | 0.01102          | 0.01190   | 0.00338   | 0.00339      | 0.00873   | 0.00445   | 0.10058 | 0.10423 | 0.11289    |
| Nitrite             | 0.00019   | 0.00000          | 0.00000   | 0.00000   | 0.00018      | 0.00011   | 0.00000   | 0.00015 | 0.00008 | 0.00028    |
| Phosphate           | 0.00000   | -0.00001         | 0.00000   | 0.00205   | 0.05003      | 0.00089   | 0.00012   | 0.00000 | 0.00000 | 0.00000    |
| Aluminum, Filtered  | 0.00371   | -0.00001         | 0.00025   | 0.00011   | 0.00008      | 0.00018   | 0.00004   | 0.00108 | 0.00010 | 0.00003    |
| Antimony, Filtered  | 0.00273   | 0.01589          | 0.00060   | 0.00017   | 0.00112      | 0.00053   | 0.00034   | 0.00036 | 0.00102 | 0.00063    |
| Arsenic, Filtered   | 0.00213   | 0.00000          | 0.00068   | 0.00014   | 0.00166      | 0.00077   | 0.00020   | 0.00061 | 0.00059 | 0.00050    |
| Boron, Filtered     | 0.01071   | 0.01112          | 0.00000   | 0.00025   | 0.00055      | 0.00000   | 0.00071   | 0.00361 | 0.00423 | 0.00289    |
| Cadmium, Filtered   | 0.00251   | 0.00892          | 0.00134   | 0.00017   | 0.00213      | 0.00161   | 0.00063   | 0.00085 | 0.00099 | 0.00068    |
| Chromium, Filtered  | 0.00123   | 0.00350          | 0.00005   | 0.00001   | 0.00001      | 0.00003   | 0.00000   | 0.00036 | 0.00031 | 0.00031    |
| Copper, Filtered    | 0.00359   | 0.00825          | 0.00019   | 0.00005   | 0.00098      | 0.00000   | 0.00000   | 0.00107 | 0.00090 | 0.00084    |
| Iron, Filtered      | 0.00511   | 0.00000          | 0.00000   | 0.00015   | 0.00000      | 0.00000   | 0.00000   | 0.00136 | 0.00000 | 0.00119    |
| Magnesium, Filtered | 0.00107   | 0.00799          | 0.00000   | 0.00000   | 0.09224      | 0.00000   | 0.00000   | 0.00000 | 0.00000 | 0.00000    |
| Manganese, Filtered | 0.00027   | -0.00001         | 0.00000   | 0.00000   | 0.00009      | 0.00000   | 0.00000   | 0.00009 | 0.00000 | 0.00007    |
| Nickel, Filtered    | 0.00232   | 0.00779          | 0.00108   | 0.00011   | 0.00136      | 0.00147   | 0.00048   | 0.00065 | 0.00086 | 0.00057    |
| Thallium, Filtered  | 0.00564   | 0.01768          | 0.00305   | 0.00033   | 0.00479      | 0.00365   | 0.00138   | 0.00189 | 0.00214 | 0.00156    |
| Zinc, Filtered      | 0.00000   | -0.00001         | 0.00000   | 0.00000   | 0.00000      | 0.00000   | 0.00000   | 0.00000 | 0.00000 | 0.00005    |

yellow high-lighted cells are > values shown

orange high-lighted negative values are washouts (leaching?)

Table 41. Media Mixture Capacities for Radioactive Stormwater Constituents (Pitt and Clark 2000)

|                                   |            |                  |                  | Site Sand-GAC-Site |
|-----------------------------------|------------|------------------|------------------|--------------------|
|                                   | R-SMZ      | R-SMZ-GAC        | R-SMZ-GAC-PM     | Zeolite Layered    |
|                                   | pCi pol/gm |                  |                  |                    |
|                                   | media      | pCi pol/gm media | pCi pol/gm media | pCi pol/gm media   |
| Gross Alpha                       | 0.09690    | 0.13504          | 0.15613          | 0.10528            |
| Gross Beta                        | 0.03680    | 0.01535          | 0.07937          | 0.06258            |
| Radium-226                        | 0.00411    | 0.00000          | 0.00672          | 0.00474            |
| Radium-228                        | 0.00000    | 0.00505          | 0.00750          | 0.00000            |
| Alpha Radium                      | 0.01662    | 0.01631          | 0.02373          | 0.01725            |
| Strontium-90 (very low influent)* | 0.00000    | 0.00000          | 0.00000          | 0.00000            |
| Tritium (very low influent)*      | 0.00000    | 0.00000          | 0.00000          | 0.00000            |
| Uranium                           | 0.02361    | 0.03498          | 0.04082          | 0.00000            |

Clark (2000) also calculated the retention capacity for various stormwater filtered pollutants for compost-sand mixtures. This mixture as 50/50 and the capacity was assumed to be associated with the compost component. Other filter study results by Clark and Pitt (2009b) describe issues associated with anaerobic conditions in the media and how that influences retention of retained pollutants and the stability of the media.

Table 42. Calculated Capacity of Compost-Sand Media (Clark 2000)

| Pollutant   | compost-sand<br>mg/g of compost | compost-sand<br>mg/cm³ of compost |
|-------------|---------------------------------|-----------------------------------|
| Carbonate   | 2.200                           | 4.151                             |
| Bicarbonate | 0.000                           | 0.000                             |
| Sodium      | 0.000                           | 0.000                             |
| Potassium   | 0.000                           | 0.000                             |
| Calcium     | 0.000                           | 0.000                             |
| Magnesium   | 0.755                           | 1.425                             |
| Nitrate     | 0.015                           | 0.028                             |
| Ammonia     | 0.000                           | 0.000                             |
| Phosphate   | 0.195                           | 0.368                             |
| Iron        | 0.000                           | 0.000                             |
| Copper      | 0.030                           | 0.057                             |
| Lead        | 0.000                           | 0.000                             |
| Zinc        | 1.100                           | 2.075                             |

# Effects of Contact Time of Filtered Pollutant Retention by Biofilter Media Components and Mixtures

The Boeing media development tests (Pitt and Clark 2010) included measurements to determine the effects of different contact times of the stormwater with the media on pollutant retention. These tests were conducted using conventional batch reactor tests, and also a series of column tests having different media depths. Table 43 summarizes these results indicating the expected minimum contact time needed to obtain the removals noted previously. In addition, rate factors (derived from standard In/In kinetic plots) which indicate how the pollutant retention changes with additional contact time. The yellow high-lighted cells indicated losses of retention with increased contact time. This can be caused by leaching of the pollutants from the media, additional ion exchange of these constituents with other constituents, or decomposition of the media and release of prior retain pollutants. In most cases, the additional contact time results in increased pollutant retention. As noted in this table, some media (especially peat moss) results in substantial retention of the heavy metals with short contact times, while other media may require more than an hour of contact time for the reported retention levels. The following are some of the findings from these media tests for the different media components:

- GAC: most consistent removal and reasonably fast (10 min) removal for organic and metallic compounds; however, rapid (6 min) leaching of nutrients and slow leaching (>6 hrs) for major ions.
- SMZ: relatively slow (at least an hour) and is less consistent for most constituents. Leaching occurred after about 20 min for nutrients and after about 2 hours for metals.
- Rhyolite sand: relatively fast (about 15 min) for nutrients and slow for major ions and metals (>1.5 to 2.5 hrs); no leaching observed.
- Peat: very fast (< 5 min) for metals; very slow and inconsistent for other constituents. Leaching
  of carbon-containing constituents (organic surrogates) occurred after about 10 minutes, and
  after about 30 minutes for some major ions and nutrients.</li>
- Site zeolite: very last (1 min) for some organics and nutrients; slow (>1 to 2 hrs) for major ions and metals. Rapid leaching (after 1 min) occurred for some major ions and metals.

These contact time tests were only conducted on the individual components. The combined effects of mixtures in typical biofilters can be calculated based on each component. Also shown are some example calculations showing the effects of these factors on the expected maximum pollutant retentions for 10 min, 100 min (1.7 hrs), and 1,000 minutes (17 hrs). Most biofilters with 0.5 m of media provide substantial media contact time (several hours). WinSLAMM calculates the contact time and these factors can be used to modify the resultant retention.

Table 43. Percent of maximum benefit after contact times: these assume linear changes in reductions with contact time (as illustrated in plots; not much different from theoretical ln/ln plots)

| aner contact times.                                                                                                                                                                                                     |                                                                                         |                                                                                                       | •                                                                     | rent from th                                                                                                                  |                                                       | iii piots)                                                                              | •                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                  |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                         | GAC                                                                                     | GAC                                                                                                   | SMZ                                                                   | SMZ                                                                                                                           | R-sand                                                | R-sand                                                                                  | PM                                                        | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | site Z                                                             | site Z     |
|                                                                                                                                                                                                                         |                                                                                         | %/min                                                                                                 |                                                                       |                                                                                                                               |                                                       | %/min                                                                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | %/min      |
|                                                                                                                                                                                                                         | min time                                                                                | (after min                                                                                            | min time                                                              | %/min (after                                                                                                                  | min time                                              | (after min                                                                              | min time                                                  | %/min (after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | min time                                                           | (after min |
|                                                                                                                                                                                                                         | (min)                                                                                   | time)                                                                                                 | (min)                                                                 | min time)                                                                                                                     | (min)                                                 | time)                                                                                   | (min)                                                     | min time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (min)                                                              | time)      |
| Common Constituents                                                                                                                                                                                                     |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Conductivity                                                                                                                                                                                                            |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         | 100                                                       | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |            |
| Hardness                                                                                                                                                                                                                | 80                                                                                      | 0.054                                                                                                 |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| ORP                                                                                                                                                                                                                     | 10                                                                                      | 0.020                                                                                                 |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| рН                                                                                                                                                                                                                      | 10                                                                                      | -0.030                                                                                                |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Carbon Behavior Indicators                                                                                                                                                                                              |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Color                                                                                                                                                                                                                   | 10                                                                                      | 0.020                                                                                                 | 3000                                                                  | 0.045                                                                                                                         | 300                                                   | -0.214                                                                                  | 3                                                         | -0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |            |
| UV-254                                                                                                                                                                                                                  | 5                                                                                       | 0.018                                                                                                 | 5                                                                     | 0.002                                                                                                                         |                                                       |                                                                                         | 10                                                        | -0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                  | 0.008      |
| COD                                                                                                                                                                                                                     |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               | 10                                                    | -0.020                                                                                  | 20                                                        | -0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |            |
| Major Ions                                                                                                                                                                                                              |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       | -                                                                                       |                                                           | and the second s |                                                                    |            |
| Calcium                                                                                                                                                                                                                 | 100                                                                                     | 0.044                                                                                                 |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Magnesium                                                                                                                                                                                                               | 100                                                                                     | -0.012                                                                                                | 100                                                                   | -0.006                                                                                                                        | 500                                                   | -0.004                                                                                  | 30                                                        | -0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                | 0.014      |
|                                                                                                                                                                                                                         |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | -0.036     |
| Potassium                                                                                                                                                                                                               | 1                                                                                       | -0.300                                                                                                | 100                                                                   | -0.006                                                                                                                        | 100                                                   | -0.004                                                                                  |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                  | -0.012     |
| Sulfate                                                                                                                                                                                                                 | 200                                                                                     |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | 0.004      |
|                                                                                                                                                                                                                         |                                                                                         |                                                                                                       | 1                                                                     |                                                                                                                               | 1                                                     |                                                                                         | 100                                                       | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    | 0.017      |
|                                                                                                                                                                                                                         |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
|                                                                                                                                                                                                                         | 200                                                                                     | 0.025                                                                                                 | 100                                                                   | 0.010                                                                                                                         | 20                                                    | 0.012                                                                                   | 2000                                                      | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                  | 0.090      |
|                                                                                                                                                                                                                         |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
|                                                                                                                                                                                                                         |                                                                                         |                                                                                                       | 20                                                                    | -0.040                                                                                                                        |                                                       |                                                                                         | 50                                                        | -0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                  | -2.062     |
|                                                                                                                                                                                                                         | 10                                                                                      | -0.180                                                                                                |                                                                       |                                                                                                                               | 20                                                    | 0.031                                                                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                  |            |
|                                                                                                                                                                                                                         |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
|                                                                                                                                                                                                                         | _                                                                                       |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Constituents                                                                                                                                                                                                            |                                                                                         |                                                                                                       |                                                                       |                                                                                                                               |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Aluminum                                                                                                                                                                                                                |                                                                                         |                                                                                                       | 100                                                                   | 0.056                                                                                                                         |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                 | 0.023      |
| Antimony                                                                                                                                                                                                                | 10                                                                                      | 0.051                                                                                                 | 10                                                                    | 0.020                                                                                                                         |                                                       |                                                                                         | 1                                                         | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                | 0.008      |
| Arsenic                                                                                                                                                                                                                 |                                                                                         | 0.222                                                                                                 |                                                                       |                                                                                                                               |                                                       |                                                                                         | 1                                                         | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                  | -0.250     |
| Boron                                                                                                                                                                                                                   | 30                                                                                      | 0.016                                                                                                 | 30                                                                    | 0.041                                                                                                                         | 100                                                   | 0.067                                                                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |            |
| Cadmium                                                                                                                                                                                                                 | 5                                                                                       | 0.080                                                                                                 | 100                                                                   | 0.006                                                                                                                         | 100                                                   | 0.008                                                                                   | 1                                                         | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                | 0.016      |
| Chromium                                                                                                                                                                                                                | 1                                                                                       | 1.010                                                                                                 | 50                                                                    | 0.042                                                                                                                         | 100                                                   | 0.016                                                                                   | 1                                                         | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                 | 0.020      |
| Copper                                                                                                                                                                                                                  | 1                                                                                       | 0.080                                                                                                 | 100                                                                   | 0.044                                                                                                                         | 100                                                   | 0.044                                                                                   | 1                                                         | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                 | 0.071      |
| Lead                                                                                                                                                                                                                    | 1                                                                                       | 0.016                                                                                                 | 1                                                                     | 5.556                                                                                                                         |                                                       |                                                                                         | 1                                                         | 0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                | 0.020      |
|                                                                                                                                                                                                                         | 10                                                                                      | 0.345                                                                                                 | 100                                                                   | -0.020                                                                                                                        |                                                       |                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                | 0.044      |
| Nickel                                                                                                                                                                                                                  | 5                                                                                       | 0.016                                                                                                 | 100                                                                   | 0.022                                                                                                                         | 100                                                   | 0.004                                                                                   | 1                                                         | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                                                 | 0.014      |
| Thallium                                                                                                                                                                                                                | 5                                                                                       | 0.045                                                                                                 | 5                                                                     | 0.080                                                                                                                         | 30                                                    | 0.018                                                                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                 | 0.101      |
| Sodium Potassium Sulfate Fluoride Nutrients Ammonia Nitrate Total Nitrogen Total Phosphorus Phosphate Heavy Metals and Trace Constituents Aluminum Antimony Arsenic Boron Cadmium Chromium Copper Lead Manganese Nickel | 1000<br>1<br>200<br>20<br>20<br>10<br>1<br>1<br>10<br>30<br>5<br>1<br>1<br>1<br>10<br>5 | -0.010 -0.300 0.050  0.025 0.061 -0.180 -0.040  0.051 0.222 0.016 0.080 1.010 0.080 0.016 0.345 0.016 | 100<br>300<br>1<br>100<br>20<br>100<br>100<br>50<br>100<br>100<br>100 | -0.006<br>0.029<br>0.020<br>0.010<br>-0.040<br>0.056<br>0.020<br>0.041<br>0.006<br>0.042<br>0.044<br>5.556<br>-0.020<br>0.022 | 100<br>300<br>1<br>20<br>20<br>1<br>100<br>100<br>100 | -0.004<br>0.057<br>0.020<br>0.012<br>0.031<br>0.006<br>0.067<br>0.008<br>0.016<br>0.044 | 100<br>2000<br>50<br>10<br>1000<br>11<br>1<br>1<br>1<br>1 | 0.044<br>0.017<br>-0.158<br>-0.025<br>0.015<br>0.018<br>0.060<br>0.018<br>0.060<br>0.080<br>0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>100<br>200<br>1<br>3<br>100<br>100<br>100<br>100<br>100<br>50 |            |

yellow high-lighted cells are negative values

Table 44. Example Percentage of maximum Benefit after Different Contact Times (truncated at 100%)

| Table 44. Example Percer               |        |           | contact times |          | ctions after |       |        | ictions aft |           |      | ctions afte | er     | % redu | ctions afte | er contact |
|----------------------------------------|--------|-----------|---------------|----------|--------------|-------|--------|-------------|-----------|------|-------------|--------|--------|-------------|------------|
|                                        | for GA |           |               | times fo |              |       | contac | t times fo  | r R-sand: |      | t times for |        |        | or site Z:  |            |
|                                        | 10     | 100 min   | 1,000 min     | 10       | 100          | 1,000 | 10     | 100         | 1,000     | 10   | 100         | 1,000  | 10     | 100         | 1,000      |
|                                        | min    | (1.7 hrs) | (17 hrs)      | min      | min          | min   | min    | min         | min       | min  | min         | min    | min    | min         | min        |
| Common Constituents                    |        |           |               |          |              |       |        |             |           |      |             |        |        |             |            |
| Conductivity                           |        |           |               |          |              |       |        |             |           |      | 0.0         | 40.0   |        |             |            |
| Hardness                               |        | 1.1       | 50.0          |          |              |       |        |             |           |      |             |        |        |             |            |
| ORP                                    | 0.0    | 1.8       | 20.0          |          |              |       |        |             |           |      |             |        |        |             |            |
| рН                                     | 0.0    | -2.7      | -30.0         |          |              |       |        |             |           |      |             |        |        |             |            |
| Carbon Behavior Indicators             |        |           |               |          |              |       |        |             |           |      |             |        |        |             | •          |
| Color                                  | 0.0    | 1.8       | 19.8          |          |              |       |        |             | -150.0    | -0.3 | -3.9        | -39.9  |        |             |            |
| UV-254                                 | 0.1    | 1.7       | 17.9          | 0.0      | 0.2          | 2.0   |        |             |           | 0.0  | -2.7        | -29.8  | 0.1    | 0.8         | 8.0        |
| COD                                    |        |           |               |          |              |       | 0.0    | -1.8        | -19.8     |      | -24         | -300   |        |             |            |
| Major Ions                             |        |           |               |          |              |       |        |             |           |      |             |        |        |             |            |
| Calcium                                |        | 0.0       | 40.0          |          |              |       |        |             |           |      |             |        |        |             |            |
| Magnesium                              |        | 0.0       | -11.0         |          | 0.0          | -5.5  |        |             | -2.2      |      | -10.8       | -150.0 |        | 0.0         | 12.4       |
| Sodium                                 |        |           | 0.0           |          |              |       |        |             |           |      |             |        | -0.3   | -3.6        | -36.0      |
| Potassium                              | -2.7   | -29.7     | -299.8        |          |              | -5.5  |        | 0.0         | -3.7      |      |             |        | -0.1   | -1.2        | -12.0      |
| Sulfate                                |        |           | 40.0          |          | -5.7         | 20.0  |        |             | 40.0      |      |             |        |        | 0.0         | 3.7        |
| Fluoride                               |        |           |               | 0.2      | 2.0          | 20.0  | 0.2    | 2.0         | 20.0      |      | 0.0         | 40.0   |        |             | 13.3       |
| Nutrients                              |        |           |               |          |              |       |        |             |           |      |             |        |        |             |            |
| Ammonia                                |        |           | 20.0          |          | 0.0          | 9.2   |        | 1.0         | 11.8      |      |             |        | 0.8    | 8.9         | 90.0       |
| Nitrate                                |        | 4.9       | 60.0          |          |              |       |        |             |           |      |             |        |        |             |            |
| Total Nitrogen                         |        |           |               |          | -3.2         | -39.4 |        |             |           |      | -7.9        | -150   | -14.4  | -200        | -2055      |
| Total Phosphorus                       | 0.0    | -16.2     | -178          |          |              |       |        | 2.4         | 30.0      | 0.0  | -2.3        | -24.9  |        |             |            |
| Phosphate                              | -0.4   | -4.0      | -40.0         |          |              |       | 0.1    | 0.6         | 6.0       |      |             | 0.0    |        |             |            |
| Heavy Metals and Trace<br>Constituents |        |           |               |          |              |       |        |             |           |      |             |        |        |             |            |
| Aluminum                               |        |           |               |          | 0.0          | 50.0  |        |             |           |      |             |        | 0.0    | 2.1         | 23.2       |
| Antimony                               | 0.0    | 4.5       | 50.0          | 0.0      | 1.8          | 20.0  |        |             |           | 0.2  | 1.8         | 18.0   |        | 0.0         | 7.3        |
| Arsenic                                |        | 20.0      | 100.0         |          |              |       |        |             |           | 0.5  | 5.9         | 60.0   | -2.3   | -24.8       | -250       |
| Boron                                  |        | 1.1       | 15.6          |          | 2.9          | 40.0  |        | 0.0         | 60.0      |      |             |        |        |             |            |
| Cadmium                                | 0.4    | 7.6       | 80.0          |          | 0.0          | 5.5   |        | 0.0         | 7.3       | 0.2  | 1.8         | 18.0   |        | 0.0         | 14.7       |
| Chromium                               | 9.1    | 100.0     | 100.0         |          | 2.1          | 40.0  |        | 0.0         | 14.7      | 0.5  | 5.9         | 60.0   |        | 1.4         | 19.5       |
| Copper                                 | 0.7    | 7.9       | 80.0          |          | 0.0          | 40.0  |        | 0.0         | 40.0      | 0.7  | 7.9         | 80.0   | 0.0    | 6.4         | 70.0       |
| Lead                                   | 0.1    | 1.6       | 16.0          | 50.0     | 100.0        | 100.0 |        | 0.0         | 0.0       | 4.5  | 50.0        | 100.0  |        | 0.0         | 18.4       |
| Manganese                              | 0.0    | 31.0      | 100.0         |          | 0.0          | -18.4 |        |             |           |      |             |        |        | 0.0         | 40.0       |
| Nickel                                 | 0.1    | 1.5       | 15.9          |          | 0.0          | 20.0  |        | 0.0         | 3.7       | 0.1  | 1.6         | 16.0   |        | 0.7         | 13.4       |
| Thallium                               | 0.2    | 4.3       | 44.9          | 0.4      | 7.6          | 80.0  |        | 1.3         | 17.6      |      |             |        | 0.0    | 9.1         | 100.0      |

Clark (2000) also measured contact time effects on the retention of stormwater pollutants in biofilter media. The following equation is the ratio of the effluent to the influent concentrations (after In transformations) based on the intercept (Inb) and the slope (-kt) of the relationship:

$$\ln\left(\frac{C_e}{C_0}\right) = \ln b - kt$$

The calculated ratios are used to determine the percentages of the removals observed at different contact times. For example, if the maximum removal is 50%, but only 10% available after 100 minutes contact (using the above equation), then the actual removal would be 5% for that contact period.

Table 45. Contact Time Kinetics for Pollutant Retention for Biofilter Media (from Clark 2000)

|             |           | Sand   | Carbon-Sand | Peat-   | Compost- |
|-------------|-----------|--------|-------------|---------|----------|
|             |           |        |             | Sand    | Sand     |
| carbonate   | In b      | 0      | 0           | 0       | 0        |
|             | k (min-1) | n/a    | n/a         | 0.041   | n/a      |
| bicarbonate | In b      | 0      | 0           | 0       | 0        |
|             | k (min-1) | n/a    | 0.0026      | n/a     | 0.0058   |
| calcium     | In b      | 0      | 0           | -0.3006 | 0        |
|             | k (min-1) | n/a    | n/a         | 0.0082  | 0.0058   |
| magnesium   | In b      | 0      | 0           | -0.1697 | 0        |
|             | k (min-1) | n/a    | n/a         | 0.005   | 0.0026   |
| potassium   | In b      | 0      | 0           | 0       | -0.5055  |
|             | k (min-1) | n/a    | n/a         | 0.0012  | 0.0007   |
| sodium      | In b      | 0      | 0           | 0       | 0        |
|             | k (min-1) | 0.0014 | n/a         | n/a     | 0.0011   |
| sulfate     | In b      | 0      | 0           | 0       | 0        |
|             | k (min-1) | n/a    | n/a         | 0.0058  | n/a      |
| ammonia     | In b      | 0      | 0           | -3.3069 | 0        |
|             | k (min-1) | 0.0019 | 0.0176      | 0.0202  | 0.0783   |
| nitrate     | In b      | 0      | 0           | 0       | 0        |
|             | k (min-1) | 0.001  | n/a         | n/a     | 0.0204   |
| phosphate   | In b      | 0      | 0           | 0       | 0        |
|             | k (min-1) | n/a    | n/a         | n/a     | n/a      |
| copper      | In b      | 0      | 0           | -1.0193 | 0        |
|             | k (min-1) | n/a    | n/a         | 0.0079  | 0.0093   |
| lead        | In b      | 0.3437 | 0           | -3.1694 | 0        |
|             | k (min-1) | 0.0151 | n/a         | 0.0085  | n/a      |
| zinc        | In b      | 0      | 0           | -0.5112 | 0        |
|             | k (min-1) | n/a    | n/a         | 0.0105  | n/a      |
| iron        | In b      | 0      | 0           | -3.1988 | 0        |
|             | k (min-1) | n/a    | n/a         | 0.0155  | 0.018    |

## Numeric Example for Biofilter Media Performance Included in WinSLAMM

The follow is an example showing how the information in this memo is used in WinSLAMM to calculate the flow rate through a biofilter and its particulate removal and filter pollutant removal performance. Clogging calculations and media sorption capacity are also calculated. The following describes the site and runoff conditions (for one example rain event of 1 inch):

#### Drainage area:

One acre (43,560 ft<sup>2</sup> or 4,050 m<sup>2</sup>) pavement

Stormwater characteristic (non-filtered forms of phosphorus and copper, along with other particulate-bound pollutants, are removed along with the TSS, so only a selection of filtered pollutants are listed below as examples, along with the TSS and bacteria):

TSS: 300 mg/L

Ammonia as N: 0.9 mg/L Nitrates as N: 20 mg/L Phosphates as P: 2.3 mg/L

Cu, filtered: 15 ug/L E. coli: 135 #/100 mL Enterococci: 50 #/100 mL

## Particle size distribution of stormwater particulates

| stormwater PSD size range | Percentage of particulates in each stormwater influent PSD range |
|---------------------------|------------------------------------------------------------------|
| <3                        | 10                                                               |
| 3-12                      | 10                                                               |
| 13-30                     | 15                                                               |
| 31-60                     | 25                                                               |
| 61-150                    | 25                                                               |
| 151-300                   | 10                                                               |
| 301-2000                  | 5                                                                |
|                           | 100                                                              |

#### Biofilter area:

4% of paved drainage area (1,742 ft<sup>2</sup> or 162 m<sup>2</sup>)

#### Media mixture:

granular activated carbon (30%) Peat moss (30%) Fine sand (40%)

#### Media depth and void ratio:

18 inches (0.46 m) Void ratio: 25%

# Step 1: Particle size distribution of the media mixture

The PSD of the media mixture allows the median size (D50) and the uniformity (Cu = D60/D10) to be determined. These values are needed to determine several performance aspects of the biofilter, including the flow rate through the media mixture and the stormwater particulate retention by the media. Table 46 shows the calculations to obtain the mixture psd. The percentages in the media size ranges are from Master Table 1b. Figure 5 is a PSD plot for the resulting mixture.

Table 46. Calculations to Obtain Media Mixture PSD

|             | fine sand  |      | GAC        |      | Peat       |      | sum for<br>mixture |         |              |
|-------------|------------|------|------------|------|------------|------|--------------------|---------|--------------|
| media size  |            |      |            |      |            |      |                    |         | accumulative |
| range (μm)  | % in range | X0.4 | % in range | X0.3 | % in range | X0.3 | % in range         | size µm | percentage   |
| <3          | 0          | 0    | 0          | 0    | 0          | 0    | 0                  | 3       | 0            |
| 3-12        | 0          | 0    | 0          | 0    | 0          | 0    | 0                  | 12      | 0            |
| 13-30       | 0          | 0    | 0          | 0    | 1          | 0.3  | 0.3                | 30      | 0.3          |
| 31-60       | 1          | 0.4  | 0          | 0    | 2          | 0.6  | 1                  | 60      | 1.3          |
| 61-150      | 21         | 8.4  | 0          | 0    | 12         | 3.6  | 12                 | 150     | 13.3         |
| 151-300     | 33         | 13.2 | 1          | 0.3  | 17         | 5.1  | 18.6               | 300     | 31.9         |
| 301-1000    | 37         | 14.8 | 9          | 2.7  | 28         | 8.4  | 25.9               | 1000    | 57.8         |
| 1001-2000   | 4          | 1.6  | 36         | 10.8 | 10         | 3    | 15.4               | 2000    | 73.2         |
| 2001 - 3000 | 2          | 0.8  | 36         | 10.8 | 5          | 1.5  | 13.1               | 3000    | 86.3         |
| 3001-4000   | 2          | 0.8  | 13         | 3.9  | 7          | 2.1  | 6.8                | 4000    | 93.1         |
| 4001-6000   | 0          | 0    | 5          | 1.5  | 9          | 2.7  | 4.2                | 6000    | 97.3         |
| 6001 - 8000 | 0          | 0    | 0          | 0    | 2          | 0.6  | 0.6                | 8000    | 97.9         |
| >8000       | 0          | 0    | 0          | 0    | 7          | 2.1  | 2.1                |         |              |
| sum:        | 100        | 40   | 100        | 30   | 100        | 30   | 100                |         |              |

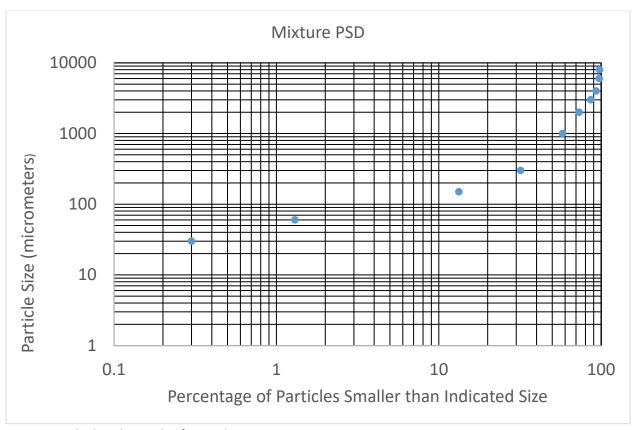



Figure 5. Calculated PSD plot for media mixture.

The following particle sizes correspond to the associated percentage distributions:

D10: 120 μm D50: 850 μm D60: 1,100 μm

Therefore, the median size for the media mixture is 850  $\mu$ m and the uniformity coefficient (D60/D10), Cu, is 9.2

## Step 2: Stormwater particulate removal by particle size range

Based on the median particle size of the media mixture, Table 11 for low to high concentrations (50 to 500 SSC mg/L), intermediate media (about 1000 to 2000 um) is used to calculate the particulate retention of the mixed media. Table 10 is used if the median particle size is <650  $\mu$ m, Table 11 is used if the median particle size is 650 to 3,500  $\mu$ m, and Table 12 is used if the median particle size is >3,500  $\mu$ m.

Table 47. Particulate Solids Removal Calculations

| Ī | Fraction of material | inf part solids | effluent for  | effluent % | accumulative |
|---|----------------------|-----------------|---------------|------------|--------------|
|   | in each stormwater   | conc. Total =   | intermediate  | psd        | %            |
|   | influent PSD Range   | 300 mg/L        | media mixture |            |              |

|            |     |              | (from Table 11  |      |       |
|------------|-----|--------------|-----------------|------|-------|
|            |     |              | for approximate |      |       |
|            |     |              | size ranges)    |      |       |
| stormwater |     | conc in size |                 |      |       |
| PSD Range  |     | range        |                 |      |       |
| <3         | 10  | 30           | 30.0*           | 36.9 | 36.9  |
| 3-12       | 10  | 30           | 26.8            | 33.0 | 69.9  |
| 13-30      | 15  | 45           | 17.1            | 21.0 | 90.9  |
| 31-60      | 25  | 75           | 3.33            | 4.1  | 95.0  |
| 61-150     | 25  | 75           | 3.33            | 4.1  | 99.1  |
| 151-300    | 10  | 30           | 0.7             | 0.9  | 100.0 |
| 301-2000   | 5   | 15           | 0               | 0.0  | 100.0 |
|            | 100 | 300 mg/L     | 81.3 mg/L       | 100  |       |

<sup>\*</sup>effluent concentration cannot be greater than influent concentration for each particle size range, except for  $<3 \mu m$  where increased concentration can be associated with fines being washed from media.

Therefore, the particulate solids concentrations decreased from 300 to 81 mg/L for this example event (about 73% reduction in concentration). The mass concentration reduction could be greater, depending on the runoff volume losses due to infiltration. Particulate forms of other pollutants would also be reduced depending on their fraction in each particle size range. Currently, WinSLAMM applies the bulk solids reduction (73% here) to the particulate pollutant fraction. An upcoming update to WinSLAMM will calculate pollutant reductions based on their specific associations with each size range.

#### Step 3: Stormwater flow rate through media

Master Table 2 lists the infiltration rate values for individual media components and for selected mixtures, as shown below.

|           | in/hr                   |
|-----------|-------------------------|
| fine sand | 13                      |
| GAC       | 40                      |
| peat      | use peat/sand equations |

Because of the peat content, special equations using the median particle size and uniformity (and compaction) values are used to calculate the infiltration rate for the media mixture. In this case, the organic content is high (>10%), as the peat fraction is 30%.

hand compaction with high organic matter: log Fc = 1.84 + 0.000522 (D50) - 0.0648(Cu)

For this example, the log Fc value is 1.68, and the resulting Fc is therefore 48.7 cm/hr, or 19.2 in/hr. This is the initial flow rate through the media before it is decreased by clogging.

#### Step 4: Flow rate decreases due to clogging

Master Table 2 also includes information concerning the maximum particulate solids loading expected before clogging failure. The clogging value for a mixture is calculated based on the weighted mixture components. Final values much larger than 20 kg/m2 should be suspect, as that is the value observed in the field. Also, if this value is reached before about 10 years, the biofilter will likely cease to function due to clogging. However, if this load value takes more than 10 years, and the plants in the biofilter remain healthy and vigorous, the plants can incorporate this material into the surface soil material and the plant roots can keep the system operating (but with reduced surface storage volumes). The following table shows this weighted calculation for the maximum sediment load before clogging:

|           | Maximum sediment           | % in    | weighted               |
|-----------|----------------------------|---------|------------------------|
|           | load, from Master          | mixture | capacity               |
|           | Table 2, kg/m <sup>2</sup> |         |                        |
| fine sand | 10                         | 40      | 4                      |
| GAC       | 38 (coarse material)       | 30      | 11.4                   |
| peat      | 20                         | 30      | 6                      |
|           |                            | sum:    | 21.4 kg/m <sup>2</sup> |

The biofilter being examined has a surface area of about 162 m². The sediment discharged to the biofilter is calculated for each individual event, and the amount retained is calculated. For a one-inch rain over a one acre paved parking area, the runoff volume would be about 87 m³ (assuming an Rv of 0.85). The TSS concentration is 300 mg/L and 73% is retained in the biofilter, based on prior calculations. The total sediment load retained in the biofilter for this event is therefore about 0.12 kg/m². The next event would therefore have a slightly reduced flow rate (reduced by the ratio of 0.12/21.4), or about 19.16 in/hr. After one year, the total annual accumulation is examined. If it is > 1/10 of the maximum (or 2.14 kg/m²), then the rate continues to decrease after each event and the biofilter is shut down due to clogging when the 21.4 kg/m² maximum accumulation is reached. For this example, the maximum load may be reached after about 180 inches of rain. For sites having more than about 18 inches of rain per year, the biofilter may prematurely clog. If the total accumulation after one year is <1/10 of the maximum, the biofilter is likely to continue to function without clogging (requires excellent vegetation cover). In this case, the flow rate is not decreased any further after the first year. However, the surface storage of the biofilter is always decreased after each event based on the accumulated sediment after each rain.

#### Step 5: Retention of filtered pollutants

Master Table 3 also notes the procedures to calculate the retention of the filtered pollutants. For the three media material in the mixture, the Boeing equations are used, as shown on Tables 25, 26, and 28. These calculations are only for the filtered forms of the pollutants as the particulate forms are removed along with the particulate solids. The following tables summarize these calculations.

|                         | influent<br>concentration | GAC removal equation | peat removal<br>equation | sand<br>removal<br>equation |
|-------------------------|---------------------------|----------------------|--------------------------|-----------------------------|
| copper (filtered), ug/L | 15                        | Y = 6.8 (0.64)*      | Y = 12.3 (0.26)          | Y = X                       |
| ammonia, mg/L           | 0.9                       | Y = 0.27 (2.1)       | Y = X                    | Y = 0.54X                   |
| nitrate, mg/L           | 20                        | Y = 46 (0.63)        | Y = X                    | Y = X                       |
| phosphate, mg/L         | 2.3                       | Y = 3.7 (0.62)       | Y = X                    | Y = 0.48X                   |

<sup>\*</sup>coefficient of variation (COV)

|                       | effluent for media component |      |       | weighted calculation |            |            |                  |                                      |
|-----------------------|------------------------------|------|-------|----------------------|------------|------------|------------------|--------------------------------------|
|                       | GAC                          | peat | sand  | GAC X 0.3            | peat X 0.3 | sand X 0.4 | sum (final conc) | % reductions<br>for filtered<br>form |
| copper<br>(filtered), | 6.8                          | 12.3 | 15    | 2.04                 | 3.69       | 6.0        | 11.73            | 21.8                                 |
| ammonia               | 0.27                         | 0.9  | 0.486 | 0.081                | 0.27       | 0.1944     | 0.5454           | 39.4                                 |
| nitrate               | 46                           | 20   | 20    | 13.8                 | 6.0        | 8.0        | 27.8             | -39.0                                |
| phosphate             | 3.7                          | 2.3  | 1.104 | 1.11                 | 0.69       | 0.4416     | 2.2416           | 2.5                                  |

# Step 5.1 Bacteria retention by media mixture

Master Table 3 also indicates the procedures for calculating the retention of bacteria in the biofilters. For these media components, Table 34 is used. The following shows these weighted calculations for these media components for *E. coli* and enterococci (using the median values).

|                      | Bacteria retention<br>method from<br>Master table 3 | E. coli<br>median<br>removal (%) | Enterococci<br>median<br>removal (%) | fraction in<br>mixture |
|----------------------|-----------------------------------------------------|----------------------------------|--------------------------------------|------------------------|
| fine sand            | Clark dissert sand                                  | 44                               | 53                                   | 0.4                    |
| GAC                  | no removal                                          | 0                                | 0                                    | 0.3                    |
| peat                 | Clark dissert peat-<br>sand                         | 66                               | 47                                   | 0.3                    |
| weighted removal (%) |                                                     | 37.4                             | 35.3                                 |                        |
| COV                  |                                                     | 0.8                              | 1.1                                  |                        |

|             | Influent      | Weighted % | Effluent      |
|-------------|---------------|------------|---------------|
|             | concentration | reduction  | concentration |
|             | (#/100 mL)    |            | (#/100 mL)    |
| E. coli     | 135           | 37.4       | 85            |
| Enterococci | 50            | 35.3       | 32            |

#### Step 5.2 Residence/contact time effects on filtered pollutant removal

The contact time of the stormwater with the media only affects the filtered pollutants (not the particulate-bound pollutants). Table 43 shows the percent increased removals (or leaching) after the minimum contact time is reached. These modifications in removals are only applicable for thin media use. The prior removal calculations are based on the full-depth media (about 18 inches) for well-mixed media. Layered media results in uneven contact times for each media type, while finer media material mixed with coarse material results in a moderated and constant contact time for all media. The calculated contact time for this media mixture example is about 14 minutes. Longer contact times can also occur with the use of sealed bottoms of biofilters and restricted underdrains. The following shows the contact time effects for these media components for the four filtered pollutants:

|           | GAC               | GAC                       | R-sand            | R-sand                    | PM                | PM                           |
|-----------|-------------------|---------------------------|-------------------|---------------------------|-------------------|------------------------------|
|           | min time<br>(min) | %/min (after<br>min time) | min time<br>(min) | %/min (after<br>min time) | min time<br>(min) | %/min<br>(after min<br>time) |
| Ammonia   | 200               | 0.025                     | 20                | 0.012                     | 2000              | 0.017                        |
| Nitrate   | 20                | 0.061                     |                   |                           |                   |                              |
| Phosphate | 1                 | -0.04                     | 1                 | 0.006                     | 1000              | 0.015                        |
| Copper    | 1                 | 0.08                      | 100               | 0.044                     | 1                 | 0.08                         |

Ammonia is mostly removed by the Rhyolite sand due to the very long contact times required for the GAC and peat for ammonia removal. Nitrate is only shown to be removed by the GAC, while GAC and Rhyolite sand affect phosphate and GAC and peat affect the copper for the contact times available.

#### Step 5.3 Media capacity before breakthrough

Table 40 lists the media capacities for the different filtered pollutants for various media components, as summarized below:

| mg pollutant/kg<br>media | GAC     | peat    | sand    |
|--------------------------|---------|---------|---------|
| copper (filtered)        | 0.00359 | 0.00825 |         |
| ammonia                  | 0.23577 |         | 0.00073 |
| nitrate                  | 0.52873 |         | 0.00338 |
| phosphate                |         |         | 0.00205 |

The following table shows the weighted capacity of the media mixture for these four filtered pollutants:

|                   | weighted capa | acity    | mg<br>pollutant/gram<br>media | mg pollutant<br>capacity for<br>biofilter |            |
|-------------------|---------------|----------|-------------------------------|-------------------------------------------|------------|
|                   | GAC 0.3       | peat 0.3 | sand 0.4                      | total capacity                            |            |
| copper (filtered) | 0.001077      | 0.002475 | 0                             | 0.003552                                  | 394,453    |
| ammonia           | 0.070731      | 0        | 0.000292                      | 0.071023                                  | 7,887,175  |
| nitrate           | 0.158619      | 0        | 0.001352                      | 0.159971                                  | 17,764,940 |
| phosphate         | 0             | 0        | 0.00082                       | 0.00082                                   | 91,062     |

# Step 5.4 Media run time before breakthrough

These media capacity values are tracked after each event. The filtered pollutant removals do not change as the capacity is consumed, but abruptly stop being retained when the capacities are reached (breakthrough, with effluent concentrations = influent concentrations).

| pollutant                  | influent<br>conc for<br>example<br>event | effluent conc<br>for example<br>event | retained<br>conc for<br>example<br>event | retained mass<br>for example<br>event | Retained<br>mass (mg)<br>for<br>example<br>event |
|----------------------------|------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|--------------------------------------------------|
| copper (filtered),<br>ug/L | 15                                       | 11.73                                 | 3.27                                     | 285,798 ug                            | 286 mg                                           |
| ammonia, mg/L              | 0.9                                      | 0.5454                                | 0.3546                                   | 30,992 mg                             | 30,992 mg                                        |
| nitrate, mg/L              | 20                                       | 27.8                                  | -7.8                                     | n/a                                   | n/a                                              |
| phosphate, mg/L            | 2.3                                      | 2.2416                                | 0.0584                                   | 5,104 mg                              | 5,104 mg                                         |

|                   | mg pollutant | fraction of total   | approx inches of rain before |
|-------------------|--------------|---------------------|------------------------------|
|                   | capacity for | consumed by         | breakthrough                 |
|                   | biofilter    | example 1 inch rain |                              |
| copper (filtered) | 394,453      | 0.000725            | 1,380                        |
| ammonia           | 7,887,175    | 0.003929            | 254                          |
| nitrate           | 17,764,940   | n/a                 | n/a                          |
| phosphate         | 91,062       | 0.056052            | 18                           |

The media mixture has limited capacity for phosphate, while the ammonia capacity is expected to last slightly longer than for the TSS clogging period, while the capacity for the filtered copper is very large and expected to last for a long period. Negative removals (such as for nitrates) do not recover media capacity and usually indicate release from the media material.

#### References

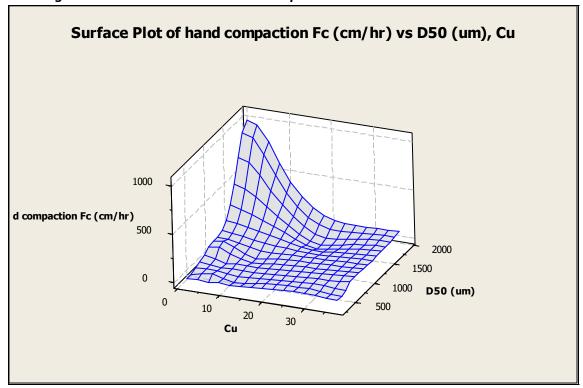
- Clark, Shirley. Evaluation of Filtration Media for Stormwater Runoff Treatment. M.S.C.E. Thesis, University of Alabama at Birmingham, Birmingham, Alabama, 442 pages. 1996.
- Clark, S. and R. Pitt. Stormwater Treatment at Critical Areas, Vol. 3: Evaluation of Filtration Media for Stormwater Treatment. U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory. EPA/600/R-00/016, Cincinnati, Ohio. 442 pgs. October 1999.
- Clark, Shirley. *Urban Stormwater Filtration: Optimization of Design Parameters and a Pilot-Scale Evaluation*. Ph.D. Dissertation, University of Alabama at Birmingham, Birmingham, Alabama. 430 pages. 2000.
- Clark, S.E., R. Pitt, P.D. Johnson, S. Gill, and M. Pratap. "Media filtration to remove solids and associated pollutants from stormwater runoff." *Chapter 7, Best Management Practices (BMP) Technology Symposium: Current and Future Directions,* American Society of Civil Engineers. pp. 141 163. May 2006.
- Clark, S.E., and R. Pitt, 2009a "Solids removal in stormwater filters modeled using a power equation." *Journal Environmental Engineering*. Vol. 135, No. 9. pp. 896 899. September 2009.
- Clark, S.E., and R. Pitt, 2009b "Stormwater filter media pollutant retention under aerobic versus anaerobic conditions." *Journal of Environmental Engineering*, Vol. 135, No. 5, pp. 367 371. May 2009.
- Clark. S. and R. Pitt. "Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits." *Water Research*. Vol. 46, pp. 6715-6730. July 2012: http://www.sciencedirect.com/science/article/pii/S0043135412004915
- Hooghoudt, SB. (1940). Contributions to the knowledge of some physical quantities of the ground, Algemeene [sic General] consideration of the problem of detailed drainage and infiltration by the middle of parallel loop income drains, ditches, canals and ditches. Encrypt Landb, Ent Algemeene Country Printing, The Hauge 46: 515-707.
- International BMP Database at: http://www.bmpdatabase.org/index.htm
- Irrigation Association. Landscape Drainage Design. The Irrigation Association, Falls Church, VA. 2000.
- Pitt, R., J. Lantrip, R. Harrison, C. Henry, and D. Hue. *Infiltration through Disturbed Urban Soils and Compost-Amended Soil Effects on Runoff Quality and Quantity*. U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory. EPA 600/R-00/016. Cincinnati, Ohio. 231 pgs. December 1999.
- Pitt, R. J. Voorhees, and S. Clark. "Evapotranspiration and related calculations for stormwater biofiltration devices: Proposed calculation scenario and data." In: *Stormwater and Urban Water Systems Modeling*, Monograph 16. (edited by W. James, E.A. McBean, R.E. Pitt and S.J. Wright). CHI. Guelph, Ontario, pp. 309 340. 2008.
- Pitt, R. and S. Clark, Evaluation of Biofiltration Media for Engineered Natural Treatment Systems.

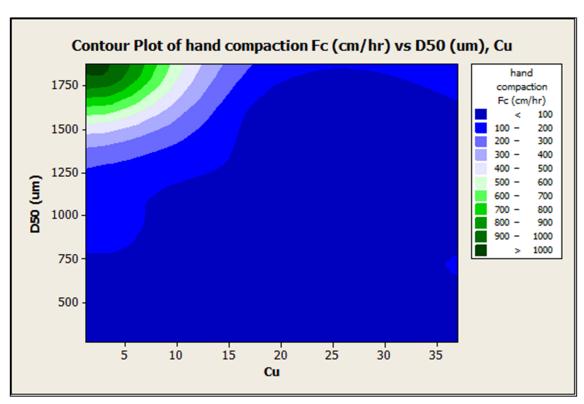
  Geosyntec Consultants and The Boeing Co., 1050 pages. June 5, 2010,

  <a href="http://www.boeing.com/aboutus/environment/santa\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_quality/tech\_reports/techreport\_susana/water\_susana/water\_quality/tech\_reports/techreport\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/water\_susana/
- Pitt, R. and L. Talebi. *Evaluation and Demonstration of Stormwater Dry Wells and Cisterns in Milburn Township, New Jersey*. Urban Watershed Management Branch, U.S. Environmental Protection Agency, Edison, NJ 08837. August 2012. 302 pgs.
- Pitt, R., Talebi, L., "Modeling Green Infrastructure with Large-Scale Monitoring at Kansas City, Missouri." In: Pragmatic Modeling of Urban Water Systems, Monograph 21. (Edited by W. James, K.N. Irvine, E.A. McBean, R.E. Pitt and S.J. Wright).CHI, Guelph, ON Canada, 2013.

- Pitt, R., Talebi, L., O'Bannon, D., Bambic, D., Wright, J. "Modeling of Green Infrastructure Components and Large-Scale Test and Control Watersheds at Kansas City, MO," Prepared for USEPA and Tetra Tech, 357 pages. January, 2014.
- Raju MM, Kumar A, Bisht D, Kumar Y, Sarkar A. (2012). Representative Hydraulic Conductivity and its Effect of Variability in the Design of Drainage System. Volume1 (12). Open Access Scientific Reports <a href="http://www.omicsonline.org/scientific-reports/IDSE-SR-576.pdf">http://www.omicsonline.org/scientific-reports/IDSE-SR-576.pdf</a>
- Sileshi, Redahegn. Ph.D. Soil Physical Characteristics Related to Failure of Stormwater Bioinfiltration Devices. 2013
- Sileshi, R., Pitt, R. and Clark, S. (2014a). "Laboratory Column Test for Predicting Changes in Flow with Changes in Various Biofilter Mixture." Journal of Water Management Modeling, CHI JWMM 2014; C373: https://www.chijournal.org/C373
- Sileshi, R., R. Pitt, and S. Clark. 2014b. Laboratory Column Experiment on Particle Trapping Capabilities of Various Biofilter Mixtures. Stormwater and Urban Water Systems Modeling. Computational Hydraulics International. Guelph, Ontario. (Edited by W. James, K.N. Irvine, E.A. McBean, R.E. Pitt and S.J. Wright). CHI, Guelph, ON Canada, 2014.
- Sileshi, R., Pitt, R. and Clark, S. (2017). "Impacts of Soil Media Characteristics on Stormwater Biofiltration System Performance." International Advanced Research Journal in Science, Engineering and Technology (IARJSET), ISO 3297:2007, Vol. 4, Issue 3. <a href="http://www.iarjset.com/upload/2017/march-17/IARJSET%2022.pdf">http://www.iarjset.com/upload/2017/march-17/IARJSET%2022.pdf</a>
- Sileshi, R., R. Pitt, and S. Clark. "Performance Evaluation of an Alternative Underdrain Material for Stormwater Biofiltration Systems." ASCE Journal of Sustainable Water in the Built Environment (2018).
- Talebi, L., Pitt, R., "Evaluation and Demonstration of Stormwater Dry Wells and Cisterns in Millburn Township, New Jersey." *In: Pragmatic Modeling of Urban Water Systems, Monograph 21. (Edited by W. James, K.N. Irvine, E.A. McBean, R.E. Pitt and S.J. Wright).CHI, Guelph, ON Canada, 2013.*
- United States Environmental Protection Agency (US EPA). (1986). Saturated hydraulic conductivity, Saturated Leachate Conductivity, and Intrinsic Permeability. Method 9100. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/9100.pdf

Appendix A1: Media Test Materials and Observed Treatment Flow Rates


| Media Test Materials                                      |                                    |                         |                |                        | Hand Compactions                  |                 | Standard Proctor<br>Compaction    |                    | Modified Proctor<br>Compaction    |                    |
|-----------------------------------------------------------|------------------------------------|-------------------------|----------------|------------------------|-----------------------------------|-----------------|-----------------------------------|--------------------|-----------------------------------|--------------------|
| Components                                                | Mixture                            | D <sub>50</sub><br>(um) | C <sub>u</sub> | %<br>organic<br>matter | F <sub>c</sub> (cm/hr)<br>and COV | density (g/cm³) | F <sub>c</sub> (cm/hr)<br>and COV | density<br>(g/cm³) | F <sub>c</sub> (cm/hr)<br>and COV | density<br>(g/cm³) |
| 6/10 sand from Atlanta,                                   | 10% Peat, 45%                      |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| 10/30 sand Atlanta, and                                   | 6/10 Sand, and                     |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| peat                                                      | 45% of 10/30 Sand                  | 1875                    | 2.1            | 10                     | 1028 (0.36)                       | 1.52            | 1005 (0.24)                       | 1.54               | 1001 (0.35)                       | 1.58               |
| peat                                                      | 25% Peat, 37.5%                    | 1873                    | 2.1            | 10                     | 1028 (0.30)                       | 1.52            | 1003 (0.24)                       | 1.54               | 1001 (0.33)                       | 1.56               |
| 6/10 sand from Atlanta,                                   | 6/10 Sand, and                     |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| 10/30 sand Atlanta, and                                   | 37.5% of 10/30                     |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| peat                                                      | Sand                               | 1875                    | 2              | 25                     | 805 (0.28)                        | 1.38            | 665 (0.48)                        | 1.46               | 452 (0.58)                        | 1.47               |
| •                                                         |                                    |                         |                |                        | , ,                               |                 | , ,                               |                    | , ,                               |                    |
| 6/10 sand from Atlanta,                                   | 50% Peat, 25%                      |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| 10/30 sand Atlanta, and                                   | 6/10 Sand, and                     |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| peat                                                      | 25% of 10/30 Sand                  | 1625                    | 2.5            | 50                     | 282 (0.31)                        | 0.96            | 126 (0.24)                        | 1.18               | 110 (0.34)                        | 1.23               |
|                                                           | 10% Peat, 45%                      |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| Concrete Sand from Atlanta ,                              | Concrete Sand,                     |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| 10/30 Sand from Atlanta ,                                 | and 45% of 10/30                   |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| and Peat                                                  | Sand                               | 900                     | 3.8            | 10                     | 159 (0.2)                         | 1.7             | 122 (0.11)                        | 1.8                | 72.3 (0.87)                       | 1.82               |
|                                                           | 25% Peat, 37.5%                    |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| Concrete Sand from Atlanta ,                              | Concrete Sand,                     |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| 10/30 Sand from Atlanta ,                                 | and 37.5% of                       | 050                     |                | 25                     | 450 (0.4)                         | 4.5             | 120 (0.20)                        | 4.6                | 04.2 (0.22)                       | 4.67               |
| and Pea                                                   | 10/30 Sand                         | 950                     | 4              | 25                     | 158 (0.4)                         | 1.5             | 130 (0.28)                        | 1.6                | 91.2 (0.22)                       | 1.67               |
| Congrete Cand from Atlanta                                | 50% Peat, 25%                      |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| Concrete Sand from Atlanta ,<br>10/30 Sand from Atlanta , | Concrete Sand,<br>and 25% of 10/30 |                         |                |                        |                                   |                 |                                   |                    |                                   |                    |
| and Pea                                                   | Sand                               | 975                     | 4.3            | 50                     | 275 (31)                          | 1.13            | 89.8 (0.12)                       | 1.31               | 72.2 (0.1)                        | 1.32               |


| Media Test Materials        |                  |                                                  |      |         | Hand Compactions       |                              | Standard               |            | Modified Proctor       |                      |
|-----------------------------|------------------|--------------------------------------------------|------|---------|------------------------|------------------------------|------------------------|------------|------------------------|----------------------|
| (continued)                 |                  | <del>                                     </del> |      | Hand Co | ompactions             | Compa                        | iction                 | Compaction |                        |                      |
|                             |                  |                                                  |      | %       | E // \                 |                              | E ( (l)                | -l 14      | E (/l)                 | al a sa aite s       |
|                             |                  | D <sub>50</sub>                                  | _    | organic | F <sub>c</sub> (cm/hr) | 1 / / 3)                     | F <sub>c</sub> (cm/hr) | density    | F <sub>c</sub> (cm/hr) | density              |
| Components                  | Mixture          | (um)                                             | Cu   | matter  | and COV                | density (g/cm <sup>3</sup> ) | and COV                | (g/cm³)    | and COV                | (g/cm <sup>3</sup> ) |
| Sand from Ground Floor (GF) |                  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Landscape Supply,           | 10% Peat, 45% GF |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Northport, AL, 10/30 Sand   | Sand, and 45% of |                                                  |      |         |                        |                              |                        |            |                        |                      |
| from Atlanta, and Pea       | 10/30 Sand       | 900                                              | 11.4 | 10      | 15.07 (0.24)           | 1.57                         | 6.47 (0.81)            | 1.66       | 3.47 (1.42)            | 1.64                 |
| Sand from Ground Floor (GF) | 25% Peat, 37.5%  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Landscape Supply,           | GF Sand, and     |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Northport, AL, 10/30 Sand   | 37.5% of 10/30   |                                                  |      |         |                        |                              |                        |            |                        |                      |
| from Atlanta, and Pea       | Sand             | 850                                              | 11.4 | 25      | 20.74 (0.3)            | 1.43                         | 8.89 (0.91)            | 1.49       | 6.86 (0.84)            | 1.48                 |
| Sand from Ground Floor (GF) |                  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Landscape Supply,           | 50% Peat, 25% GF |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Northport, AL, 10/30 Sand   | Sand, and 25% of |                                                  |      |         |                        |                              |                        |            |                        |                      |
| from Atlanta, and Pea       | 10/30 Sand       | 850                                              | 11.4 | 50      | 66.04 (0.25)           | 0.95                         | 26.49 (0.3)            | 1.02       | 11.68 (0.72)           | 1.17                 |
|                             |                  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Sand from Ground Floor (GF) |                  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Landscape Supply,           | 10% Peat and 90% |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Northport, AL and Peat      | GF Sand          | 340                                              | 1.3  | 10      | 8.13 (1.49)            | 1.28                         | 7.75 (0.77)            | 1.29       | 5.50 (0.81)            | 1.35                 |
| Sand from Ground Floor (GF) |                  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Landscape Supply,           | 25% Peat & 75%   |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Northport, AL and Peat      | GF Sand          | 300                                              | 3.5  | 25      | 14.31 (0.52)           | 1.14                         | 6.18 (1.2)             | 1.1        | 5.0 (0.81)             | 1.2                  |
| Sand from Ground Floor (GF) |                  |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Landscape Supply,           | 50% peat and 50% |                                                  |      |         |                        |                              |                        |            |                        |                      |
| Northport, AL and Peat      | GF sand          | 300                                              | 3.3  | 50      | 41.87 (0.9)            | 0.74                         | 12.02 (0.2)            | 0.96       | 7.11 (0.84)            | 1.03                 |
| Northport, AL and Feat      | Gi Janu          | 300                                              | ٥.٥  | 50      | 71.07 (0.3)            | 0.74                         | 12.02 (0.2)            | 0.90       | /.II (U.U4)            | 1.03                 |

| Media Test Materials        |                              |                 |      |         | Hand C                 |                              | Standard               |                  | Modified               |                      |
|-----------------------------|------------------------------|-----------------|------|---------|------------------------|------------------------------|------------------------|------------------|------------------------|----------------------|
| (continued)                 |                              |                 |      | %       | Hand C                 | ompactions                   | Compa                  | iction           | Compa                  | ection               |
|                             |                              | _               |      |         | F (ava /law)           |                              | F (ava /law)           | al a .a a : tu . | E /ama/lam)            | . الماد ماد الم      |
| Camanananta                 | N A in the case              | D <sub>50</sub> | _    | organic | F <sub>c</sub> (cm/hr) | domoitus (= /omo3)           | F <sub>c</sub> (cm/hr) | density          | F <sub>c</sub> (cm/hr) | density              |
| Components                  | Mixture                      | (um)            | Cu   | matter  | and COV                | density (g/cm <sup>3</sup> ) | and COV                | (g/cm³)          | and COV                | (g/cm <sup>3</sup> ) |
| Sand from Ground Floor (GF) |                              |                 |      |         |                        |                              |                        |                  |                        |                      |
| Landscape Supply,           | 10% Peat, 45% GF             |                 |      |         |                        |                              |                        |                  |                        |                      |
| Northport, AL, 6/10 Sand    | Sand, and 45% of             |                 |      |         |                        |                              |                        |                  |                        |                      |
| from Atlanta, and Peat      | 6/10 Sand                    | 1500            | 21.9 | 10      | 5.76 (1.35)            | 1.61                         | 5.50 (0.7)             | 1.64             | 5.16 (0.52)            | 1.63                 |
| Sand from Ground Floor (GF) | 25% Peat, 37.5%              |                 |      |         |                        |                              |                        |                  |                        |                      |
| Landscape Supply,           | GF Sand, and                 |                 |      |         |                        |                              |                        |                  |                        |                      |
| Northport, AL, 6/10 Sand    | 37.5% of 6/10                |                 |      |         |                        |                              |                        |                  |                        |                      |
| from Atlanta, and Peat      | Sand                         | 1500            | 16.2 | 25      | 16.26 (0.79)           | 1.46                         | 6.86 (0.93)            | 1.5              | 6.63 (0.61)            | 1.52                 |
| Sand from Ground Floor (GF) |                              |                 |      |         |                        |                              |                        |                  |                        |                      |
| Landscape Supply,           | 50% Peat, 25% GF             |                 |      |         |                        |                              |                        |                  |                        |                      |
| Northport, AL, 6/10 Sand    | Sand, and 25% of             |                 |      |         |                        |                              |                        |                  |                        |                      |
| from Atlanta, and Peat      | 6/10 Sand                    | 400             | 20   | 50      | 20.9 (0.9)             | 1.1                          | 10.2 (0.94)            | 1.11             | 9.06 (0.7)             | 1.1                  |
| -                           | 15th St. E and 6th           |                 |      |         | •                      |                              |                        |                  |                        |                      |
|                             | Ave. E.,                     |                 |      |         |                        |                              |                        |                  |                        |                      |
| Tuscaloosa surface soils    | (McDonalds)                  | 700             | 37   | 6.0     | 103.7 (1.1)            | 1.37                         | 3.58 (0.36)            | 1.64             | 0.04 (1.1)             | 1.72                 |
|                             | ,                            |                 |      |         | , ,                    |                              | , ,                    |                  | , ,                    |                      |
|                             | 25 <sup>th</sup> Ave. E and  |                 |      |         |                        |                              |                        |                  |                        |                      |
| Tuscaloosa surface soils    | University Blvd.             | 270             | 6    | 2.1     | 15.8 (0.23)            | 1.42                         | 2.6 (0.11)             | 1.62             | 2.8 (0.24)             | 1.67                 |
| . 4554.5554 541.1455 55.15  | ovo.o.cy o.va.               |                 | Ū    |         | 10.0 (0.20)            |                              | 2.0 (0.22)             | 2.02             | 2.0 (0.2.)             | 2.07                 |
|                             | 21 <sup>st</sup> Ave. E. and |                 |      |         |                        |                              |                        |                  |                        |                      |
| Tuscaloosa surface soils    | University Blvd.             | 400             | 12   | 3.3     | 3.2 (0.18)             | 1.39                         | 1 (0.57)               | 1.52             | 0.1 (0.74)             | 1.59                 |
| ruscaloosa surrace solis    | Oniversity biva.             | 400             | 12   | 3.3     | 3.2 (0.10)             | 1.55                         | 1 (0.57)               | 1.52             | 0.1 (0.74)             | 1.55                 |
|                             | 17 <sup>th</sup> Ave. E. and |                 |      |         |                        |                              |                        |                  |                        |                      |
| Tuscaloosa surface soils    |                              | 400             | 37   | 4.8     | 22.0 (0.62)            | 1.39                         | 1 (0.22)               | 1.64             | 0.16 (0.27)            | 1.79                 |
| ruscaioosa surrace soiis    | University Blvd.             | 400             | 3/   | 4.8     | 33.9 (0.63)            | 1.39                         | 1 (0.23)               | 1.04             | 0.16 (0.37)            | 1.79                 |
| Wisconsin biofilter media   |                              | 400             | 5.6  | 4       | 63.6 (0.3)             | 1.51                         | 15.1 (0.2)             | 1.74             | 10.7 (0.2)             | 1.8                  |
| North Carolina biofilter    |                              |                 |      |         |                        |                              |                        |                  |                        |                      |
| media                       |                              | 700             | 6    | 1.5     | 18.8 (0.68)            | 1.24                         | 10.2 (0.4)             | 1.34             | 5.1 (0.16)             | 1.36                 |
| Kansas City biofilter media |                              | 1900            | 39   | 14.8    | 1.4 (0.36)             | 1.1                          | 1.61 (0.41)            | 1.13             | 0.34 (n/a)             | 1.27                 |

Appendix A2: Statistical Analyses of Sand-Based Media Treatment Flow Rates

Low Organic Matter Content and Low Compaction





### General Regression Analysis: hand log Fc versus D50 sqr, Cu sqr, D50 (um), Cu

Regression Equation

```
hand log Fc = -1.72378e-006 D50 sqr + 0.0040969 Cu sqr + 0.00469226 D50 (um) 
- 0.161734 Cu
```

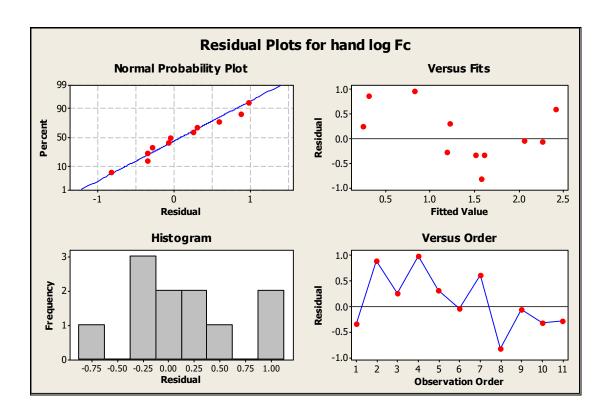
#### Coefficients

```
Term Coef SE Coef T P 95% CI
D50 sqr -0.000002 0.0000007 -2.49115 0.042 (-0.000003, -0.0000001)
Cu sqr 0.004097 0.0020076 2.04069 0.081 (-0.000650, 0.0088441)
D50 (um) 0.004692 0.0013249 3.54160 0.009 (0.001559, 0.0078251)
Cu -0.161734 0.0823296 -1.96447 0.090 (-0.356412, 0.0329449)
```

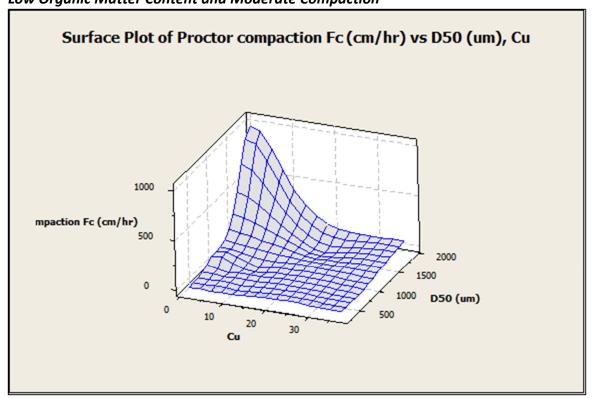
#### Summary of Model

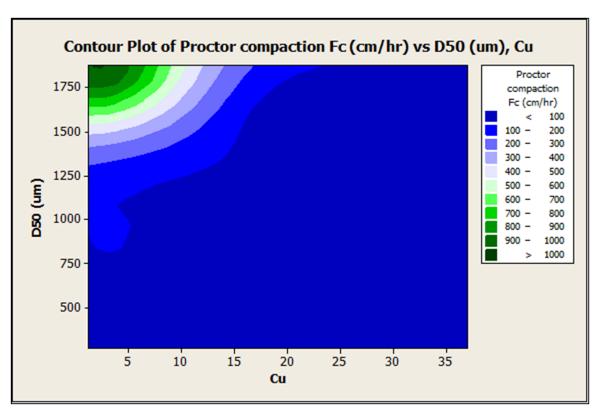
```
S = 0.680555   R-Sq = 89.08   R-Sq(adj) = 82.84   PRESS = 16.3884   R-Sq(pred) = 44.79
```

#### Analysis of Variance


| Source     | DF | Seq SS  | Adj SS  | Adj MS  | F       | P         |
|------------|----|---------|---------|---------|---------|-----------|
| Regression | 4  | 26.4434 | 26.4434 | 6.61085 | 14.2735 | 0.0017727 |
| D50 sqr    | 1  | 15.7805 | 2.8743  | 2.87426 | 6.2058  | 0.0415266 |
| Cu sqr     | 1  | 3.6088  | 1.9288  | 1.92877 | 4.1644  | 0.0806312 |
| D50 (um)   | 1  | 5.2667  | 5.8093  | 5.80933 | 12.5429 | 0.0094495 |
| Cu         | 1  | 1.7874  | 1.7874  | 1.78738 | 3.8591  | 0.0902241 |
| Error      | 7  | 3.2421  | 3.2421  | 0.46316 |         |           |
| Total      | 11 | 29.6855 |         |         |         |           |

Fits and Diagnostics for Unusual Observations


R denotes an observation with a large standardized residual.


Durbin-Watson Statistic

Durbin-Watson statistic = 1.86917



Low Organic Matter Content and Moderate Compaction





# General Regression Analysis: proctor log versus D50 sqr, Cu sqr, D50 (um), Cu

#### Regression Equation

```
proctor log Fc = -1.29188e-006 D50 sqr + 0.00356202 Cu sqr + 0.00407119 D50 (um) - 0.174961 Cu
```

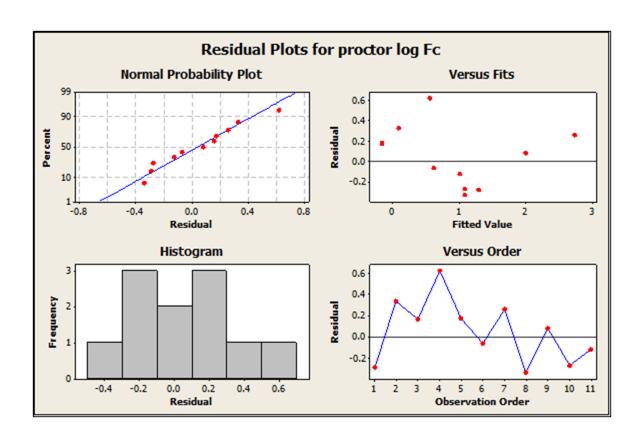
#### Coefficients

| Term     | Coef      | SE Coef   | T        | P     | 95          | % CI        |
|----------|-----------|-----------|----------|-------|-------------|-------------|
| D50 sqr  | -0.000001 | 0.0000004 | -3.49524 | 0.010 | (-0.000002, | -0.0000004) |
| Cu sqr   | 0.003562  | 0.0010724 | 3.32164  | 0.013 | ( 0.001026, | 0.0060978)  |
| D50 (um) | 0.004071  | 0.0007077 | 5.75274  | 0.001 | ( 0.002398, | 0.0057446)  |
| Cu       | -0.174961 | 0.0439765 | -3.97851 | 0.005 | (-0.278949, | -0.0709729) |

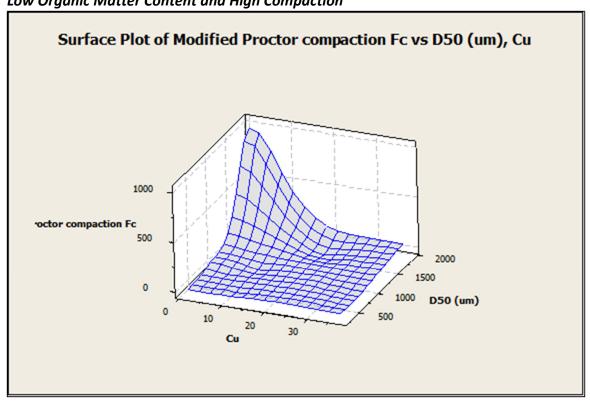
#### Summary of Model

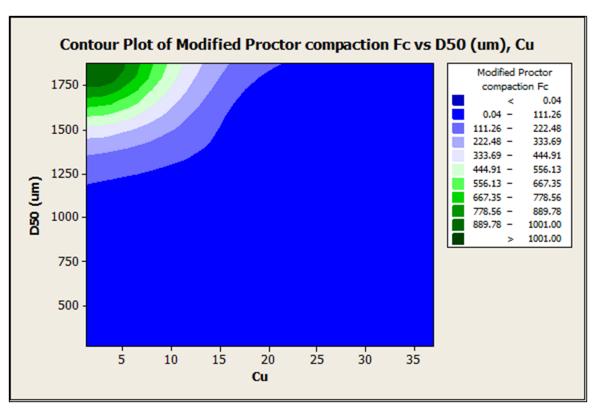
```
S = 0.363520   R-Sq = 94.93\%   R-Sq(adj) = 92.03\%   PRESS = 3.61422   R-Sq(pred) = 80.19\%
```

# Analysis of Variance


| Source     | DF | Seq SS  | Adj SS  | Adj MS  | F       | P         |
|------------|----|---------|---------|---------|---------|-----------|
| Regression | 4  | 17.3237 | 17.3237 | 4.33092 | 32.7736 | 0.0001268 |
| D50 sqr    | 1  | 12.6908 | 1.6144  | 1.61439 | 12.2167 | 0.0100574 |
| Cu sqr     | 1  | 0.0405  | 1.4580  | 1.45801 | 11.0333 | 0.0127363 |
| D50 (um)   | 1  | 2.5007  | 4.3733  | 4.37326 | 33.0940 | 0.0006965 |
| Cu         | 1  | 2.0917  | 2.0917  | 2.09169 | 15.8285 | 0.0053340 |
| Error      | 7  | 0.9250  | 0.9250  | 0.13215 |         |           |
| Total      | 11 | 18.2487 |         |         |         |           |

Fits and Diagnostics for Unusual Observations


No unusual observations


Durbin-Watson Statistic

Durbin-Watson statistic = 1.80960



Low Organic Matter Content and High Compaction





#### General Regression Analysis: mod proctor log Fc versus D50 (um), Cu

```
Regression Equation
```

```
mod proctor log Fc = 0.00161573 D50 (um) - 0.0589628 Cu
```

#### Coefficients

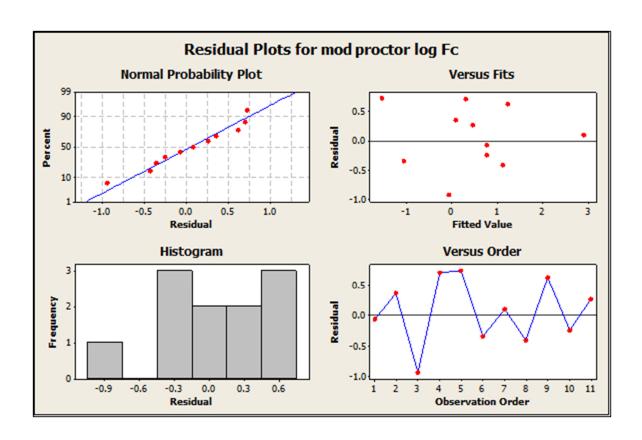
```
Term Coef SE Coef T P 95% CI
D50 (um) 0.0016157 0.0002317 6.97380 0.000 (0.0010916, 0.0021398)
Cu -0.0589628 0.0115814 -5.09117 0.001 (-0.0851617, -0.0327639)
```

#### Summary of Model

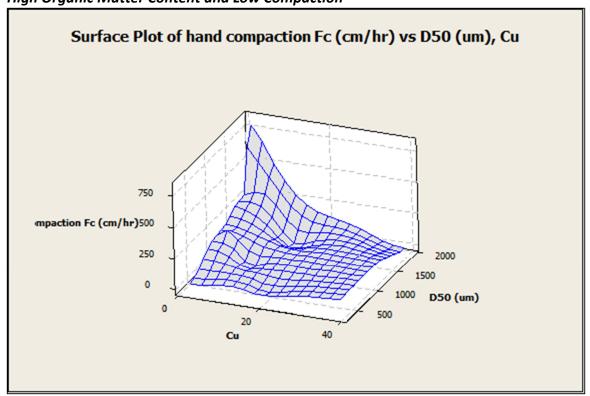
```
S = 0.568243   R-Sq = 84.83   R-Sq(adj) = 81.46   R-Sq(pred) = 74.96
```

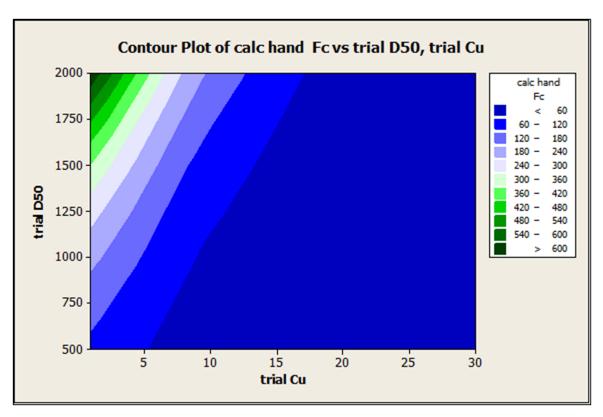
#### Analysis of Variance

| Source     | DF | Seq SS  | Adj SS  | Adj MS  | F       | P         |
|------------|----|---------|---------|---------|---------|-----------|
| Regression | 2  | 16.2488 | 16.2488 | 8.1244  | 25.1606 | 0.0002064 |
| D50 (um)   | 1  | 7.8792  | 15.7039 | 15.7039 | 48.6339 | 0.0000651 |
| Cu         | 1  | 8.3696  | 8.3696  | 8.3696  | 25.9200 | 0.0006529 |
| Error      | 9  | 2.9061  | 2.9061  | 0.3229  |         |           |
| Total      | 11 | 19.1549 |         |         |         |           |


Fits and Diagnostics for Unusual Observations

```
mod proctor
Obs log Fc Fit SE Fit Residual St Resid
7 3.00043 2.90567 0.420821 0.0947592 0.248157 X
```


X denotes an observation whose X value gives it large leverage.


Durbin-Watson Statistic

Durbin-Watson statistic = 2.88217



High Organic Matter Content and Low Compaction





## General Regression Analysis: hand log Fc versus D50 (um), Cu

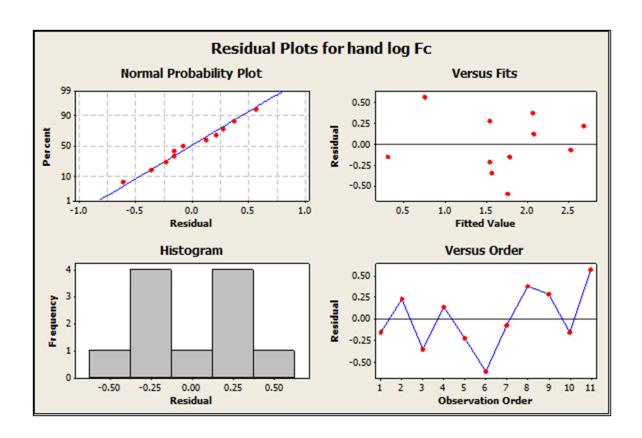
Regression Equation

hand log Fc = 1.83529 + 0.000522149 D50 (um) - 0.0647993 Cu

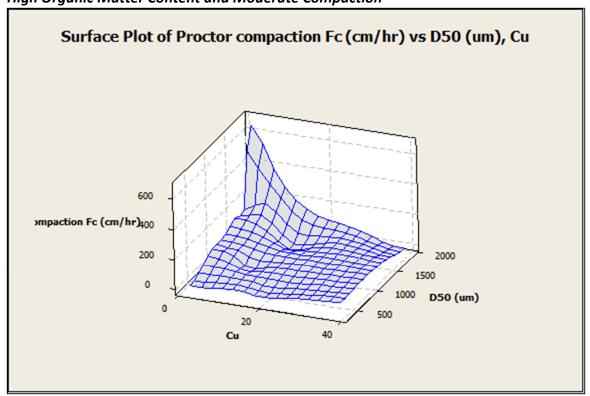
#### Coefficients

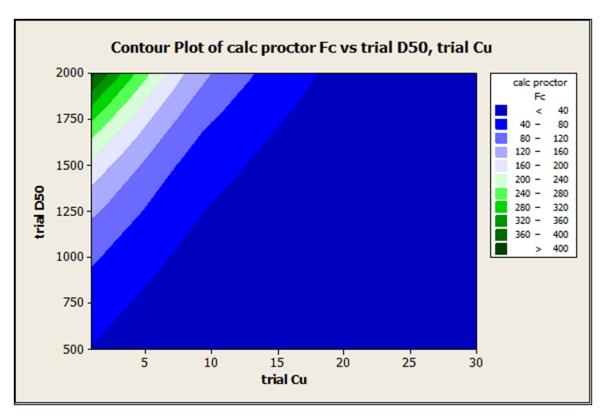
```
Term Coef SE Coef T P
Constant 1.83529 0.251425 7.29957 0.000
D50 (um) 0.00052 0.000216 2.41699 0.042
Cu -0.06480 0.011542 -5.61432 0.001
```

#### Summary of Model


```
S = 0.389282   R-Sq = 80.04%   R-Sq(adj) = 75.04%   PRESS = 2.68992   R-Sq(pred) = 55.70%
```

### Analysis of Variance


| Source      | DF | Seq SS  | Adj SS  | Adj MS  | F       | P        |
|-------------|----|---------|---------|---------|---------|----------|
| Regression  | 2  | 4.86000 | 4.86000 | 2.43000 | 16.0354 | 0.001589 |
| D50 (um)    | 1  | 0.08336 | 0.88527 | 0.88527 | 5.8418  | 0.042047 |
| Cu          | 1  | 4.77664 | 4.77664 | 4.77664 | 31.5206 | 0.000502 |
| Error       | 8  | 1.21232 | 1.21232 | 0.15154 |         |          |
| Lack-of-Fit | 7  | 1.08582 | 1.08582 | 0.15512 | 1.2262  | 0.603501 |
| Pure Error  | 1  | 0.12650 | 0.12650 | 0.12650 |         |          |
| Total       | 10 | 6.07233 |         |         |         |          |


Fits and Diagnostics for Unusual Observations

No unusual observations



High Organic Matter Content and Moderate Compaction





# General Regression Analysis: proctor log Fc versus D50 (um), Cu

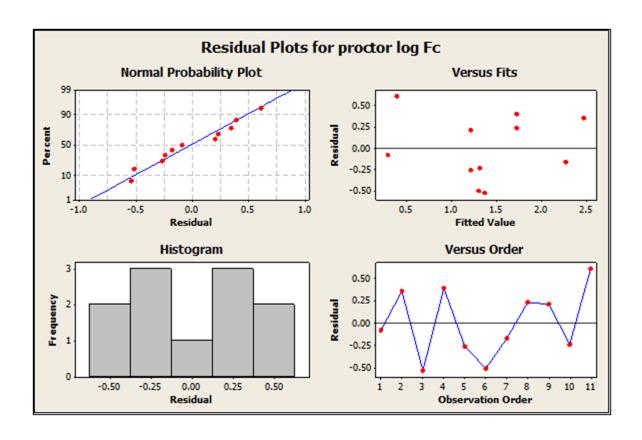
Regression Equation

proctor log Fc = 1.30875 + 0.000682833 D50 (um) - 0.0593612 Cu

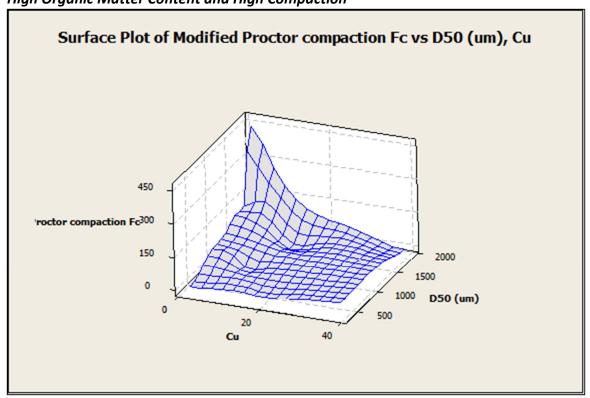
#### Coefficients

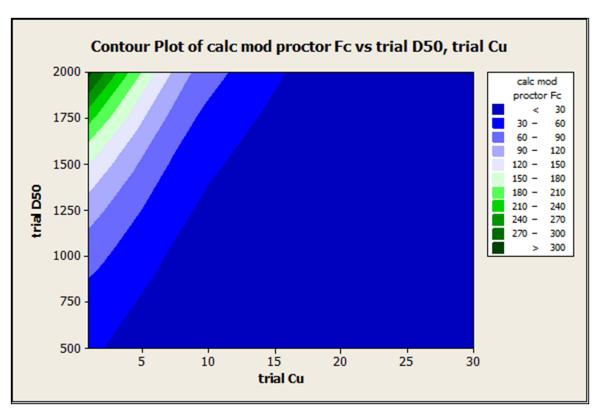
| Term     | Coef     | SE Coef  | T        | P     |
|----------|----------|----------|----------|-------|
| Constant | 1.30875  | 0.276733 | 4.72929  | 0.001 |
| D50 (um) | 0.00068  | 0.000238 | 2.87172  | 0.021 |
| Cu       | -0.05936 | 0.012704 | -4.67280 | 0.002 |

## Summary of Model


```
S = 0.428466   R-Sq = 75.11%   R-Sq(adj) = 68.89%   PRESS = 2.90642   R-Sq(pred) = 50.75%
```

### Analysis of Variance


| Source      | DF | Seq SS  | Adj SS  | Adj MS  | F       | P        |
|-------------|----|---------|---------|---------|---------|----------|
| Regression  | 2  | 4.43287 | 4.43287 | 2.21643 | 12.0732 | 0.003836 |
| D50 (um)    | 1  | 0.42432 | 1.51397 | 1.51397 | 8.2468  | 0.020774 |
| Cu          | 1  | 4.00855 | 4.00855 | 4.00855 | 21.8351 | 0.001597 |
| Error       | 8  | 1.46867 | 1.46867 | 0.18358 |         |          |
| Lack-of-Fit | 7  | 1.35624 | 1.35624 | 0.19375 | 1.7234  | 0.528907 |
| Pure Error  | 1  | 0.11242 | 0.11242 | 0.11242 |         |          |
| Total       | 10 | 5.90154 |         |         |         |          |


Fits and Diagnostics for Unusual Observations

No unusual observations



High Organic Matter Content and High Compaction





## General Regression Analysis: mod proctor log Fc versus D50 (um), Cu

#### Regression Equation

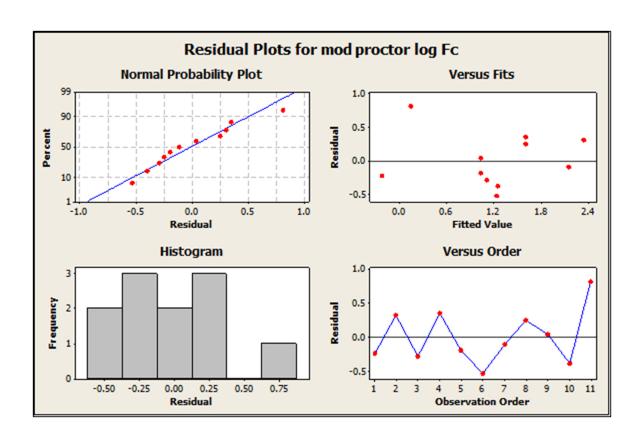
mod proctor log Fc = 1.28385 + 0.000640163 D50 (um) - 0.0699013 Cu

#### Coefficients

| Term     | Coef     | SE Coef  | T        | P     |
|----------|----------|----------|----------|-------|
| Constant | 1.28385  | 0.286764 | 4.47701  | 0.002 |
| D50 (um) | 0.00064  | 0.000246 | 2.59810  | 0.032 |
| Cu       | -0.06990 | 0.013164 | -5.31002 | 0.001 |

#### Summary of Model

```
S = 0.443997   R-Sq = 78.53   R-Sq(adj) = 73.16   R-Sq(pred) = 41.18
```


#### Analysis of Variance

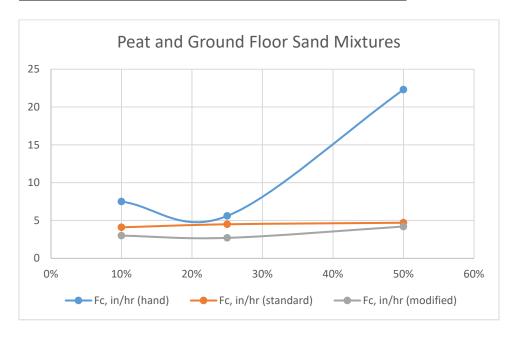
| Source      | DF | Seq SS  | Adj SS  | Adj MS  | F       | P        |
|-------------|----|---------|---------|---------|---------|----------|
| Regression  | 2  | 5.76725 | 5.76725 | 2.88362 | 14.6278 | 0.002126 |
| D50 (um)    | 1  | 0.20880 | 1.33067 | 1.33067 | 6.7501  | 0.031712 |
| Cu          | 1  | 5.55844 | 5.55844 | 5.55844 | 28.1964 | 0.000720 |
| Error       | 8  | 1.57707 | 1.57707 | 0.19713 |         |          |
| Lack-of-Fit | 7  | 1.55036 | 1.55036 | 0.22148 | 8.2927  | 0.261396 |
| Pure Error  | 1  | 0.02671 | 0.02671 | 0.02671 |         |          |
| Total       | 10 | 7.34431 |         |         |         |          |

Fits and Diagnostics for Unusual Observations

```
mod proctor
Obs log Fc Fit SE Fit Residual St Resid
11 0.957128 0.141885 0.265194 0.815244 2.28938 R
```

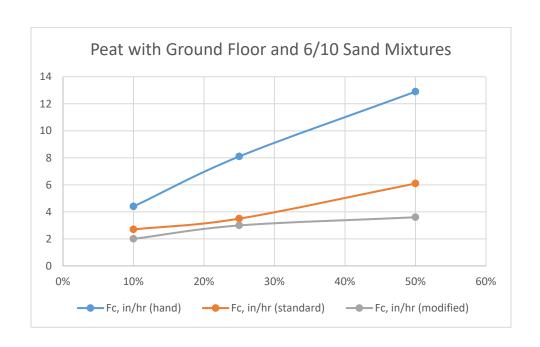
R denotes an observation with a large standardized residual.




### **Appendix B: Peat-Sand Mixture Flow Rate Statistical Analyses**

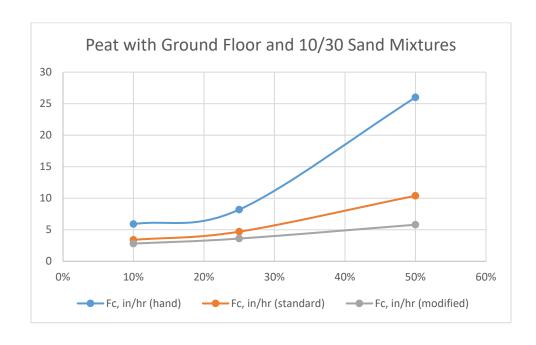
The following data are from Sileshi's (2013) tests in sand and peat mixtures. The following show the resulting significant regression equations for the final infiltration rates (Fc) as a function of the amount of peat and compaction, for different sand textures.

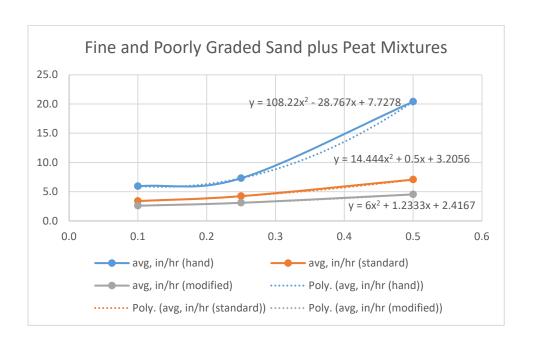
### **Fine Sandy Mixtures**


#### Peat and Ground Floor sand mixtures:

| peat % (balance sand): | 10% | 25% | 50%  |
|------------------------|-----|-----|------|
| Fc, in/hr (hand)       | 7.5 | 5.6 | 22.3 |
| Fc, in/hr (standard)   | 4.1 | 4.5 | 4.7  |
| Fc, in/hr (modified)   | 3   | 2.7 | 4.2  |
| COV (hand)             | 0.2 | 0.5 | 0.3  |
| COV (standard)         | 0.2 | 0.2 | 0.2  |
| COV (modified)         | 0.3 | 0.2 | 0.1  |



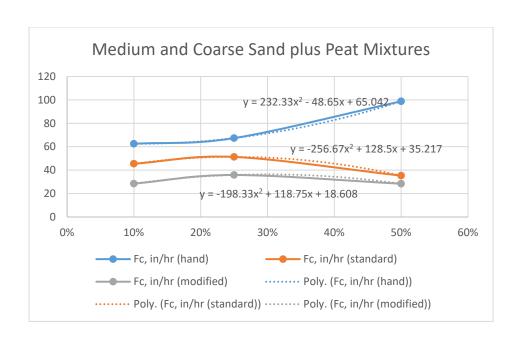

### Peat and Ground Floor and 6/10 sand mixtures:


| •                      |     |     |      |
|------------------------|-----|-----|------|
| peat % (balance sand): | 10% | 25% | 50%  |
| Fc, in/hr (hand)       | 4.4 | 8.1 | 12.9 |
| Fc, in/hr (standard)   | 2.7 | 3.5 | 6.1  |
| Fc, in/hr (modified)   | 2   | 3   | 3.6  |
| COV (hand)             | 0.3 | 0.3 | 0.2  |
| COV (standard)         | 0.3 | 0.4 | 0.3  |
| COV (modified)         | 0.5 | 0.2 | 0.7  |



#### Peat and Ground Floor and 10/30 sand mixtures:

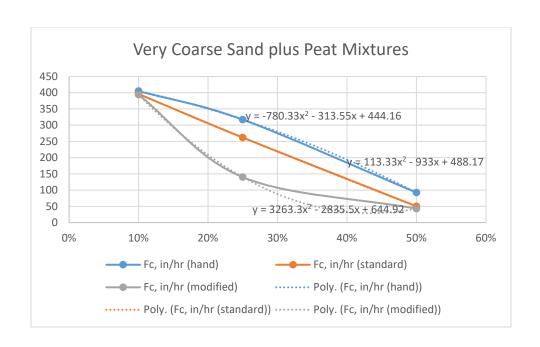
| peat % (balance sand): | 10% | 25% | 50%  |
|------------------------|-----|-----|------|
| Fc, in/hr (hand)       | 5.9 | 8.2 | 26   |
| Fc, in/hr (standard)   | 3.4 | 4.7 | 10.4 |
| Fc, in/hr (modified)   | 2.8 | 3.6 | 5.8  |
| COV (hand)             | 0.2 | 0.3 | 0.3  |
| COV (standard)         | 0.2 | 0.4 | 0.3  |
| COV (modified)         | 0.2 | 0.3 | 0.3  |






## **Coarse Sandy Mixtures**

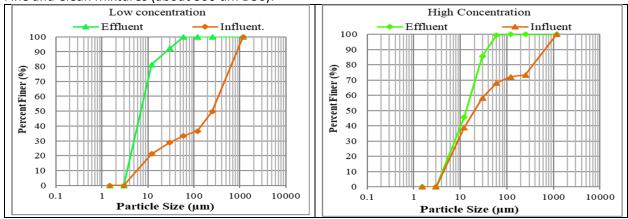
Peat and concrete sand and 10/30 sand mixtures:


| peat % (balance sand): | 10%  | 25%  | 50%  |
|------------------------|------|------|------|
| Fc, in/hr (hand)       | 62.5 | 67.4 | 98.8 |
| Fc, in/hr (standard)   | 45.5 | 51.3 | 35.3 |
| Fc, in/hr (modified)   | 28.5 | 35.9 | 28.4 |
| COV (hand)             | 0.2  | 0.3  | -0.3 |
| COV (standard)         | 0.1  | 0.3  | 0.1  |
| COV (modified)         | 0.9  | 0.2  | 0.1  |

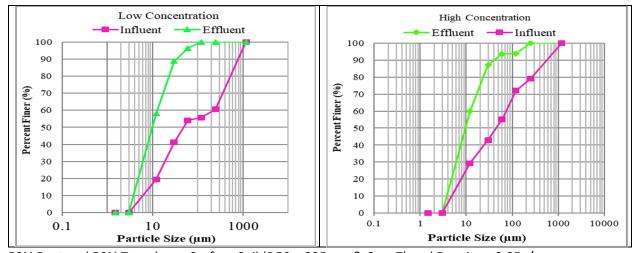


## **Very Coarse Sandy Mixtures**

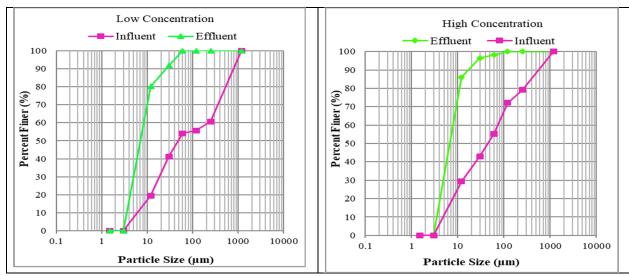
Peat and 6/10 and 10/30 sand mixtures (very coarse):


| · · · · · · · · · · · · · · · · · · · |     | •   |      |
|---------------------------------------|-----|-----|------|
| peat % (balance sand):                | 10% | 25% | 50%  |
| Fc, in/hr (hand)                      | 405 | 317 | 92.3 |
| Fc, in/hr (standard)                  | 396 | 262 | 50   |
| Fc, in/hr (modified)                  | 394 | 140 | 43   |
| COV (hand)                            | 0.4 | 0.3 | 0.6  |
| COV (standard)                        | 0.2 | 0.5 | 0.2  |
| COV (modified)                        | 0.3 | 0.5 | 0.3  |




### **Appendix C1: Particulate Retention by Particle Size**

Data from Sileshi (2013):


#### Fine and Clean Mixtures (about 300 um D50):



Particle size Distribution Plot Using Sand and Peat (D50 = 300 um & Cu = 3.3) and Density = 1.03 g/cc



50% Peat and 50% Tuscaloosa Surface Soil (D50 = 325 um & Cu = 7) and Density = 0.85g/cc



10% Peat and 90% Sand (D50 = 340 um & Cu = 1.3) and Density = 1.28 g/cc

### Low Concentrations, fine media (about 300 um)

| range       | inf    | inf    | inf    | average | efl  | efl  | efl conc | average | % reduc of |
|-------------|--------|--------|--------|---------|------|------|----------|---------|------------|
|             | conc   | conc   | conc   |         | conc | conc |          |         | averages   |
| >1000       | 6.18   | 4.12   | 5.15   | 5.15    | 0.00 | 0.00 | 0.00     | 0.00    | 100.00     |
| 300 to 1000 | 39.14  | 32.96  | 27.81  | 33.30   | 0.00 | 0.00 | 0.00     | 0.00    | 100.00     |
| 100 to 300  | 20.60  | 9.27   | 12.36  | 14.08   | 0.00 | 0.16 | 0.00     | 0.05    | 99.62      |
| 30 to 100   | 7.21   | 11.33  | 14.42  | 10.99   | 0.28 | 0.40 | 0.32     | 0.33    | 96.97      |
| 10 to 30    | 11.33  | 27.81  | 25.75  | 21.63   | 0.88 | 3.44 | 0.88     | 1.73    | 91.99      |
| 3 to 10     | 18.54  | 14.42  | 15.45  | 16.14   | 2.84 | 3.04 | 2.80     | 2.89    | 82.07      |
| 1 to 3      | 0.00   | 3.09   | 2.06   | 1.72    | 0.00 | 0.96 | 0.00     | 0.32    | 81.36      |
| <1          | 0.00   | 0.00   | 0.00   | 0.00    | 0.00 | 0.00 | 0.00     | 0.00    | n/a        |
| sum:        | 103.00 | 103.00 | 103.00 | 103.00  | 4.00 | 8.00 | 4.00     | 5.33    | 94.82      |

## High Concentrations, fine media (about 300 um)

| •           |        | -      | •      |         | • |      |      |          |         |            |
|-------------|--------|--------|--------|---------|---|------|------|----------|---------|------------|
| range       | inf    | inf    | inf    | average |   | efl  | efl  | efl conc | average | % reduc of |
|             | conc   | conc   | conc   |         |   | conc | conc |          |         | averages   |
| >1000       | 23.94  | 23.94  | 31.92  | 26.60   |   | 0.00 | 0.00 | 0.00     | 0.00    | 100.00     |
| 300 to 1000 | 159.60 | 127.68 | 111.72 | 133.00  |   | 0.00 | 0.00 | 0.00     | 0.00    | 100.00     |
| 100 to 300  | 47.88  | 119.70 | 127.68 | 98.42   |   | 0.00 | 0.18 | 0.04     | 0.07    | 99.93      |
| 30 to 100   | 103.74 | 183.54 | 183.54 | 156.94  |   | 0.52 | 0.21 | 0.08     | 0.27    | 99.83      |
| 10 to 30    | 207.48 | 151.62 | 151.62 | 170.24  |   | 1.96 | 1.11 | 1.00     | 1.36    | 99.20      |
| 3 to 10     | 247.38 | 167.58 | 191.52 | 202.16  |   | 1.52 | 1.50 | 2.88     | 1.97    | 99.03      |
| 1 to 3      | 7.98   | 23.94  | 0.00   | 10.64   |   | 0.00 | 0.00 | 0.00     | 0.00    | 100.00     |
| <1          | 0.00   | 0.00   | 0.00   | 0.00    |   | 0.00 | 0.00 | 0.00     | 0.00    | n/a        |
| sum:        | 798.00 | 798.00 | 798.00 | 798.00  |   | 4.00 | 3.00 | 4.00     | 3.67    | 99.54      |

The following tables show the observed influent and effluent concentrations, by particle size, for the low to high concentration tests for the fine media combined (effluent were not found to be significantly different). The intermediate and coarse media test results were kept separate.

Low to High Concentrations (100 to 800 SSC mg/L), fine media (about 300 um)

| >1000 un   | า         | 300 to 100 | 00 um    | 100 to 30 | 00 um      | 30 to 100 | 0 um          | 10 to 30  | um         | 3 to 10 u | m          | 1 to 3 ur | n       | total     |           |
|------------|-----------|------------|----------|-----------|------------|-----------|---------------|-----------|------------|-----------|------------|-----------|---------|-----------|-----------|
| inf        | efl       | inf        | efl      | inf       | efl        | inf       | efl           | inf       | efl        | inf       | efl        | inf       | efl     | inf       | efl       |
| 6.18       | 0.00      | 39.14      | 0.00     | 20.60     | 0.00       | 7.21      | 0.28          | 11.33     | 0.88       | 18.54     | 2.84       | 0.00      | 0.00    | 103.00    | 4.00      |
| 4.12       | 0.00      | 32.96      | 0.00     | 9.27      | 0.16       | 11.33     | 0.40          | 27.81     | 3.44       | 14.42     | 3.04       | 3.09      | 0.96    | 103.00    | 8.00      |
| 5.15       | 0.00      | 27.81      | 0.00     | 12.36     | 0.00       | 14.42     | 0.32          | 25.75     | 0.88       | 15.45     | 2.80       | 2.06      | 0.00    | 103.00    | 4.00      |
| 23.94      | 0.00      | 159.60     | 0.00     | 47.88     | 0.00       | 103.74    | 0.52          | 207.48    | 1.96       | 247.38    | 1.52       | 7.98      | 0.00    | 798.00    | 4         |
| 23.94      | 0.00      | 127.68     | 0.00     | 119.70    | 0.18       | 183.54    | 0.21          | 151.62    | 1.11       | 167.58    | 1.50       | 23.94     | 0.00    | 798.00    | 3         |
| 31.92      | 0.00      | 111.72     | 0.00     | 127.68    | 0.04       | 183.54    | 0.08          | 151.62    | 1.00       | 191.52    | 2.88       | 0.00      | 0.00    | 798.00    | 4         |
| no sign re | egression | no sign re | gression | no sign r | egression  | intercept | t sign        | intercept | sign       | intercept | t sign     | no likely | removal | intercept | sign      |
| mean       | efl = 0   | mean       | efl = 0  | mean      | efl = 0.06 | mean      | efl =<br>0.30 | mean      | efl = 1.55 | mean      | efl = 2.43 |           |         | mean      | efl = 4.5 |
| COV        | n/a       | COV        | n/a      | COV       | 1.33       | COV       | 0.50          | COV       | 0.66       | COV       | 0.30       |           |         | COV       | 0.39      |

Effluent particle size data are not available for the intermediate and very coarse media. Therefore, the particle size distributions for the effluent for the fine media shown above were used to distribute the total SSC concentration for these coarser textured media, shown below.

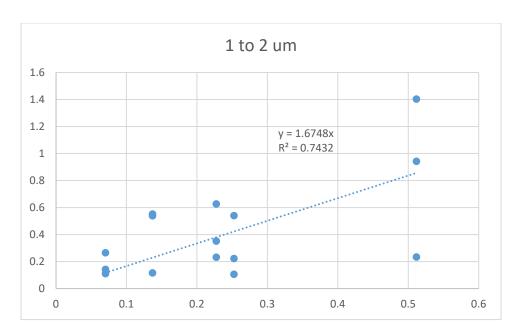
Low to High Concentrations (50 to 500 SSC mg/L), intermediate media (about 1000 to 2000 um)

|          |         |            | •       |            | <u> </u>   |           |            |            |            |            |            |             |         |               |        |
|----------|---------|------------|---------|------------|------------|-----------|------------|------------|------------|------------|------------|-------------|---------|---------------|--------|
| >1000 um |         | 300 to 100 | 00 um   | 100 to 300 | 0 um       | 30 to 100 | um         | 10 to 30 ι | ım         | 3 to 10 ui | m          | 1 to 3 um   | ı       | total         |        |
| inf      | efl     | inf        | efl     | inf        | efl        | inf       | efl        | inf        | efl        | inf        | efl        | inf         | efl     | inf           | efl    |
|          |         |            |         |            |            |           |            |            |            |            |            | no likely i | removal | no sign regre | ession |
| mean     | efl = 0 | mean       | efl = 0 | mean       | efl = 0.70 | mean      | efl = 3.33 | mean       | efl = 17.1 | mean       | efl = 26.8 |             |         | mean          | 49.6   |
|          |         |            |         |            |            |           |            |            |            |            |            |             |         | COV           | 0.63   |

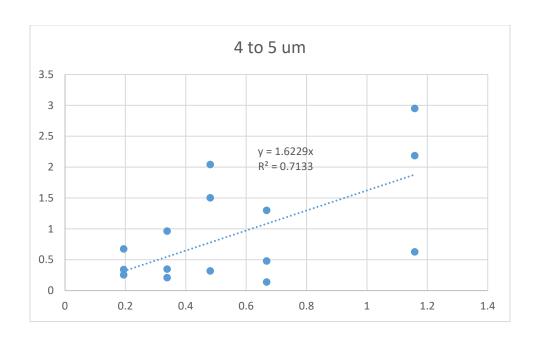
| total         | total    |
|---------------|----------|
| inf           | efl      |
| 57            | 74       |
| 57            | 63       |
| 57            | 23       |
| 439           | 78       |
| 439           | 10       |
|               |          |
| no sign regre | ssion    |
| mean          | 49.6     |
| stdev         | 31.05318 |
| COV           | 0.626072 |

# Low to High Concentrations (50 to 500 SSC mg/L) Very Coarse Media (pea gravel and coarse gravel; >5,000 um D50)

|          |         |            | •       |            | <u> </u>   | <u> </u>  |            | <u> </u>   |           |           |           |           |         |                             |      |
|----------|---------|------------|---------|------------|------------|-----------|------------|------------|-----------|-----------|-----------|-----------|---------|-----------------------------|------|
| >1000 um |         | 300 to 100 | 00 um   | 100 to 300 | 0 um       | 30 to 100 | um         | 10 to 30 t | ım        | 3 to 10 u | m         | 1 to 3 um | 1       | total                       |      |
| inf      | efl     | inf        | efl     | inf        | efl        | inf       | efl        | inf        | efl       | inf       | efl       | inf       | efl     | inf                         | efl  |
|          |         |            |         |            |            |           |            |            |           |           |           | no likely | removal | no sign inter<br>ANOVA belo | •    |
|          |         |            |         |            |            |           |            |            |           |           |           |           |         | y = 1.69 x                  |      |
| mean     | efl = 0 | mean       | efl = 0 | mean       | efl = 6.17 | mean      | efl = 29.4 | mean       | efl = 150 | mean      | efl = 237 |           |         | mean                        | 438  |
|          |         |            |         |            |            |           |            |            |           |           |           |           |         | COV                         | 0.75 |


| total | total |
|-------|-------|
| inf   | efl   |
| 57    | 199   |
| 57    | 164   |
| 57    | 101   |
| 57    | 95    |
| 439   | 712   |
| 439   | 899   |
| 439   | 642   |
| 439   | 693   |
|       |       |

| Regression Statistics |              |                |          |          |                |           |
|-----------------------|--------------|----------------|----------|----------|----------------|-----------|
| Multiple R            | 0.988357     |                |          |          |                |           |
| R Square              | 0.97685      |                |          |          |                |           |
| Adjusted R Square     | 0.833993     |                |          |          |                |           |
| Standard Error        | 87.08764     |                |          |          |                |           |
| Observations          | 8            |                |          |          |                |           |
| ANOVA                 |              |                |          |          |                |           |
|                       | df           | SS             | MS       | F        | Significance F |           |
| Regression            | 1            | 2240191        | 2240191  | 295.3738 | 2.48E-06       |           |
| Residual              | 7            | 53089.8        | 7584.258 |          |                |           |
| Total                 | 8            | 2293281        |          |          |                |           |
|                       |              |                |          |          |                |           |
|                       | Coefficients | Standard Error | t Stat   | P-value  | Lower 95%      | Upper 95% |
| Intercept             | 0            | #N/A           | #N/A     | #N/A     | #N/A           | #N/A      |
| X Variable 1          | 1.69051      | 0.098363       | 17.18644 | 5.54E-07 | 1.457919       | 1.923102  |

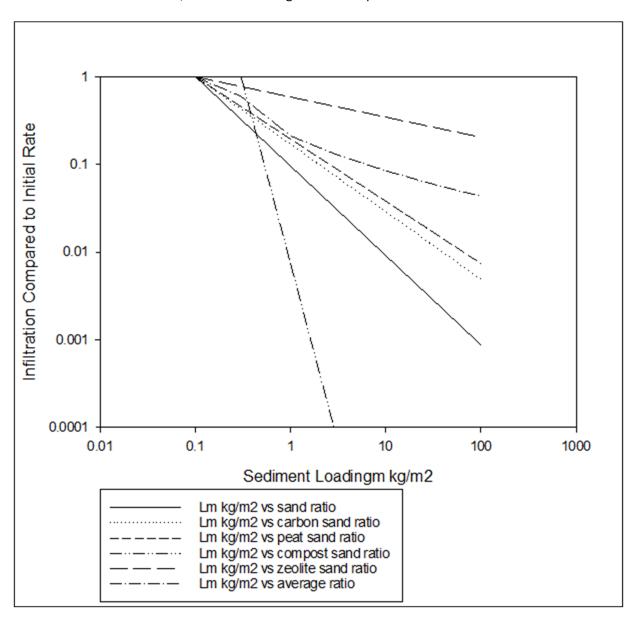

## Appendix C2. Removal of Fine Stormwater Particulates by Biofilter Media

The following data are from the pilot-scale long-term tests conducted by Clark and Pitt (1999) showing the observed influent and effluent concentrations for the small particle sizes. These data are for all the granular media combined (except for the GAC-sand mixture which was significantly different).

|       | 1 to 2 um                           |                                     |                | 4 to 5 um                           |                                     |             |
|-------|-------------------------------------|-------------------------------------|----------------|-------------------------------------|-------------------------------------|-------------|
|       | influent<br>concentration<br>(mg/L) | effluent<br>concentration<br>(mg/L) | %<br>reduction | influent<br>concentration<br>(mg/L) | effluent<br>concentration<br>(mg/L) | % reduction |
|       | 0.511593                            | 1.402735                            | -174.19        | 1.15822                             | 2.18469                             | -88.6248    |
|       | 0.227548                            | 0.351185                            | -54.3348       | 0.338313                            | 0.347963                            | -2.85239    |
|       | 0.07032                             | 0.265105                            | -276.998       | 0.19447                             | 0.673848                            | -246.505    |
|       | 0.137095                            | 0.538535                            | -292.819       | 0.481048                            | 1.502463                            | -212.331    |
|       | 0.252645                            | 0.539818                            | -113.666       | 0.667823                            | 1.298968                            | -94.5079    |
|       | 0.511593                            | 0.94185                             | -84.1016       | 1.15822                             | 2.94902                             | -154.617    |
|       | 0.227548                            | 0.62623                             | -175.208       | 0.338313                            | 0.963688                            | -184.851    |
|       | 0.07032                             | 0.141883                            | -101.767       | 0.19447                             | 0.340083                            | -74.8766    |
|       | 0.137095                            | 0.55162                             | -302.363       | 0.481048                            | 2.040905                            | -324.263    |
|       | 0.252645                            | 0.22239                             | 11.9753        | 0.667823                            | 0.47878                             | 28.3073     |
|       | 0.511593                            | 0.233435                            | 54.37091       | 1.15822                             | 0.626745                            | 45.88722    |
|       | 0.227548                            | 0.232073                            | -1.9886        | 0.338313                            | 0.208625                            | 38.33364    |
|       | 0.07032                             | 0.110523                            | -57.1708       | 0.19447                             | 0.254325                            | -30.7785    |
|       | 0.137095                            | 0.116053                            | 15.34885       | 0.481048                            | 0.31846                             | 33.79864    |
|       | 0.252645                            | 0.10587                             | 58.09535       | 0.667823                            | 0.138575                            | 79.24973    |
|       |                                     |                                     |                |                                     |                                     |             |
| mean  | 0.23984                             | 0.425287                            | -99.6545       | 0.567975                            | 0.955142                            | -79.242     |
| stdev | 0.155924                            | 0.361349                            | 122.2567       | 0.345842                            | 0.860461                            | 122.4831    |
| COV   | 0.650119                            | 0.84966                             | -1.22681       | 0.608905                            | 0.900872                            | -1.54568    |



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.862111     |                   |          |          |                   |              |
| R Square              | 0.743235     |                   |          |          |                   |              |
| Adjusted R Square     | 0.671806     |                   |          |          |                   |              |
| Standard Error        | 0.288591     |                   |          |          |                   |              |
| Observations          | 15           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 3.375073          | 3.375073 | 40.5245  | 2.47E-05          |              |
| Residual              | 14           | 1.165987          | 0.083285 |          |                   |              |
| Total                 | 15           | 4.541059          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 1.674822     | 0.263093          | 6.365886 | 1.75E-05 | 1.110543          | 2.239101     |




| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.844552     |                   |          |          |                   |              |
| R Square              | 0.713269     |                   |          |          |                   |              |
| Adjusted R Square     | 0.64184      |                   |          |          |                   |              |
| Standard Error        | 0.701828     |                   |          |          |                   |              |
| Observations          | 15           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 17.15408          | 17.15408 | 34.82619 | 5.22E-05          |              |
| Residual              | 14           | 6.895876          | 0.492563 |          |                   |              |
| Total                 | 15           | 24.04996          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 1.622853     | 0.274996          | 5.901372 | 3.86E-05 | 1.033045          | 2.21266      |

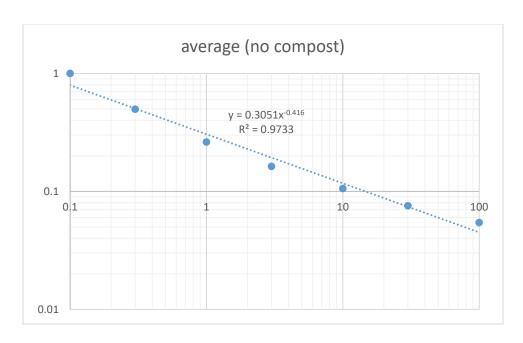
An average equation was used for the standard 0.45 to 3  $\mu$ m particle size: y = 1.65 x The effluent concentrations have substantial variation (even with the highly significant equations and slope factors), so a COV of about 0.85 should be used in Monte Carlo calculations to represent suitable variations in the calculated effluent concentrations.

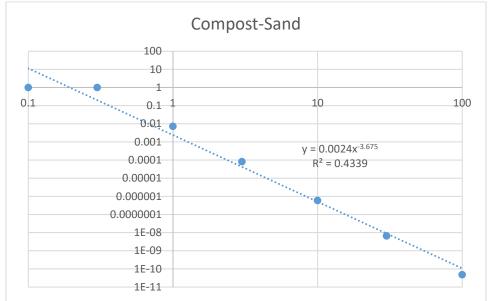
### **Appendix C3. Effects of Solids Accumulation on Flow Rate Reductions**

As particulates accumulate in biofilter media, the treatment flow rate decreases. Few studies have examined this for extended periods. During her PhD dissertation research, Clark (2000) measured treatment flow rates in large media columns using pre-settled stormwater over extended periods of time, along with monitoring of solids accumulations. She developed clogging equations based on these data for the different media, with the resulting normalized plot shown below.



Model Equations for the Effect of Solids Loading on Flow Rate (Clark 2000)


| Filtration Media                      | Equation for Effect of Suspended Solids              |
|---------------------------------------|------------------------------------------------------|
|                                       | Loading on Flow Rate*                                |
| Sand                                  | $u = 44500 \cdot L_{m,sand}^{-1.02}$                 |
| Carbon-Sand                           | $u = 14800 \cdot L_{m,carbon}^{-0.77}$               |
| Peat-Sand                             | $u = 2000 \cdot L_{m,peat}^{-0.71}$                  |
| Compost-Sand                          | $u = 1.6 \times 10^{13} \cdot L_{m,compost}^{-4.09}$ |
| Zeolite-Sand                          | $u = 60 \cdot L_{m,zeolite}^{-0.23}$                 |
| Agrofiber-Sand                        | $u = 205 - 0.09 \cdot L_{m,agrofiber}$               |
| Cotton-Sand                           | $u = 106 - 0.01 \cdot L_{m,cotton}$                  |
| *Statistically significant coefficier | nts (a = 0.05).                                      |

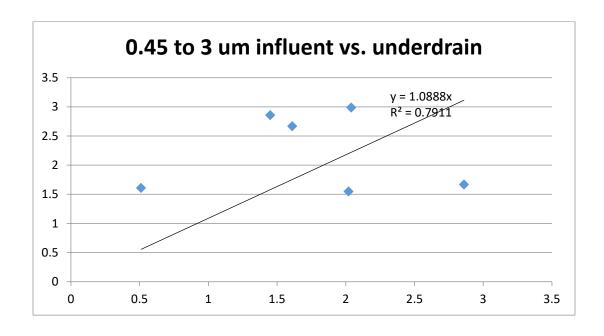

u = unit flow/loading rate (m/day), Lm = suspended solids loading (g/m²)

These equations were used to calculate the following treatment flow rates (in/hr) as a function of sediment accumulation ( $kg/m^2$ ).

| Lm      | Sand  | Carbon- | Peat- | Compost- | Zeolite- | Agrofiber- | Cotton- |
|---------|-------|---------|-------|----------|----------|------------|---------|
| (kg/m2) |       | Sand    | Sand  | Sand     | Sand     | Sand       | Sand    |
| 0.1     | 665.8 | 700.2   | 124.7 |          | 34.1     | 321.5      | 172.2   |
| 0.3     | 217.1 | 300.5   | 57.2  | 1,939.3  | 26.5     | 292.0      | 169.0   |
| 1       | 63.6  | 118.9   | 24.3  | 14.1     | 20.1     | 188.6      | 157.5   |
| 3       | 20.7  | 51.0    | 11.1  | 0.2      | 15.6     |            | 124.7   |
| 10      | 6.1   | 20.2    | 4.7   | 0.0      | 11.8     |            | 9.8     |
| 30      | 2.0   | 8.7     | 2.2   | 0.0      | 9.2      |            |         |
| 100     | 0.6   | 3.4     | 0.9   | 0.0      | 7.0      |            |         |

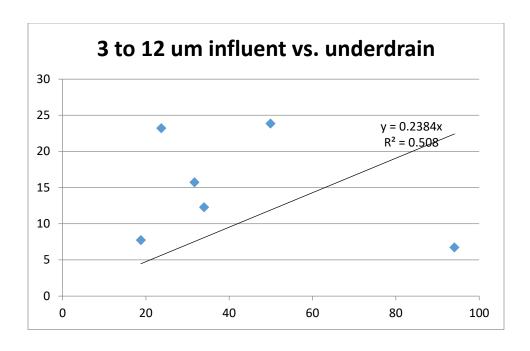
These values were then plotted in the following figures.





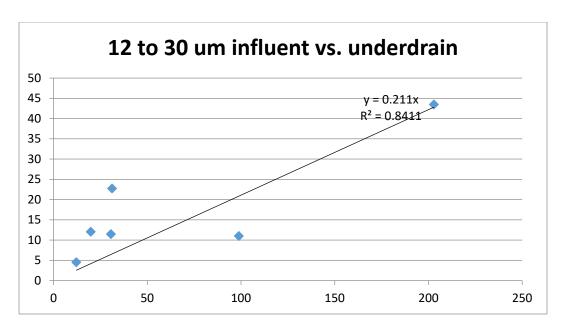

The granular media is seen to lose an order of magnitude of flow capacity after about 8 kg/m<sup>2</sup> acculturation and about 2 orders of flow capacity after about 30 kg/m<sup>2</sup>. The compost-sand flow rate losses are much faster, with 1 order of magnitude of flow capacity lost after about 0.5 kg/m<sup>2</sup> of sediment accumulation and 2 orders of magnitude after about 2 kg/m<sup>2</sup>, but the initial rates are much larger.

#### Appendix C4. Kansas City EPA Demonstration Project Biofilter Performance Data


The Kansas City project was an EPA-funded demonstration project to show how green infrastructure can be integrated into areas having combined sewers (Pitt, et al. 2014). This was an extensive project and included the construction of several hundred controls in the test area. An adjacent area with no stormwater controls was used for comparison. The monitoring program lasted for about 2 years and included more than 50 storms. However, the monitored biofilters worked very well and only six events produced underdrain flows that could be sampled and analyzed. These monitored underdrain and inflow data are summarized below, for the various stormwater particle size groups.

| 0.45 to 3 | influent    | underdrain | % reduc. |
|-----------|-------------|------------|----------|
| 4/7/2013  | 0.51        | 1.61       | -215.686 |
| 4/9/2013  | 2.02        | 1.55       | 23.26733 |
| 5/2/2013  | 1.61        | 2.67       | -65.8385 |
| 5/27/2013 | 2.86        | 1.67       | 41.60839 |
| 6/5/2013  | 1.45        | 2.86       | -97.2414 |
| 6/9/2013  | 2.04        | 2.99       | -46.5686 |
| min       | 0.51        | 1.55       | -215.686 |
| max       | 2.86        | 2.99       | 41.60839 |
| median    | 1.815       | 2.17       | -56.2036 |
| average   | 1.748333333 | 2.225      | -60.0765 |
| stdev     | 0.779266749 | 0.6824     | 92.84105 |
| COV       | 0.44571978  | 0.306697   | -1.54538 |

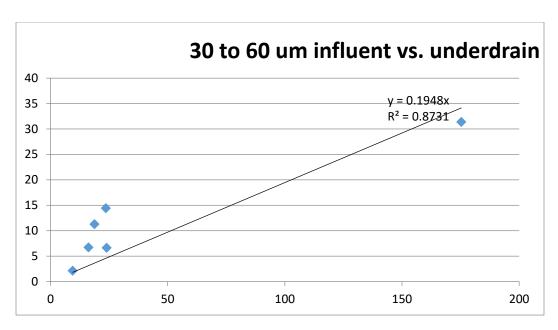



| SUMMARY OUTPUT        |              |          |          |          |             |          |
|-----------------------|--------------|----------|----------|----------|-------------|----------|
|                       |              |          |          |          |             |          |
| Regression Statistics | i            |          |          |          |             |          |
| Multiple R            | 0.889415     |          |          |          |             |          |
| R Square              | 0.79106      |          |          |          |             |          |
| Adjusted R Square     | 0.59106      |          |          |          |             |          |
| Standard Error        | 1.156962     |          |          |          |             |          |
| Observations          | 6            |          |          |          |             |          |
|                       |              |          |          |          |             |          |
| ANOVA                 |              |          |          |          |             |          |
|                       | df           | SS       | MS       | F        | Significano | e F      |
| Regression            | 1            | 25.3393  | 25.3393  | 18.93026 | 0.012149    |          |
| Residual              | 5            | 6.692801 | 1.33856  |          |             |          |
| Total                 | 6            | 32.0321  |          |          |             |          |
|                       |              |          |          |          |             |          |
|                       | Coefficients | Standard | t Stat   | P-value  | Lower       | Upper    |
|                       |              | Error    |          |          | 95%         | 95%      |
| Intercept             | 0            | #N/A     | #N/A     | #N/A     | #N/A        | #N/A     |
| X Variable 1          | 1.088757     | 0.250238 | 4.350892 | 0.007353 | 0.445501    | 1.732014 |

| 3 to 12   | influent    | underdrain | % reduc. |
|-----------|-------------|------------|----------|
| 4/7/2013  | 31.66       | 15.73      | 50.31586 |
| 4/9/2013  | 23.69       | 23.21      | 2.026171 |
| 5/2/2013  | 18.8        | 7.74       | 58.82979 |
| 5/27/2013 | 94.04       | 6.73       | 92.84347 |
| 6/5/2013  | 33.96       | 12.28      | 63.83981 |
| 6/9/2013  | 49.9        | 23.85      | 52.20441 |
| min       | 18.8        | 6.73       | 2.026171 |
| max       | 94.04       | 23.85      | 92.84347 |
| median    | 32.81       | 14.005     | 55.5171  |
| average   | 42.00833333 | 14.92333   | 53.34325 |
| stdev     | 27.62471532 | 7.412464   | 29.47695 |
| COV       | 0.657600841 | 0.496703   | 0.55259  |

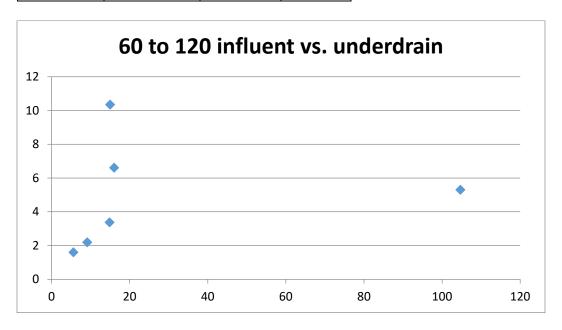


| SUMMARY OUTPUT        | T            |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.71276      |                   |          |          |                   |              |
| R Square              | 0.508027     |                   |          |          |                   |              |
| Adjusted R Square     | 0.308027     |                   |          |          |                   |              |
| Standard Error        | 12.59006     |                   |          |          |                   |              |
| Observations          | 6            |                   |          |          |                   |              |
| *******               |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 818.4109          | 818.4109 | 5.163166 | 0.085514          |              |
| Residual              | 5            | 792.5475          | 158.5095 |          |                   |              |
| Total                 | 6            | 1610.958          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 0.238367     | 0.104903          | 2.27226  | 0.072234 | -0.03129          | 0.50803      |


| 12 to 30  | influent    | underdrain | % reduc. |
|-----------|-------------|------------|----------|
| 4/7/2013  | 202.88      | 43.48      | 78.56861 |
| 4/9/2013  | 19.85       | 12.05      | 39.29471 |
| 5/2/2013  | 12.13       | 4.52       | 62.73702 |
| 5/27/2013 | 98.83       | 11.01      | 88.85966 |
| 6/5/2013  | 30.61       | 11.48      | 62.49592 |
| 6/9/2013  | 31.18       | 22.73      | 27.10071 |
| min       | 12.13       | 4.52       | 27.10071 |
| max       | 202.88      | 43.48      | 88.85966 |
| median    | 30.895      | 11.765     | 62.61647 |
| average   | 65.91333333 | 17.545     | 59.84277 |
| stdev     | 73.90613254 | 13.99174   | 23.24787 |
| COV       | 1.121262252 | 0.797478   | 0.388483 |
|           |             |            |          |



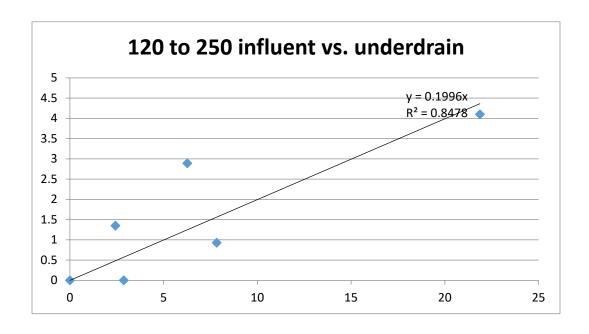
| SUMMARY OUTPUT        |          |  |  |  |
|-----------------------|----------|--|--|--|
|                       |          |  |  |  |
| Regression Statistics |          |  |  |  |
| Multiple R            | 0.917108 |  |  |  |
| R Square              | 0.841087 |  |  |  |
| Adjusted R Square     | 0.641087 |  |  |  |
| Standard Error        | 9.476892 |  |  |  |
| Observations          | 6        |  |  |  |
|                       |          |  |  |  |
| ANOVA                 |          |  |  |  |


|              | df           | SS       | MS       | F        | Significance |          |
|--------------|--------------|----------|----------|----------|--------------|----------|
|              |              |          |          |          | F            |          |
| Regression   | 1            | 2376.749 | 2376.749 | 26.46376 | 0.006771     |          |
| Residual     | 5            | 449.0574 | 89.81148 |          |              |          |
| Total        | 6            | 2825.807 |          |          |              |          |
|              |              |          |          |          |              |          |
|              | Coefficients | Standard | t Stat   | P-value  | Lower 95%    | Upper    |
|              |              | Error    |          |          |              | 95%      |
| Intercept    | 0            | #N/A     | #N/A     | #N/A     | #N/A         | #N/A     |
| X Variable 1 | 0.211014     | 0.041019 | 5.144294 | 0.003632 | 0.105571     | 0.316456 |

| % reduc.<br>82.09355 |
|----------------------|
|                      |
| 50.07070             |
| 58.37972             |
| 77.33051             |
| 39.72237             |
| 38.83001             |
| 72.21061             |
| 38.83001             |
| 82.09355             |
| 65.29516             |
| 61.4278              |
| 18.90669             |
| 0.307787             |
|                      |

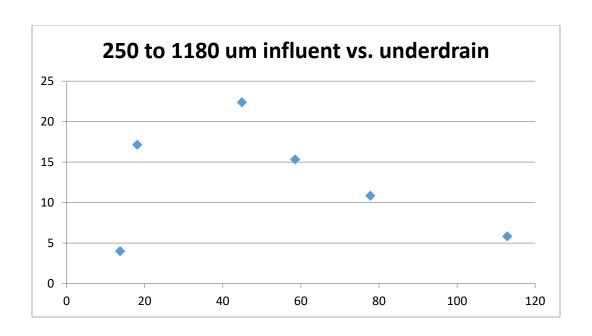


| SUMMARY OUTPUT        |               |                   |          |          |                   |              |
|-----------------------|---------------|-------------------|----------|----------|-------------------|--------------|
| Regression Statistics | <u> </u><br>5 |                   |          |          |                   |              |
| Multiple R            | 0.934397      |                   |          |          |                   |              |
| R Square              | 0.873097      |                   |          |          |                   |              |
| Adjusted R Square     | 0.673097      |                   |          |          |                   |              |
| Standard Error        | 5.993032      |                   |          |          |                   |              |
| Observations          | 6             |                   |          |          |                   |              |
| ANOVA                 |               |                   |          |          |                   |              |
|                       | df            | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1             | 1235.534          | 1235.534 | 34.40024 | 0.004219          |              |
| Residual              | 5             | 179.5822          | 35.91643 |          |                   |              |
| Total                 | 6             | 1415.116          |          |          |                   |              |
|                       | Coefficients  | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0             | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 0.194796      | 0.033212          | 5.865172 | 0.002043 | 0.109421          | 0.280172     |


| 60 to 120 | influent    | underdrain | % reduc. |
|-----------|-------------|------------|----------|
| 4/7/2013  | 104.67      | 5.3        | 94.93647 |
| 4/9/2013  | 9.13        | 2.19       | 76.01314 |
| 5/2/2013  | 5.6         | 1.6        | 71.42857 |
| 5/27/2013 | 14.85       | 3.37       | 77.3064  |
| 6/5/2013  | 15          | 10.35      | 31       |
| 6/9/2013  | 16.03       | 6.61       | 58.76482 |
| min       | 5.6         | 1.6        | 31       |
| max       | 104.67      | 10.35      | 94.93647 |
| median    | 14.925      | 4.335      | 73.72086 |
| average   | 27.54666667 | 4.903333   | 68.24157 |
| stdev     | 38.00025298 | 3.26685    | 21.64295 |
| COV       | 1.379486434 | 0.666251   | 0.317152 |



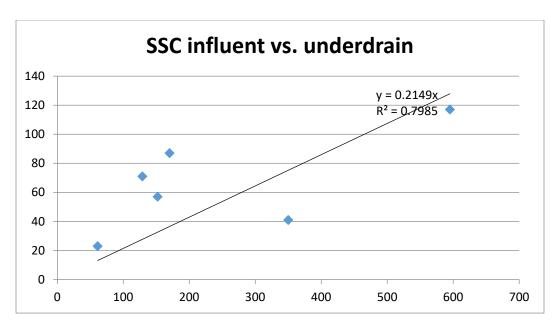
| SUMMARY OUTPUT        |          |    |    |   |              |  |
|-----------------------|----------|----|----|---|--------------|--|
|                       |          |    |    |   |              |  |
| Regression Statistics | ,        |    |    |   |              |  |
| Multiple R            | 0.586741 |    |    |   |              |  |
| R Square              | 0.344265 |    |    |   |              |  |
| Adjusted R Square     | 0.144265 |    |    |   |              |  |
| Standard Error        | 5.09087  |    |    |   |              |  |
| Observations          | 6        |    |    |   |              |  |
|                       |          |    |    |   |              |  |
| ANOVA                 |          |    |    |   |              |  |
|                       | df       | SS | MS | F | Significance |  |
|                       |          |    |    |   | F            |  |


| Regression   | 1            | 68.03279          | 68.03279 | 2.62503  | 0.180506  |              |
|--------------|--------------|-------------------|----------|----------|-----------|--------------|
| Residual     | 5            | 129.5848          | 25.91696 |          |           |              |
| Total        | 6            | 197.6176          |          |          |           |              |
|              |              |                   |          |          |           |              |
|              | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95% | Upper<br>95% |
| Intercept    | 0            | #N/A              | #N/A     | #N/A     | #N/A      | #N/A         |
| X Variable 1 | 0.076018     | 0.046919          | 1.620194 | 0.166116 | -0.04459  | 0.196627     |

|            | 1           | 1          | 1        |
|------------|-------------|------------|----------|
| 120 to 250 | influent    | underdrain | % reduc. |
| 4/7/2013   | 21.87       | 4.1        | 81.25286 |
| 4/9/2013   | 2.87        | 0          | 100      |
| 5/2/2013   | 0           | 0          | n/a      |
| 5/27/2013  | 7.83        | 0.93       | 88.12261 |
| 6/5/2013   | 6.26        | 2.89       | 53.83387 |
| 6/9/2013   | 2.43        | 1.35       | 44.44444 |
| min        | 0           | 0          | 44.44444 |
| max        | 21.87       | 4.1        | 100      |
| median     | 4.565       | 1.14       | 81.25286 |
| average    | 6.876666667 | 1.545      | 73.53075 |
| stdev      | 7.863891318 | 1.644831   | 23.49018 |
| COV        | 1.14356151  | 1.064616   | 0.319461 |



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.920765     |                   |          |          |                   |              |
| R Square              | 0.847808     |                   |          |          |                   |              |
| Adjusted R Square     | 0.647808     |                   |          |          |                   |              |
| Standard Error        | 0.920703     |                   |          |          |                   |              |
| Observations          | 6            |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 23.61103          | 23.61103 | 27.85326 | 0.00618           |              |
| Residual              | 5            | 4.238468          | 0.847694 |          |                   |              |
| Total                 | 6            | 27.8495           |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 0.199551     | 0.037811          | 5.277619 | 0.003251 | 0.102355          | 0.296747     |


| 250 to 1180 | influent    | underdrain | % reduc. |
|-------------|-------------|------------|----------|
| 4/7/2013    | 58.52       | 15.32      | 73.82092 |
| 4/9/2013    | 77.78       | 10.85      | 86.0504  |
| 5/2/2013    | 13.71       | 4          | 70.82422 |
| 5/27/2013   | 112.86      | 5.83       | 94.83431 |
| 6/5/2013    | 18.12       | 17.14      | 5.408389 |
| 6/9/2013    | 44.9        | 22.39      | 50.13363 |
| min         | 13.71       | 4          | 5.408389 |
| max         | 112.86      | 22.39      | 94.83431 |
| median      | 51.71       | 13.085     | 72.32257 |
| average     | 54.315      | 12.58833   | 63.51198 |
| stdev       | 37.53209706 | 7.024367   | 32.26087 |
| COV         | 0.691007955 | 0.558006   | 0.507949 |



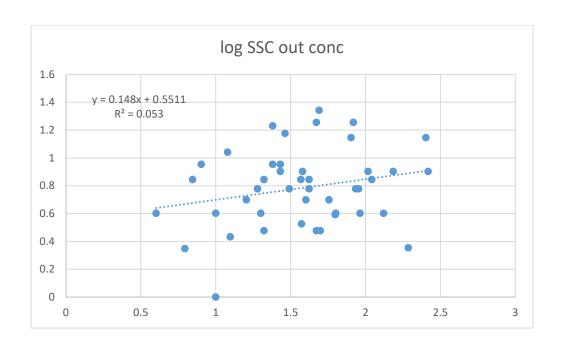
| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics | :            |                   |          |          |                   |              |
| Multiple R            | 0.692418     |                   |          |          |                   |              |
| R Square              | 0.479443     |                   |          |          |                   |              |
| Adjusted R Square     | 0.279443     |                   |          |          |                   |              |
| Standard Error        | 11.16575     |                   |          |          |                   |              |
| Observations          | 6            |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 574.1359          | 574.1359 | 4.605101 | 0.098428          |              |
| Residual              | 5            | 623.3696          | 124.6739 |          |                   |              |
| Total                 | 6            | 1197.506          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 0.152325     | 0.070983          | 2.14595  | 0.084678 | -0.03014          | 0.334792     |

| >1180     | influent | underdrain | %       |
|-----------|----------|------------|---------|
|           |          |            | reduc.  |
| 4/7/2013  | 0        | 0          | n/a     |
| 4/9/2013  | 0        | 0          | n/a     |
| 5/2/2013  | 0        | 0          | n/a     |
| 5/27/2013 | 0        | 0          | n/a     |
| 6/5/2013  | 0        | 0          | n/a     |
| 6/9/2013  | 0        | 0          | n/a     |
| min       | 0        | 0          | 0       |
| max       | 0        | 0          | 0       |
| median    | 0        | 0          | #NUM!   |
| average   | 0        | 0          | #DIV/0! |
| stdev     | 0        | 0          | #DIV/0! |
| COV       | #DIV/0!  | #DIV/0!    | #DIV/0! |

| total SSC | influent    | underdrain | % reduc. |
|-----------|-------------|------------|----------|
| 4/7/2013  | 595         | 117        | 80.33613 |
| 4/9/2013  | 152         | 57         | 62.5     |
| 5/2/2013  | 61          | 23         | 62.29508 |
| 5/27/2013 | 350         | 41         | 88.28571 |
| 6/5/2013  | 129         | 71         | 44.96124 |
| 6/9/2013  | 170         | 87         | 48.82353 |
| min       | 61          | 23         | 44.96124 |
| max       | 595         | 117        | 88.28571 |
| median    | 161         | 64         | 62.39754 |
| average   | 242.8333333 | 66         | 64.53362 |
| stdev     | 197.5261164 | 33.53207   | 17.04648 |
| COV       | 0.81342258  | 0.508062   | 0.264149 |

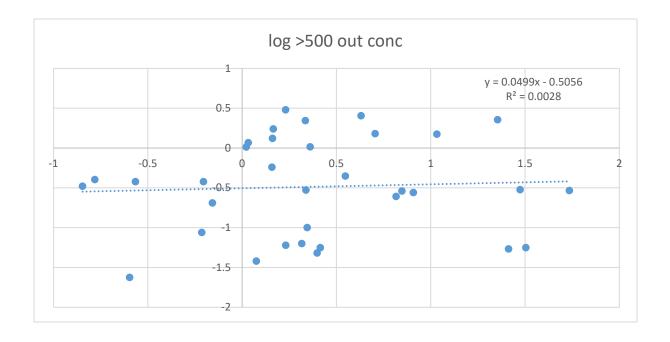


| SUMMARY OUTPUT        | I            |          |          |          |                   |          |
|-----------------------|--------------|----------|----------|----------|-------------------|----------|
|                       |              |          |          |          |                   |          |
| Regression Statistics |              |          |          |          |                   |          |
| Multiple R            | 0.893599     |          |          |          |                   |          |
| R Square              | 0.798518     |          |          |          |                   |          |
| Adjusted R Square     | 0.598518     |          |          |          |                   |          |
| Standard Error        | 35.77333     |          |          |          |                   |          |
| Observations          | 6            |          |          |          |                   |          |
|                       |              |          |          |          |                   |          |
| ANOVA                 |              |          |          |          |                   |          |
|                       | df           | SS       | MS       | F        | Significance<br>F |          |
| Regression            | 1            | 25359.35 | 25359.35 | 19.81615 | 0.011233          |          |
| Residual              | 5            | 6398.655 | 1279.731 |          |                   |          |
| Total                 | 6            | 31758    |          |          |                   |          |
|                       |              |          |          |          |                   |          |
|                       | Coefficients | Standard | t Stat   | P-value  | Lower 95%         | Upper    |
|                       |              | Error    |          |          |                   | 95%      |
| Intercept             | 0            | #N/A     | #N/A     | #N/A     | #N/A              | #N/A     |
| X Variable 1          | 0.214944     | 0.048285 | 4.451534 | 0.006693 | 0.090823          | 0.339066 |


#### Appendix C5. Fill-Scale Biofilter Tests in Neenah WI

The Wisconsin full-scale biofilter tests were conducted in Neenah, WI (Bannerman, personal communication). These were especially constructed biofilters to compare different test mixtures and biofilter designs. The data shown below are for the mix-2, which was comprised of 86% sand, 11% peat moss, and 3% Imbrium phosphorus removal material. The biofilters were sealed and all of the treated effluent was collected by underdrains and analyzed, resulting in 44 sets of data. The following show the data and statistical analyses for the particulate retention data and for the retention of filtered pollutants.

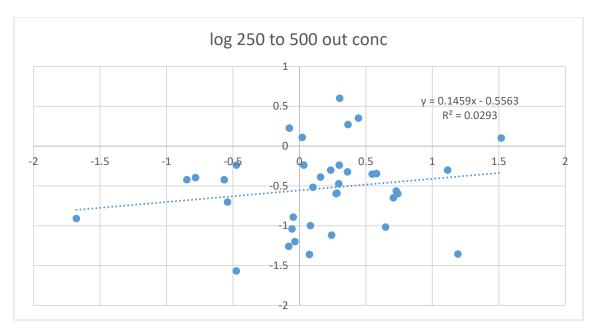
#### **Particulate Retention**


The following show the statistical summaries for the data sets having complete data (observed influent and effluent concentrations), along with the scatterplots, regression equations, and ANOVA analyses indicating the significance of the overall equations and the equation coefficients.

|        | Inlet   | log inlet | Outlet | log SSC | % reduc |
|--------|---------|-----------|--------|---------|---------|
|        | conc    | SSC       | conc   | out     |         |
|        |         | conc      |        | conc    |         |
|        |         |           |        |         |         |
| mean   | 58.616  | 1.571     | 7.374  | 0.784   | 73.112  |
| stdev  | 60.337  | 0.433     | 4.816  | 0.278   | 28.184  |
| COV    | 1.029   | 0.276     | 0.653  | 0.355   | 0.385   |
| min    | 4.000   | 0.602     | 1.000  | 0.000   | -12.500 |
| max    | 262.000 | 2.418     | 22.000 | 1.342   | 98.829  |
| median | 39.000  | 1.591     | 6.000  | 0.778   | 81.791  |
| count  | 44      | 44        | 44     | 44      | 44      |



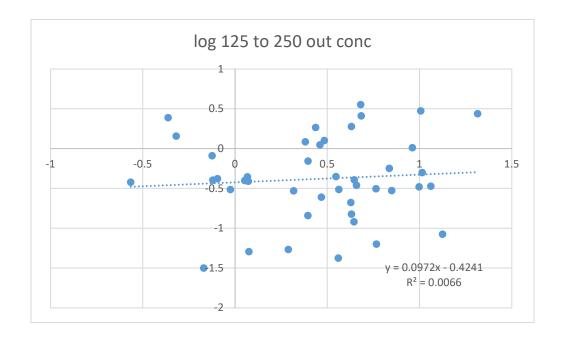
| SUMMARY OUTPUT        |              |                   |              |                |                    |              |
|-----------------------|--------------|-------------------|--------------|----------------|--------------------|--------------|
|                       |              |                   |              |                |                    |              |
| Regression Statistics |              |                   |              |                |                    |              |
| Multiple R            | 0.230195629  |                   |              |                |                    |              |
| R Square              | 0.052990028  |                   |              |                |                    |              |
| Adjusted R Square     | 0.030442171  |                   |              |                |                    |              |
| Standard Error        | 0.274131546  |                   |              |                |                    |              |
| Observations          | 44           |                   |              |                |                    |              |
| ANOVA                 |              |                   |              |                |                    |              |
|                       | df           | SS                | MS           | F              | Significanc<br>e F |              |
| Regression            | 1            | 0.17660<br>7      | 0.17660<br>7 | 2.3501137<br>6 | 0.132773           |              |
| Residual              | 42           | 3.15622           | 0.07514<br>8 |                |                    |              |
| Total                 | 43           | 3.33282<br>7      |              |                |                    |              |
|                       |              |                   |              |                |                    |              |
|                       | Coefficients | Standard<br>Error | t Stat       | P-value        | Lower 95%          | Upper<br>95% |
| Intercept             | 0.551149001  | 0.15721<br>5      | 3.50570<br>9 | 0.0010975<br>4 | 0.233877           | 0.86842<br>1 |
| X Variable 1          | 0.14800871   | 0.09654<br>8      | 1.53300<br>8 | 0.1327727      | -0.04683           | 0.34285      |


|        | In conc | log >500<br>inlet conc | Out conc | log >500<br>out conc | % reduc  |
|--------|---------|------------------------|----------|----------------------|----------|
| mean   | 7.056   | 0.388                  | 0.715    | -0.486               | 50.675   |
| stdev  | 11.987  | 0.648                  | 0.827    | 0.607                | 67.008   |
| COV    | 1.699   | 1.669                  | 1.157    | -1.248               | 1.322    |
| min    | 0.142   | -0.846                 | 0.024    | -1.626               | -142.240 |
| max    | 54.384  | 1.735                  | 3.017    | 0.480                | 99.825   |
| median | 2.173   | 0.337                  | 0.315    | -0.502               | 86.288   |
| count  | 34      | 34                     | 34       | 34                   | 34       |



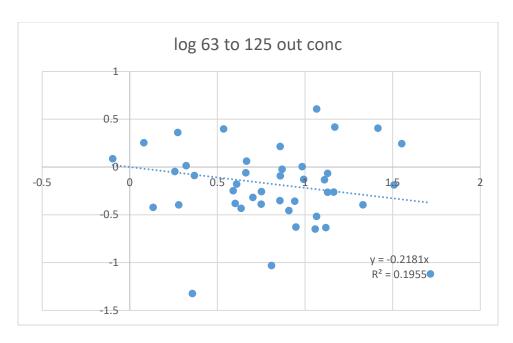
| SUMMARY OUTPUT        |           |  |  |  |
|-----------------------|-----------|--|--|--|
|                       |           |  |  |  |
| Regression Statistics |           |  |  |  |
| Multiple R            | 0.0532739 |  |  |  |
|                       | 98        |  |  |  |
| R Square              | 0.0028381 |  |  |  |
|                       | 19        |  |  |  |

| Adjusted R Square | -           |                 |                 |                 |                    |           |
|-------------------|-------------|-----------------|-----------------|-----------------|--------------------|-----------|
|                   | 0.0283231   |                 |                 |                 |                    |           |
|                   | 9           |                 |                 |                 |                    |           |
| Standard Error    | 0.6155284   |                 |                 |                 |                    |           |
|                   | 47          |                 |                 |                 |                    |           |
| Observations      | 34          |                 |                 |                 |                    |           |
| ANOVA             |             |                 |                 |                 |                    |           |
|                   | df          | SS              | MS              | F               | Significan<br>ce F |           |
| Regression        | 1           | 0.0345073<br>13 | 0.0345073<br>13 | 0.0910782<br>94 | 0.764763           |           |
| Residual          | 32          | 12.124008<br>6  | 0.3788752<br>69 |                 |                    |           |
| Total             | 33          | 12.158515<br>92 |                 |                 |                    |           |
|                   |             |                 |                 |                 |                    |           |
|                   | Coefficient | Standard        | t Stat          | P-value         | Lower              | Upper 95% |
|                   | S           | Error           |                 |                 | 95%                |           |
| Intercept         | -           | 0.1235425       | -               | 0.0002699       | -0.75724           | -         |
|                   | 0.5055934   | 03              | 4.0924655       | 1               |                    | 0.2539455 |
|                   | 3           |                 | 08              |                 |                    | 9         |
| X Variable 1      | 0.0499167   | 0.1654011       | 0.3017918       | 0.7647634       | -0.28699           | 0.3868278 |
|                   | 08          | 38              | 06              | 58              |                    | 01        |


|        | In conc | log 250 to<br>500 inlet<br>conc | Out conc | log 250 to<br>500 out<br>conc | % reduc |
|--------|---------|---------------------------------|----------|-------------------------------|---------|
| mean   | 3.331   | 0.154                           | 0.565    | -0.534                        | 32.653  |
| stdev  | 5.968   | 0.601                           | 0.781    | 0.512                         | 114.591 |
| COV    | 1.792   | 3.890                           | 1.382    | -0.959                        | 3.509   |
| min    | 0.021   | -1.678                          | 0.027    | -1.568                        | -       |
|        |         |                                 |          |                               | 485.714 |
| max    | 33.034  | 1.519                           | 3.982    | 0.600                         | 99.718  |
| median | 1.722   | 0.236                           | 0.336    | -0.474                        | 85.778  |
| count  | 37      | 37                              | 37       | 37                            | 37      |



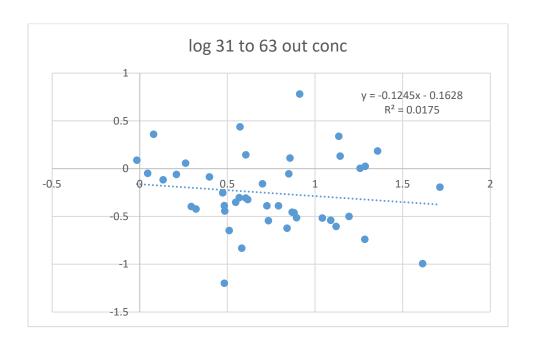
|                       |                 | 1                 | 1               |         |                   | 1            |
|-----------------------|-----------------|-------------------|-----------------|---------|-------------------|--------------|
| log 250 to 500        |                 |                   |                 |         |                   |              |
| only intercept sign   |                 |                   |                 |         |                   |              |
| SUMMARY OUTPUT        | SUMMARY OUTPUT  |                   |                 |         |                   |              |
|                       |                 |                   |                 |         |                   |              |
| Regression Statistics | •               |                   |                 |         |                   |              |
| Multiple R            | 0.17129470<br>1 |                   |                 |         |                   |              |
| R Square              | 0.02934187<br>5 |                   |                 |         |                   |              |
| Adjusted R Square     | 0.00160878<br>5 |                   |                 |         |                   |              |
| Standard Error        | 0.51148569      |                   |                 |         |                   |              |
| Observations          | 37              |                   |                 |         |                   |              |
| ANOVA                 |                 |                   |                 |         |                   |              |
|                       | df              | SS                | MS              | F       | Significance<br>F |              |
| Regression            | 1               | 0.27679394<br>4   | 0.27679394<br>4 | 1.05801 | 0.31072589        |              |
| Residual              | 35              | 9.15661640<br>1   | 0.26161761<br>1 |         |                   |              |
| Total                 | 36              | 9.43341034<br>6   |                 |         |                   |              |
|                       | Coefficients    | Standard<br>Error | t Stat          | P-value | Lower 95%         | Upper<br>95% |


| Intercept    | -          | 0.08689606 | -          | 2.29E-07 | -          | -      |
|--------------|------------|------------|------------|----------|------------|--------|
|              | 0.55633582 | 5          | 6.40231322 |          | 0.73274421 | 0.3799 |
|              |            |            | 6          |          | 5          | 3      |
| X Variable 1 | 0.14590407 | 0.14184780 | 1.02859593 | 0.31072  | -          | 0.4338 |
|              | 6          | 5          | 5          | 6        | 0.14206227 | 7      |
|              |            |            |            |          | 8          |        |

|        | In conc | log 150<br>to 250<br>inlet<br>conc | Out<br>conc | log 125<br>to 250<br>out<br>conc | % reduc |
|--------|---------|------------------------------------|-------------|----------------------------------|---------|
| mean   | 4.423   | 0.458                              | 0.782       | -0.380                           | 55.308  |
| stdev  | 4.151   | 0.440                              | 0.895       | 0.524                            | 95.677  |
| COV    | 0.938   | 0.960                              | 1.146       | -1.382                           | 1.730   |
| min    | 0.272   | -0.565                             | 0.032       | -1.501                           | -       |
|        |         |                                    |             |                                  | 462.903 |
| max    | 20.667  | 1.315                              | 3.564       | 0.552                            | 99.370  |
| median | 3.528   | 0.548                              | 0.396       | -0.402                           | 87.411  |
| count  | 43      | 43                                 | 43          | 43                               | 43      |



| SUMMARY OUTPUT        | ı            |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.081493     |                   |          |          |                   |              |
| R Square              | 0.006641     |                   |          |          |                   |              |
| Adjusted R Square     | -0.01759     |                   |          |          |                   |              |
| Standard Error        | 0.52905      |                   |          |          |                   |              |
| Observations          | 43           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 0.07672           | 0.07672  | 0.274103 | 0.603411          |              |
| Residual              | 41           | 11.47566          | 0.279894 |          |                   |              |
| Total                 | 42           | 11.55238          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | -0.4241      | 0.117219          | -3.61799 | 0.000807 | -0.66083          | -0.18737     |
| X Variable 1          | 0.097197     | 0.185651          | 0.523548 | 0.603411 | -0.27773          | 0.472127     |

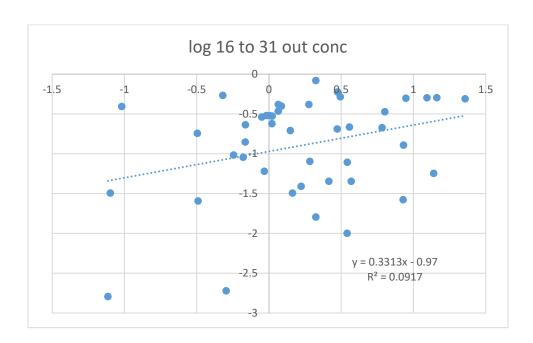

|        | In conc | log 63 | Out   | log 63 | % reduc |
|--------|---------|--------|-------|--------|---------|
|        |         | to 150 | conc  | to 125 |         |
|        |         | inlet  |       | out    |         |
|        |         | conc   |       | conc   |         |
| mean   | 9.909   | 0.815  | 0.909 | -0.204 | 77.163  |
| stdev  | 10.193  | 0.410  | 0.834 | 0.405  | 36.244  |
| COV    | 1.029   | 0.503  | 0.918 | -1.979 | 0.470   |
| min    | 0.800   | -0.097 | 0.047 | -1.325 | -52.500 |
| max    | 51.938  | 1.715  | 4.050 | 0.607  | 99.854  |
| median | 7.221   | 0.859  | 0.648 | -0.188 | 90.230  |
| count  | 43      | 43     | 43    | 43     | 43      |



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics | <u> </u>     |                   |          |          |                   |              |
| Multiple R            | 0.442165     |                   |          |          |                   |              |
| R Square              | 0.19551      |                   |          |          |                   |              |
| Adjusted R Square     | 0.1717       |                   |          |          |                   |              |
| Standard Error        | 0.407647     |                   |          |          |                   |              |
| Observations          | 43           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 1.696153          | 1.696153 | 10.20698 | 0.002691          |              |
| Residual              | 42           | 6.97938           | 0.166176 |          |                   |              |
| Total                 | 43           | 8.675533          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | -0.21814     | 0.068278          | -3.19484 | 0.002655 | -0.35593          | -<br>0.08035 |

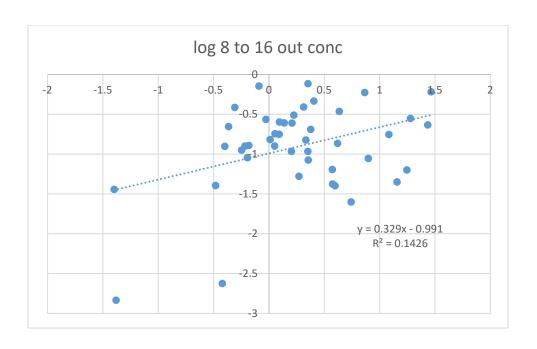
The overall equation and the slope term are significant, but not the intercept.

|        | In conc | log 31 | Out   | log 31 | % reduc |
|--------|---------|--------|-------|--------|---------|
|        |         | to 63  | conc  | to 63  |         |
|        |         | inlet  |       | out    |         |
|        |         | conc   |       | conc   |         |
| mean   | 8.708   | 0.740  | 0.841 | -0.255 | 75.807  |
| stdev  | 10.083  | 0.413  | 0.999 | 0.388  | 37.218  |
| COV    | 1.158   | 0.558  | 1.188 | -1.523 | 0.491   |
| min    | 0.964   | -0.016 | 0.063 | -1.200 | -90.500 |
| max    | 51.614  | 1.713  | 6.030 | 0.780  | 99.754  |
| median | 5.169   | 0.713  | 0.483 | -0.316 | 88.386  |
| count  | 44      | 44     | 44    | 44     | 44      |



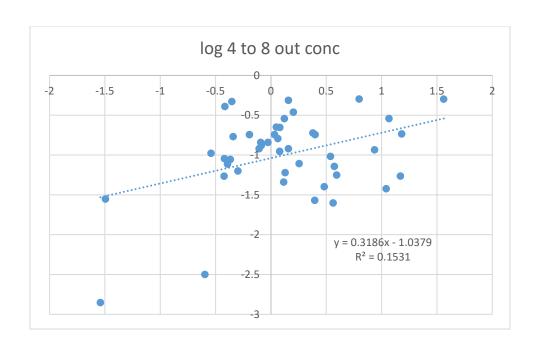

| SUMMARY OUTPUT        |          |    |    |   |              |  |
|-----------------------|----------|----|----|---|--------------|--|
|                       |          |    |    |   |              |  |
| Regression Statistics |          |    |    |   |              |  |
| Multiple R            | 0.537758 |    |    |   |              |  |
| R Square              | 0.289183 |    |    |   |              |  |
| Adjusted R Square     | 0.265927 |    |    |   |              |  |
| Standard Error        | 0.392862 |    |    |   |              |  |
| Observations          | 44       |    |    |   |              |  |
|                       |          |    |    |   |              |  |
| ANOVA                 |          |    |    |   |              |  |
|                       | df       | SS | MS | F | Significance |  |
|                       |          |    |    |   | F            |  |

| Regression   | 1            | 2.699996 | 2.699996 | 17.49378 | 0.000143  |         |
|--------------|--------------|----------|----------|----------|-----------|---------|
| Residual     | 43           | 6.636634 | 0.15434  |          |           |         |
| Total        | 44           | 9.33663  |          |          |           |         |
|              |              |          |          |          |           |         |
|              | Coefficients | Standard | t Stat   | P-value  | Lower 95% | Upper   |
|              |              | Error    |          |          |           | 95%     |
| Intercept    | 0            | #N/A     | #N/A     | #N/A     | #N/A      | #N/A    |
| X Variable 1 | -0.29317     | 0.070094 | -4.18256 | 0.000139 | -0.43453  | -       |
|              |              |          |          |          |           | 0.15181 |


The overall equation and the slope term are significant, but not the intercept.

|        | In conc | log 16<br>to 31<br>inlet<br>conc | Out<br>conc | log 16<br>to 31<br>out<br>conc | % reduc |
|--------|---------|----------------------------------|-------------|--------------------------------|---------|
| mean   | 3.508   | 0.217                            | 0.237       | -0.898                         | 74.461  |
| stdev  | 4.714   | 0.578                            | 0.202       | 0.633                          | 62.350  |
| COV    | 1.344   | 2.663                            | 0.851       | -0.704                         | 0.837   |
| min    | 0.077   | -1.114                           | 0.002       | -2.795                         | -       |
|        |         |                                  |             |                                | 307.292 |
| max    | 22.794  | 1.358                            | 0.828       | -0.082                         | 99.712  |
| median | 1.564   | 0.193                            | 0.208       | -0.682                         | 92.637  |
| count  | 44      | 44                               | 44          | 44                             | 44      |

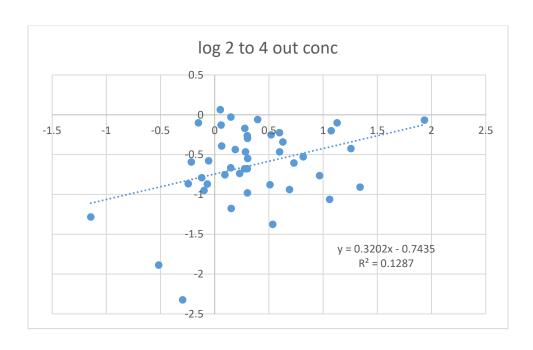



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.302838     |                   |          |          |                   |              |
| R Square              | 0.091711     |                   |          |          |                   |              |
| Adjusted R Square     | 0.070085     |                   |          |          |                   |              |
| Standard Error        | 0.610037     |                   |          |          |                   |              |
| Observations          | 44           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 1.578192          | 1.578192 | 4.240794 | 0.045698          |              |
| Residual              | 42           | 15.63011          | 0.372146 |          |                   |              |
| Total                 | 43           | 17.2083           |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | -0.96998     | 0.09838           | -9.85951 | 1.71E-12 | -1.16852          | -0.77144     |
| X Variable 1          | 0.331344     | 0.1609            | 2.059319 | 0.045698 | 0.006635          | 0.656053     |

|        | In conc | log 8 to | Out   | log 8 to | % reduc |
|--------|---------|----------|-------|----------|---------|
|        |         | 16 inlet | conc  | 16 out   |         |
|        |         | conc     |       | conc     |         |
|        |         |          |       |          |         |
| mean   | 4.469   | 0.257    | 0.204 | -0.906   | 83.614  |
| stdev  | 6.877   | 0.627    | 0.186 | 0.546    | 21.774  |
| COV    | 1.539   | 2.436    | 0.908 | -0.603   | 0.260   |
| min    | 0.040   | -1.398   | 0.001 | -2.836   | 10.000  |
| max    | 29.233  | 1.466    | 0.765 | -0.116   | 99.690  |
| median | 1.775   | 0.249    | 0.143 | -0.845   | 90.142  |
| count  | 44      | 44       | 44    | 44       | 44      |

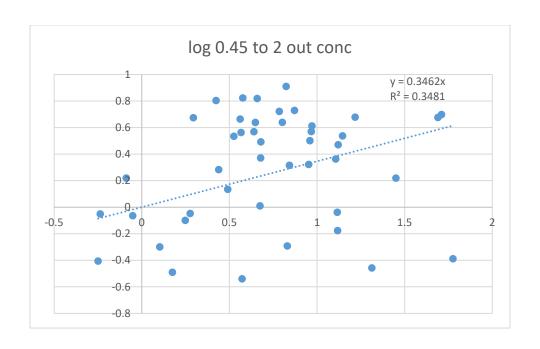


| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.377649     |                   |          |          |                   |              |
| R Square              | 0.142619     |                   |          |          |                   |              |
| Adjusted R Square     | 0.122205     |                   |          |          |                   |              |
| Standard Error        | 0.511705     |                   |          |          |                   |              |
| Observations          | 44           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 1.829327          | 1.829327 | 6.986373 | 0.011495          |              |
| Residual              | 42           | 10.99737          | 0.261842 |          |                   |              |
| Total                 | 43           | 12.82669          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | -0.99101     | 0.083528          | -11.8643 | 5.37E-15 | -1.15957          | -0.82244     |
| X Variable 1          | 0.328962     | 0.124457          | 2.643175 | 0.011495 | 0.077797          | 0.580126     |


|        | In conc | log 4 to<br>8 inlet<br>conc | Out<br>conc | log 4 to<br>8 out<br>conc | % reduc |
|--------|---------|-----------------------------|-------------|---------------------------|---------|
| mean   | 3.480   | 0.124                       | 0.158       | -0.999                    | 82.342  |
| stdev  | 6.325   | 0.628                       | 0.138       | 0.511                     | 24.736  |
| COV    | 1.817   | 5.075                       | 0.873       | -0.512                    | 0.300   |
| min    | 0.029   | -1.540                      | 0.001       | -2.853                    | -5.990  |
| max    | 36.383  | 1.561                       | 0.504       | -0.298                    | 99.657  |
| median | 1.255   | 0.098                       | 0.118       | -0.928                    | 89.125  |
| count  | 44      | 44                          | 44          | 44                        | 44      |



| SUMMARY OUTPUT        |          |  |  |  |
|-----------------------|----------|--|--|--|
|                       |          |  |  |  |
| Regression Statistics |          |  |  |  |
| Multiple R            | 0.39124  |  |  |  |
| R Square              | 0.153068 |  |  |  |
| Adjusted R Square     | 0.132903 |  |  |  |
| Standard Error        | 0.475831 |  |  |  |
| Observations          | 44       |  |  |  |
|                       |          |  |  |  |
| ANOVA                 |          |  |  |  |


|              | df           | SS                | MS       | F        | Significance<br>F |              |
|--------------|--------------|-------------------|----------|----------|-------------------|--------------|
| Regression   | 1            | 1.718665          | 1.718665 | 7.590779 | 0.008638          |              |
| Residual     | 42           | 9.509422          | 0.226415 |          |                   |              |
| Total        | 43           | 11.22809          |          |          |                   |              |
|              |              |                   |          |          |                   |              |
|              | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept    | -1.03794     | 0.073145          | -14.1902 | 1.27E-17 | -1.18556          | -0.89033     |
| X Variable 1 | 0.318597     | 0.115638          | 2.755137 | 0.008638 | 0.085231          | 0.551964     |

|        | In conc | log 2 to<br>4 inlet<br>conc | Out<br>conc | log 2 to<br>4 out<br>conc | % reduc |
|--------|---------|-----------------------------|-------------|---------------------------|---------|
| mean   | 5.632   | 0.350                       | 0.358       | -0.632                    | 78.632  |
| stdev  | 13.316  | 0.543                       | 0.288       | 0.485                     | 25.834  |
| COV    | 2.364   | 1.554                       | 0.806       | -0.768                    | 0.329   |
| min    | 0.072   | -1.143                      | 0.005       | -2.325                    | -11.864 |
| max    | 86.226  | 1.936                       | 1.156       | 0.063                     | 99.438  |
| median | 1.964   | 0.293                       | 0.260       | -0.586                    | 85.988  |
| count  | 44      | 44                          | 44          | 44                        | 44      |

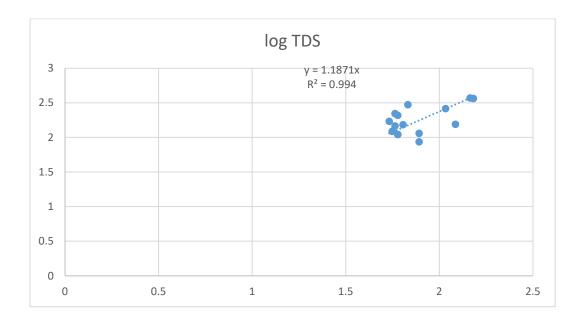


| SUMMARY OUTPUT        |              |          |          |          |              |          |
|-----------------------|--------------|----------|----------|----------|--------------|----------|
| 301/11/1/11/10/11/01  |              |          |          |          |              |          |
| Dogwoodien Chatistics |              |          |          |          |              |          |
| Regression Statistics | ı            |          |          |          |              |          |
| Multiple R            | 0.358682     |          |          |          |              |          |
| R Square              | 0.128653     |          |          |          |              |          |
| Adjusted R Square     | 0.107906     |          |          |          |              |          |
| Standard Error        | 0.45804      |          |          |          |              |          |
| Observations          | 44           |          |          |          |              |          |
|                       |              |          |          |          |              |          |
| ANOVA                 |              |          |          |          |              |          |
|                       | df           | SS       | MS       | F        | Significance |          |
|                       |              |          |          |          | F            |          |
| Regression            | 1            | 1.301023 | 1.301023 | 6.201221 | 0.016807     |          |
| Residual              | 42           | 8.811645 | 0.209801 |          |              |          |
| Total                 | 43           | 10.11267 |          |          |              |          |
|                       |              |          |          |          |              |          |
|                       | Coefficients | Standard | t Stat   | P-value  | Lower 95%    | Upper    |
|                       |              | Error    |          |          |              | 95%      |
| Intercept             | -0.74354     | 0.082387 | -9.0249  | 2.19E-11 | -0.9098      | -0.57727 |
| X Variable 1          | 0.320159     | 0.128566 | 2.490225 | 0.016807 | 0.060702     | 0.579617 |

|        | In conc | log 0.45 | Out   | log 0.45 | % reduc |
|--------|---------|----------|-------|----------|---------|
|        |         | to 2     | conc  | to 2 out |         |
|        |         | inlet    |       | conc     |         |
|        |         | conc     |       |          |         |
| mean   | 9.865   | 0.731    | 2.869 | 0.300    | 34.040  |
| stdev  | 13.230  | 0.483    | 2.076 | 0.421    | 62.450  |
| COV    | 1.341   | 0.660    | 0.723 | 1.403    | 1.835   |
| min    | 0.564   | -0.249   | 0.288 | -0.541   | -       |
|        |         |          |       |          | 139.269 |
| max    | 59.670  | 1.776    | 8.115 | 0.909    | 99.316  |
| median | 4.777   | 0.679    | 2.649 | 0.420    | 55.576  |
| count  | 44      | 44       | 44    | 44       | 44      |



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.589999     |                   |          |          |                   |              |
| R Square              | 0.348099     |                   |          |          |                   |              |
| Adjusted R Square     | 0.324843     |                   |          |          |                   |              |
| Standard Error        | 0.418571     |                   |          |          |                   |              |
| Observations          | 44           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 4.022801          | 4.022801 | 22.96096 | 2.09E-05          |              |
| Residual              | 43           | 7.533675          | 0.175202 |          |                   |              |
| Total                 | 44           | 11.55648          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 0.346181     | 0.072245          | 4.79176  | 2E-05    | 0.200485          | 0.491877     |


The overall equation and the slope term are significant, but not the intercept.

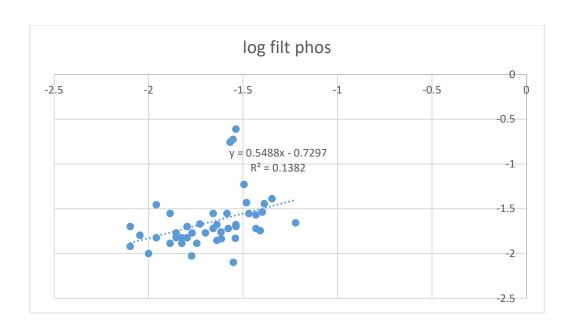
### Filtered Pollutant Retention

These calculations deleted pairs that either influent or effluent as non-detected.

TDS, mg/L

|        | Inlet    | log inlet | Outlet conc | log      | % reduc |
|--------|----------|-----------|-------------|----------|---------|
|        | conc     | conc      |             | outlet   |         |
|        |          |           |             | conc     |         |
| count  | 15       | 15        | 15          | 15       | 15.0    |
| min    | 54       | 1.732394  | 86          | 1.934498 | -335.3  |
| max    | 152      | 2.181844  | 370         | 2.568202 | -10.3   |
| mean   | 81.46667 | 1.88205   | 192.1333333 | 2.240051 | -144.4  |
| median | 64       | 1.80618   | 154         | 2.187521 | -139.5  |
| stdev  | 33.68312 | 0.156635  | 92.21858092 | 0.198713 | 92.6    |
| COV    | 0.413459 | 0.083226  | 0.479971795 | 0.088709 | -0.6    |



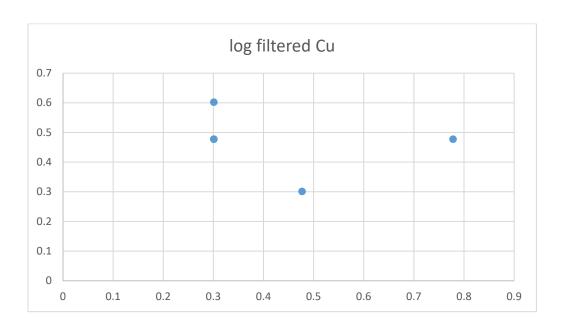

| SUMMARY OUTPUT        |          |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|
|                       |          |  |  |  |  |  |
| Regression Statistics |          |  |  |  |  |  |
| Multiple R            | 0.462137 |  |  |  |  |  |
| R Square              | 0.21357  |  |  |  |  |  |
| Adjusted R Square     | 0.196474 |  |  |  |  |  |
| Standard Error        | 0.156918 |  |  |  |  |  |
| Observations          | 48       |  |  |  |  |  |
|                       |          |  |  |  |  |  |

| ANOVA        |              |          |             |          |                   |          |
|--------------|--------------|----------|-------------|----------|-------------------|----------|
|              | df           | SS       | MS          | F        | Significance<br>F |          |
| Regression   | 1            | 0.307597 | 0.307597093 | 12.4922  | 0.000944          |          |
| Residual     | 46           | 1.132664 | 0.024623133 |          |                   |          |
| Total        | 47           | 1.440261 |             |          |                   |          |
|              |              |          |             |          |                   |          |
|              | Coefficients | Standard | t Stat      | P-value  | Lower 95%         | Upper    |
|              |              | Error    |             |          |                   | 95%      |
| Intercept    | 1.629698     | 0.148063 | 11.00680815 | 1.76E-14 | 1.331663          | 1.927733 |
| X Variable 1 | 0.333818     | 0.094447 | 3.534430574 | 0.000944 | 0.143705          | 0.52393  |

Sign test indicated highly significant differences between influent and effluent (all increases). The sign test considers non-detected influent observations. ANOVA showed significant regression equation and coefficients.

### filtered phosphorus, mg/L

|        | Inlet conc | log inlet | Outlet conc | log outlet  | % reduc |
|--------|------------|-----------|-------------|-------------|---------|
|        |            | conc      |             | conc        |         |
| count  | 44         | 44        | 44          | 44          | 44.0    |
| min    | 0.008      | -2.09691  | 0.00796     | -2.0990869  | -744.8  |
| max    | 0.06       | -1.22185  | 0.245       | -0.6108339  | 71.7    |
| mean   | 0.023895   | -1.66984  | 0.0334218   | -1.6461582  | -45.7   |
| median | 0.023      | -1.63827  | 0.019       | -1.7212464  | 7.5     |
| stdev  | 0.0112392  | 0.2118826 | 0.047956097 | 0.312803254 | 168.5   |
| COV    | 0.47035    | -0.12689  | 1.434874    | -0.1900202  | -3.7    |

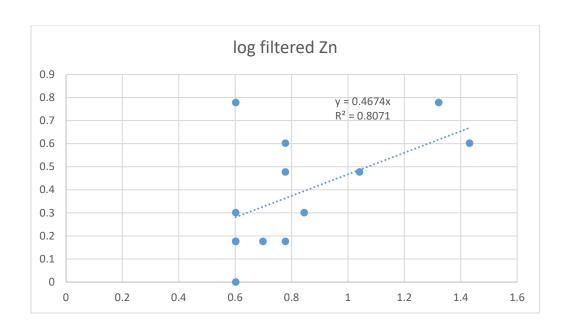



| SUMMARY OUTPUT        |              |                   |            |          |                   |              |
|-----------------------|--------------|-------------------|------------|----------|-------------------|--------------|
|                       |              |                   |            |          |                   |              |
| Regression Statistics | ;            |                   |            |          |                   |              |
| Multiple R            | 0.371741     |                   |            |          |                   |              |
| R Square              | 0.138191     |                   |            |          |                   |              |
| Adjusted R Square     | 0.117672     |                   |            |          |                   |              |
| Standard Error        | 0.293823     |                   |            |          |                   |              |
| Observations          | 44           |                   |            |          |                   |              |
|                       |              |                   |            |          |                   |              |
| ANOVA                 |              |                   |            |          |                   |              |
|                       | df           | SS                | MS         | F        | Significance<br>F |              |
| Regression            | 1            | 0.5814224         | 0.58142237 | 6.734714 | 0.012969          |              |
| Residual              | 42           | 3.6259503         | 0.08633215 |          |                   |              |
| Total                 | 43           | 4.2073727         |            |          |                   |              |
|                       |              |                   |            |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat     | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | -0.72975     | 0.3558943         | -2.0504599 | 0.046594 | -1.44797          | -0.01152     |
| X Variable 1          | 0.548803     | 0.2114739         | 2.59513282 | 0.012969 | 0.122031          | 0.975575     |

The sign test did not indicate any significant difference between influent and effluent filtered phosphorus concentrations. The ANOVA however indicated a significant regression and coefficients.

# filtered Cu, ug/L

|        | Inlet    | log inlet | Outlet   | log      | % reduc |
|--------|----------|-----------|----------|----------|---------|
|        | conc     | conc      | conc     | outlet   |         |
|        |          |           |          | conc     |         |
| count  | 5        | 5         | 5        | 5        | 5.0     |
| min    | 2        | 0.30103   | 2        | 0.30103  | -100.0  |
| max    | 6        | 0.778151  | 4        | 0.60206  | 50.0    |
| mean   | 3        | 0.431672  | 3        | 0.466891 | -23.3   |
| median | 2        | 0.30103   | 3        | 0.477121 | -50.0   |
| stdev  | 1.732051 | 0.208156  | 0.707107 | 0.107348 | 63.0    |
| COV    | 0.57735  | 0.482208  | 0.235702 | 0.229921 | -2.7    |

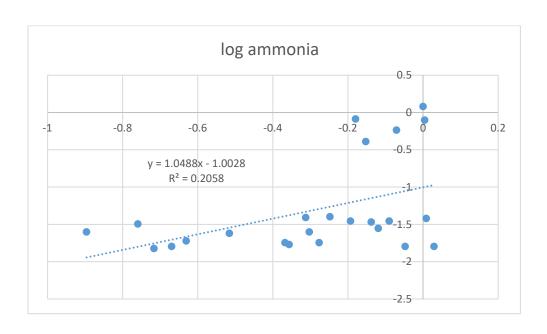



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.272156     |                   |          |          |                   |              |
| R Square              | 0.074069     |                   |          |          |                   |              |
| Adjusted R Square     | -0.23458     |                   |          |          |                   |              |
| Standard Error        | 0.119276     |                   |          |          |                   |              |
| Observations          | 5            |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 0.003414          | 0.003414 | 0.239981 | 0.65780717        |              |
| Residual              | 3            | 0.04268           | 0.014227 |          |                   |              |
| Total                 | 4            | 0.046095          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0.527477     | 0.13469           | 3.916237 | 0.029599 | 0.09883423        | 0.956121     |
| X Variable 1          | -0.14035     | 0.286507          | -0.48988 | 0.657807 | -<br>1.05214534   | 0.771438     |

Regression not significant due to few data with both influent and effluent detectable. The sign test that does consider non-detectable values indicated significant differences (7% influent were non-detected, while 57% of effluent values were non-detected). Therefore, use median effluent concentration (with COV) to represent expected effluent filtered copper concentrations (median effluent Cu = 3  $\mu$ g/L and COV = 0.24).

### filtered Zn, ug/L

|        | Inlet conc | log inlet | Outlet   | log      | % reduc |
|--------|------------|-----------|----------|----------|---------|
|        |            | conc      | conc     | outlet   |         |
|        |            |           |          | conc     |         |
| count  | 14         | 14        | 14       | 14       | 14.0    |
| min    | 4          | 0.60206   | 1        | 0        | -50.0   |
| max    | 27         | 1.431364  | 6        | 0.778151 | 85.2    |
| mean   | 8.07142857 | 0.806133  | 2.75     | 0.371227 | 56.5    |
| median | 5.5        | 0.738561  | 2        | 0.30103  | 66.3    |
| stdev  | 7.10865438 | 0.274259  | 1.672745 | 0.247794 | 33.4    |
| COV    | 0.88071824 | 0.340215  | 0.608271 | 0.667499 | 0.6     |

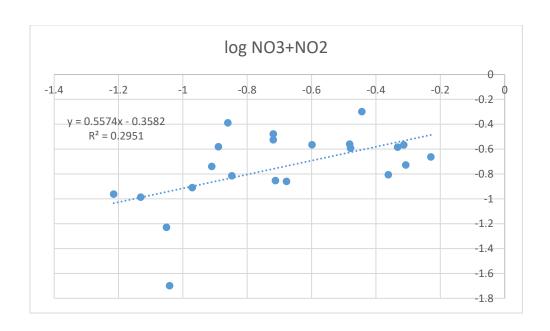



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.898374     |                   |          |          |                   |              |
| R Square              | 0.807075     |                   |          |          |                   |              |
| Adjusted R Square     | 0.730152     |                   |          |          |                   |              |
| Standard Error        | 0.201191     |                   |          |          |                   |              |
| Observations          | 14           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 2.201346          | 2.201346 | 54.38384 | 8.56E-06          |              |
| Residual              | 13           | 0.526213          | 0.040478 |          |                   |              |
| Total                 | 14           | 2.727559          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A     | #N/A              | #N/A         |
| X Variable 1          | 0.467418     | 0.063383          | 7.37454  | 5.39E-06 | 0.330488          | 0.604349     |

Significant regression and slope term (intercept not significant)

### ammonia, mg/L

|        | Inlet    | log inlet | Outlet   | log      | % reduc |
|--------|----------|-----------|----------|----------|---------|
|        | conc     | conc      | conc     | outlet   |         |
|        |          |           |          | conc     |         |
| count  | 24       | 24        | 24       | 24       | 24.0    |
| min    | 0.127    | -0.8962   | 0.015    | -1.82391 | -23.4   |
| max    | 1.07     | 0.029384  | 1.2      | 0.079181 | 98.5    |
| mean   | 0.597792 | -0.29169  | 0.178417 | -1.30875 | 76.1    |
| median | 0.603    | -0.22055  | 0.03     | -1.52385 | 92.7    |
| stdev  | 0.295245 | 0.271521  | 0.328405 | 0.627797 | 36.9    |
| COV    | 0.493892 | -0.93086  | 1.840662 | -0.47969 | 0.5     |

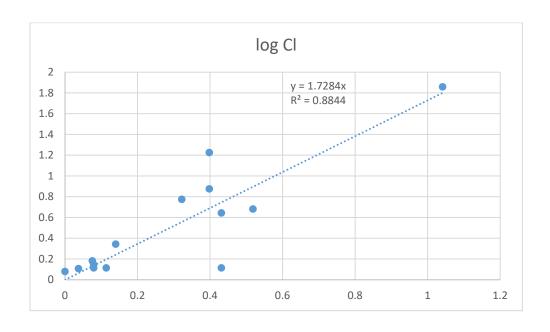



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics | 1            |                   |          |          |                   |              |
| Multiple R            | 0.453607     |                   |          |          |                   |              |
| R Square              | 0.20576      |                   |          |          |                   |              |
| Adjusted R Square     | 0.169658     |                   |          |          |                   |              |
| Standard Error        | 0.572068     |                   |          |          |                   |              |
| Observations          | 24           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 1.865206          | 1.865206 | 5.699422 | 0.025993          |              |
| Residual              | 22           | 7.199771          | 0.327262 |          |                   |              |
| Total                 | 23           | 9.064977          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | -1.00282     | 0.17337           | -5.78428 | 8.08E-06 | -1.36237          | -0.64327     |
| X Variable 1          | 1.048809     | 0.43932           | 2.387346 | 0.025993 | 0.137715          | 1.959903     |

Regression and all equation coefficients significant.

NO3+NO3, mg/L

|        | Inlet    | log inlet | Outlet   | log      | % reduc |
|--------|----------|-----------|----------|----------|---------|
|        | conc     | conc      | conc     | outlet   |         |
|        |          |           |          | conc     |         |
| count  | 22       | 22        | 22       | 22       | 22.0    |
| min    | 0.061    | -1.21467  | 0.02     | -1.69897 | -195.7  |
| max    | 0.59     | -0.22915  | 0.502    | -0.2993  | 78.0    |
| mean   | 0.249227 | -0.69497  | 0.214636 | -0.74556 | -7.9    |
| median | 0.1925   | -0.71558  | 0.202    | -0.69585 | 4.5     |
| stdev  | 0.16051  | 0.295915  | 0.113677 | 0.303602 | 66.9    |
| COV    | 0.644031 | -0.4258   | 0.529627 | -0.40721 | -8.5    |

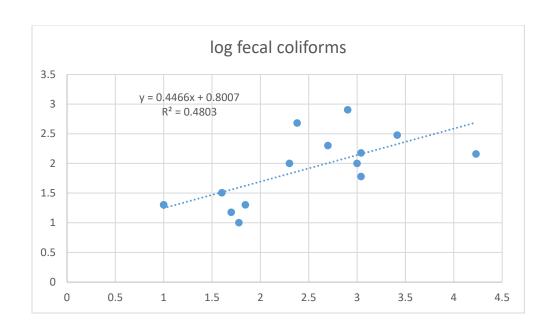



| SUMMARY OUTPUT        | T            |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
| Barrier Chattata      |              |                   |          |          |                   |              |
| Regression Statistics | 5            |                   |          |          |                   |              |
| Multiple R            | 0.543241     |                   |          |          |                   |              |
| R Square              | 0.29511      |                   |          |          |                   |              |
| Adjusted R Square     | 0.259866     |                   |          |          |                   |              |
| Standard Error        | 0.261192     |                   |          |          |                   |              |
| Observations          | 22           |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 0.571234          | 0.571234 | 8.373233 | 0.00898           |              |
| Residual              | 20           | 1.364428          | 0.068221 |          |                   |              |
| Total                 | 21           | 1.935662          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | -0.35822     | 0.14498           | -2.47082 | 0.022596 | -0.66064          | -0.0558      |
| X Variable 1          | 0.557354     | 0.192612          | 2.893654 | 0.00898  | 0.155571          | 0.959136     |

Regression and all equation coefficients significant.

Cl, mg/L

|        | Inlet    | log inlet | Outlet   | log      | % reduc |
|--------|----------|-----------|----------|----------|---------|
|        | conc     | conc      | conc     | outlet   |         |
|        |          |           |          | conc     |         |
| count  | 14       | 14        | 14       | 14       | 14.0    |
| min    | 1        | 0         | 1.2      | 0.079181 | -572.0  |
| max    | 11       | 1.041393  | 72.1     | 1.857935 | 51.9    |
| mean   | 2.511429 | 0.290421  | 8.789286 | 0.518295 | -122.6  |
| median | 1.74     | 0.231049  | 1.86     | 0.262133 | -36.6   |
| stdev  | 2.559399 | 0.279755  | 18.70919 | 0.530936 | 198.6   |
| COV    | 1.019101 | 0.963276  | 2.128636 | 1.024389 | -1.6    |

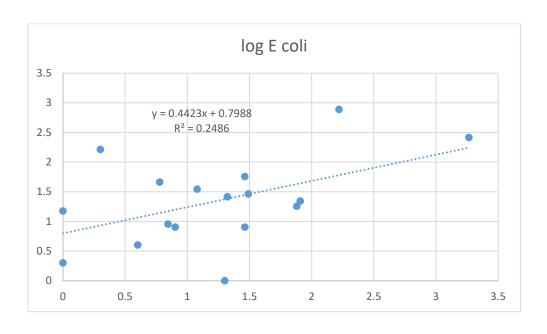



| SUMMARY OUTPUT        |              |                   |          |              |                   |              |
|-----------------------|--------------|-------------------|----------|--------------|-------------------|--------------|
|                       |              |                   |          |              |                   |              |
| Regression Statistics | 1            |                   |          |              |                   |              |
| Multiple R            | 0.940408     |                   |          |              |                   |              |
| R Square              | 0.884368     |                   |          |              |                   |              |
| Adjusted R Square     | 0.807445     |                   |          |              |                   |              |
| Standard Error        | 0.256997     |                   |          |              |                   |              |
| Observations          | 14           |                   |          |              |                   |              |
|                       |              |                   |          |              |                   |              |
| ANOVA                 |              |                   |          |              |                   |              |
|                       | df           | SS                | MS       | F            | Significance<br>F |              |
| Regression            | 1            | 6.566806          | 6.566806 | 99.4256      | 3.69E-07          |              |
| Residual              | 13           | 0.858617          | 0.066047 |              |                   |              |
| Total                 | 14           | 7.425423          |          |              |                   |              |
|                       |              |                   |          |              |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value      | Lower 95%         | Upper<br>95% |
| Intercept             | 0            | #N/A              | #N/A     | #N/A         | #N/A              | #N/A         |
| X Variable 1          | 1.728382     | 0.173337          | 9.971239 | 1.86E-<br>07 | 1.35391           | 2.102853     |

Regression equation and slope term significant. Intercept not significant.

# fecal coliforms, #/100 mL

|        | Inlet    | log inlet | Outlet   | log      | % reduc |
|--------|----------|-----------|----------|----------|---------|
|        | conc     | conc      | conc     | outlet   |         |
|        |          |           |          | conc     |         |
| count  | 15       | 15        | 15       | 15       | 15.0    |
| min    | 10       | 1         | 10       | 1        | -100.0  |
| max    | 17000    | 4.230449  | 800      | 2.90309  | 99.2    |
| mean   | 1652     | 2.395719  | 163.4    | 1.870628 | 34.2    |
| median | 240      | 2.380211  | 100      | 2        | 70.0    |
| stdev  | 4303.187 | 0.912557  | 218.6471 | 0.588069 | 74.7    |
| COV    | 2.604835 | 0.380911  | 1.338109 | 0.31437  | 2.2     |

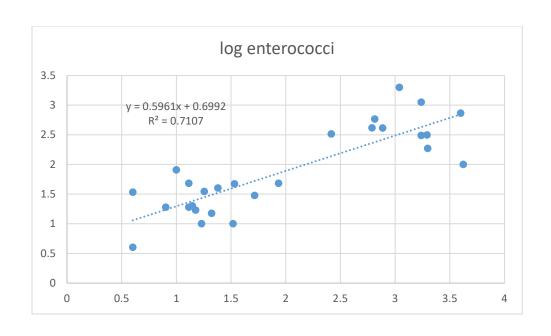



| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics | 1            |                   |          |          |                   |              |
| Multiple R            | 0.693009     |                   |          |          |                   |              |
| R Square              | 0.480261     |                   |          |          |                   |              |
| Adjusted R Square     | 0.440281     |                   |          |          |                   |              |
| Standard Error        | 0.43996      |                   |          |          |                   |              |
| Observations          | 15           |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 2.325208          | 2.325208 | 12.01255 | 0.004179          |              |
| Residual              | 13           | 2.516343          | 0.193565 |          |                   |              |
| Total                 | 14           | 4.841551          |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0.800729     | 0.32893           | 2.434343 | 0.030085 | 0.090119          | 1.511339     |
| X Variable 1          | 0.446588     | 0.128851          | 3.465913 | 0.004179 | 0.168221          | 0.724954     |

Regression and both coefficients significant.

*E coli,* #/100 mL

|        | Inlet    | log inlet | Outlet   | log      | % reduc |
|--------|----------|-----------|----------|----------|---------|
|        | conc     | conc      | conc     | outlet   |         |
|        |          |           |          | conc     |         |
| count  | 17       | 17        | 17       | 17       | 17.0    |
| min    | 1        | 0         | 1        | 0        | -8050.0 |
| max    | 1842     | 3.26529   | 770      | 2.886491 | 95.0    |
| mean   | 137.4118 | 1.224866  | 86.58824 | 1.34055  | -618.4  |
| median | 20       | 1.30103   | 22       | 1.342423 | -23.8   |
| stdev  | 441.281  | 0.827688  | 188.4911 | 0.734334 | 1951.4  |
| COV    | 3.211377 | 0.675738  | 2.176867 | 0.547785 | -3.2    |




| SUMMARY OUTPUT        |              |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.498565     |                   |          |          |                   |              |
| R Square              | 0.248567     |                   |          |          |                   |              |
| Adjusted R Square     | 0.198471     |                   |          |          |                   |              |
| Standard Error        | 0.657435     |                   |          |          |                   |              |
| Observations          | 17           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 2.144618          | 2.144618 | 4.961854 | 0.041645          |              |
| Residual              | 15           | 6.483318          | 0.432221 |          |                   |              |
| Total                 | 16           | 8.627937          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0.798753     | 0.290835          | 2.746412 | 0.014994 | 0.178852          | 1.418653     |
| X Variable 1          | 0.442332     | 0.198576          | 2.227522 | 0.041645 | 0.019078          | 0.865587     |

Regression and both coefficients significant.

### enterococci, #/100 mL

|        | , ,      |           |          |          |         |  |  |
|--------|----------|-----------|----------|----------|---------|--|--|
|        | Inlet    | log inlet | Outlet   | log      | % reduc |  |  |
|        | conc     | conc      | conc     | outlet   |         |  |  |
|        |          |           |          | conc     |         |  |  |
| count  | 27       | 27        | 27       | 27       | 27.0    |  |  |
| min    | 4        | 0.60206   | 4        | 0.60206  | -750.0  |  |  |
| max    | 4200     | 3.623249  | 1986     | 3.297979 | 97.6    |  |  |
| mean   | 716.4444 | 1.991903  | 257.5185 | 1.886577 | -55.1   |  |  |
| median | 34       | 1.531479  | 48       | 1.681241 | 10.6    |  |  |
| stdev  | 1177.336 | 1.010623  | 437.847  | 0.714645 | 210.9   |  |  |
| COV    | 1.643304 | 0.507366  | 1.700255 | 0.378805 | -3.8    |  |  |



| SUMMARY OUTPUT        | 1            |                   |          |          |                   |              |
|-----------------------|--------------|-------------------|----------|----------|-------------------|--------------|
|                       |              |                   |          |          |                   |              |
| Regression Statistics |              |                   |          |          |                   |              |
| Multiple R            | 0.843013     |                   |          |          |                   |              |
| R Square              | 0.710671     |                   |          |          |                   |              |
| Adjusted R Square     | 0.699098     |                   |          |          |                   |              |
| Standard Error        | 0.392015     |                   |          |          |                   |              |
| Observations          | 27           |                   |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
| ANOVA                 |              |                   |          |          |                   |              |
|                       | df           | SS                | MS       | F        | Significance<br>F |              |
| Regression            | 1            | 9.436772          | 9.436772 | 61.40697 | 3.42E-08          |              |
| Residual              | 25           | 3.841898          | 0.153676 |          |                   |              |
| Total                 | 26           | 13.27867          |          |          |                   |              |
|                       |              |                   |          |          |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat   | P-value  | Lower 95%         | Upper<br>95% |
| Intercept             | 0.699158     | 0.169271          | 4.13041  | 0.000354 | 0.350538          | 1.047779     |
| X Variable 1          | 0.596123     | 0.076072          | 7.83626  | 3.42E-08 | 0.439449          | 0.752797     |

Regression and both coefficients significant.

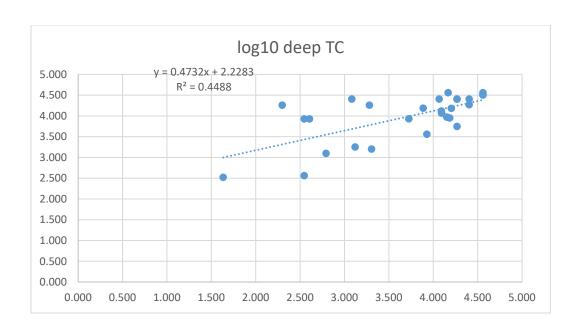
### Appendix D1. Filterable Pollutant Retention in Soils beneath Millburn, NJ, Dry Wells

### **Summary of Mann-Whitney Test for Paired Data**

| Constituent                             | Significant (at p = 0.05)        | 135 Shallow vs. | 18 Shallow vs. | 139 Shallow vs. |
|-----------------------------------------|----------------------------------|-----------------|----------------|-----------------|
|                                         |                                  | 135 Deep        | 18 Deep        | 139 Deep        |
| Total Coliforms                         | p-value                          | 0.4             | 0.16           | 0.72            |
|                                         | Significant Difference Observed? | No              | No             | No              |
| E. coli                                 | p-value                          | 0.6             | 0.69           | 1               |
|                                         | Significant Difference Observed? | No              | No             | No              |
| Total Nitrogen as N                     | p-value                          | 0.5             | 0.42           | 0.64            |
|                                         | Significant Difference Observed? | No              | No             | No              |
| NO <sub>3</sub> plus NO <sub>2</sub> -N | p-value                          | 0.24            | 0.15           | 0.77            |
|                                         | Significant Difference Observed? | No              | No             | No              |
| Total Phosphorus as                     | p-value                          | 0.94            | 0.1            | 0.27            |
| P                                       | Significant Difference Observed? | No              | No             | No              |
| COD                                     | p-value                          | 0.14            | 0.4            | 0.83            |
|                                         | Significant Difference Observed? | No              | No             | No              |
| Lead                                    | p-value                          | > 0.06          | 0.18           | > 0.06          |
|                                         | Significant Difference Observed? | No              | No             | No              |
| Copper                                  | p-value                          | all ND          | >0.06          | all ND          |
|                                         | Significant Difference Observed? | all ND          | No             | all ND          |
| Zinc                                    | p-value                          | 0.45            | >0.06          | >0.06           |
|                                         | Significant Difference Observed? | No              | No             | No              |

None of these initial analyses using the non-parametric Mann-Whitney test for paired data indicated any significant differences between the shallow and deep sample concentrations.

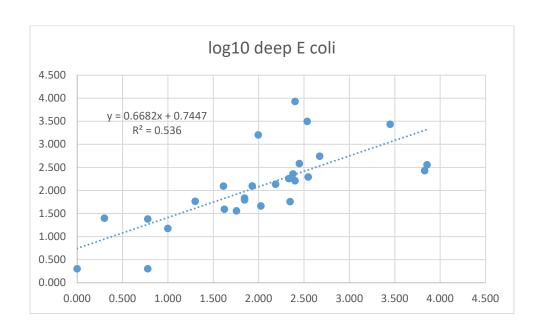
### **Detected pesticides**


| μg/L            | 135 Shallow | 135 Deep |
|-----------------|-------------|----------|
| alpha-Chlordane | 0.030       | 0.030    |
| gamma-Chlordane | 0.020       | 0.024    |
| Endosulfan-I    | 0.032       | 0.034    |

There were no obvious differences in the shallow and deep concentrations for these few pesticide analyses.

The following regressions indicate significant differences and relationships between shallow and deep concentrations for some pollutants. As always, the predicted deep concentrations still have a lot of variability so the effluent COV value should be used with a Monte Carlo process to incorporate the uncertainty.

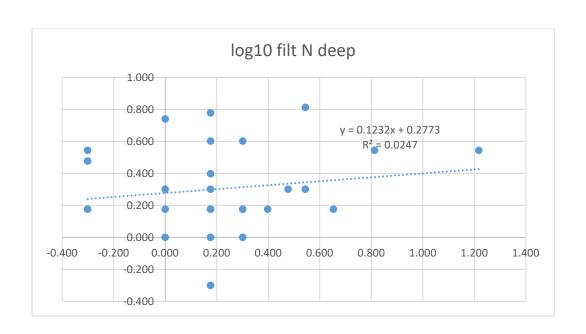
**Total Coliforms** 


|        | TC Shallow,<br>#/100mL | log10 shallow TC | TC Deep,<br>#/100mL | log10 deep<br>TC | % TC<br>reduction |
|--------|------------------------|------------------|---------------------|------------------|-------------------|
| count  | 28                     | 28               | 28                  | 28               | 28                |
| min    | 43                     | 1.633            | 332                 | 2.521            | -9,019            |
| max    | 36,294                 | 4.560            | 36,294              | 4.560            | 70                |
| mean   | 11,790                 | 4.518            | 14,894              | 4.798            | -592              |
| median | 12,012                 | 4.079            | 14,148              | 4.150            | -21               |
| stdev  | 11581.95368            | 0.807            | 11309.58224         | 0.570            | 1777.729021       |
| COV    | 0.98                   | 0.18             | 0.76                | 0.12             | -3.00             |



| total coliforms sign regre | ession           |                   |                 |                 |                    |                 |
|----------------------------|------------------|-------------------|-----------------|-----------------|--------------------|-----------------|
| SUMMARY OUTPUT             |                  |                   |                 |                 |                    |                 |
|                            |                  |                   |                 |                 |                    |                 |
| Regression Statistics      |                  |                   |                 |                 |                    |                 |
| Multiple R                 | 0.66989<br>0534  |                   |                 |                 |                    |                 |
| R Square                   | 0.44875<br>3328  |                   |                 |                 |                    |                 |
| Adjusted R Square          | 0.42755<br>1533  |                   |                 |                 |                    |                 |
| Standard Error             | 0.43118<br>4769  |                   |                 |                 |                    |                 |
| Observations               | 28               |                   |                 |                 |                    |                 |
| ANOVA                      |                  |                   |                 |                 |                    |                 |
|                            | df               | SS                | MS              | F               | Significan<br>ce F |                 |
| Regression                 | 1                | 3.9351552<br>8    | 3.935155<br>28  | 21.16581<br>764 | 9.64614E<br>-05    |                 |
| Residual                   | 26               | 4.8339279<br>41   | 0.185920<br>305 |                 |                    |                 |
| Total                      | 27               | 8.7690832<br>2    |                 |                 |                    |                 |
|                            | Coefficie<br>nts | Standard<br>Error | t Stat          | P-value         | Lower<br>95%       | Upper<br>95%    |
| Intercept                  | 2.22828<br>1272  | 0.3870608<br>79   | 5.756927<br>126 | 4.6191E-<br>06  | 1.432666<br>241    | 3.023896<br>303 |
| X Variable 1               | 0.47319<br>2829  | 0.1028538<br>68   | 4.600632<br>308 | 9.64614E-<br>05 | 0.261773<br>675    | 0.684611<br>984 |

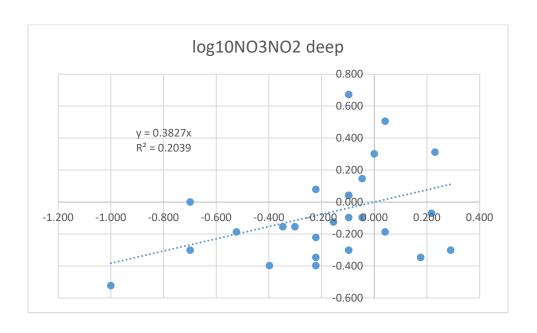
Significant regression equation and coefficients.


|        | E coli Shallow,<br>#/100mL | log10 shallow<br>Ecoli | E coli Deep,<br>#/100mL | log10<br>deep E<br>coli | % E coli<br>reduction |
|--------|----------------------------|------------------------|-------------------------|-------------------------|-----------------------|
| count  | 27                         | 27                     | 27                      | 27                      | 27                    |
| min    | 1                          | 0.000                  | 2                       | 0.301                   | -3,261                |
| max    | 7,183                      | 3.856                  | 8,469                   | 3.928                   | 96                    |
| mean   | 721                        | 2.899                  | 681                     | 2.975                   | -253                  |
| median | 106                        | 2.025                  | 125                     | 2.097                   | 4                     |
| stdev  | 1870.58854                 | 0.933                  | 1741.494349             | 0.852                   | 713.5819014           |
| COV    | 2.60                       | 0.32                   | 2.56                    | 0.29                    | -2.82                 |



| SUMMARY OUTPUT        |           |            |         |           |            |             |
|-----------------------|-----------|------------|---------|-----------|------------|-------------|
|                       |           |            |         |           |            |             |
| Regression Statistics |           |            |         |           |            |             |
| Multiple R            | 0.73212   |            |         |           |            |             |
|                       | 408       |            |         |           |            |             |
| R Square              | 0.53600   |            |         |           |            |             |
|                       | 5668      |            |         |           |            |             |
| Adjusted R Square     | 0.51744   |            |         |           |            |             |
|                       | 5895      |            |         |           |            |             |
| Standard Error        | 0.59153   |            |         |           |            |             |
|                       | 6026      |            |         |           |            |             |
| Observations          | 27        |            |         |           |            |             |
| ANOVA                 |           |            |         |           |            |             |
|                       | df        | SS         | MS      | F         | Significan |             |
|                       | u)        |            | IVIS    |           | ce F       |             |
| Regression            | 1         | 10.1055304 | 10.1055 | 28.879968 | 1.42048E-  |             |
|                       |           | 4          | 304     | 54        | 05         |             |
| Residual              | 25        | 8.74787175 | 0.34991 |           |            |             |
|                       |           | 3          | 487     |           |            |             |
| Total                 | 26        | 18.8534022 |         |           |            |             |
|                       |           |            |         |           |            |             |
| _                     | Coefficie | Standard   | t Stat  | P-value   | Lower      | Upper 95%   |
|                       | nts       | Error      |         |           | 95%        |             |
| Intercept             | 0.74468   | 0.27425646 | 2.71527 | 0.0118319 | 0.179839   | 1.309523461 |
|                       | 1701      | 4          | 493     | 39        | 941        |             |
| X Variable 1          | 0.66824   | 0.12434799 | 5.37400 | 1.42048E- | 0.412147   | 0.924346669 |
|                       | 7184      | 3          | 861     | 05        | 699        |             |

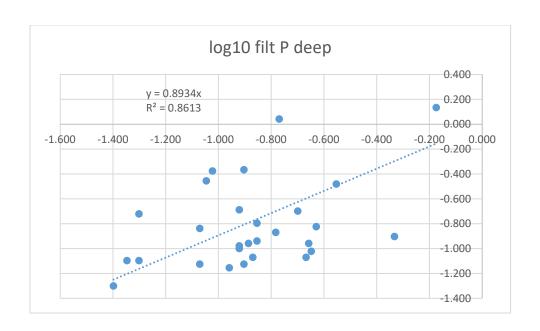
Significant regression and coefficients.


|        | filtered N,<br>mg/L shallow | log10 filtN shallow | filtered N,<br>mg/L deep | log10 filt N deep | % filt N<br>reduction |
|--------|-----------------------------|---------------------|--------------------------|-------------------|-----------------------|
| count  | 28                          | 28                  | 28                       | 28                | 28                    |
| min    | 1                           | -0.301              | 0.500                    | -0.301            | -600                  |
| max    | 17                          | 1.217               | 6.500                    | 0.813             | 79                    |
| mean   | 3                           | 1.180               | 3.310                    | 1.260             | -79                   |
| median | 2                           | 0.176               | 1.750                    | 0.239             | 0                     |
| stdev  | 3.061268109                 | 0.342               | 1.585316219              | 0.269             | 180.8053831           |
| COV    | 0.93                        | 0.29                | 0.48                     | 0.21              | -2.30                 |



| SUMMARY OUTPUT        |                  |                   |             |             |                   |             |
|-----------------------|------------------|-------------------|-------------|-------------|-------------------|-------------|
|                       |                  |                   |             |             |                   |             |
| Regression Statistics | •                |                   |             |             |                   |             |
| Multiple R            | 0.157061422      |                   |             |             |                   |             |
| R Square              | 0.02466829       |                   |             |             |                   |             |
| Adjusted R Square     | -<br>0.012844468 |                   |             |             |                   |             |
| Standard Error        | 0.270225874      |                   |             |             |                   |             |
| Observations          | 28               |                   |             |             |                   |             |
|                       |                  |                   |             |             |                   |             |
| ANOVA                 |                  |                   |             |             |                   |             |
|                       | df               | SS                | MS          | F           | Significance<br>F |             |
| Regression            | 1                | 0.048019089       | 0.048019089 | 0.657597354 | 0.424770732       |             |
| Residual              | 26               | 1.898572602       | 0.073022023 |             |                   |             |
| Total                 | 27               | 1.946591691       |             |             |                   |             |
|                       |                  |                   |             |             |                   |             |
|                       | Coefficients     | Standard<br>Error | t Stat      | P-value     | Lower 95%         | Upper 95%   |
| Intercept             | 0.27725496       | 0.061243344       | 4.527103583 | 0.00011712  | 0.151367464       | 0.403142456 |
| X Variable 1          | 0.123175686      | 0.151895519       | 0.810923766 | 0.424770732 | -                 | 0.435401396 |
|                       |                  |                   |             |             | 0.189050024       |             |

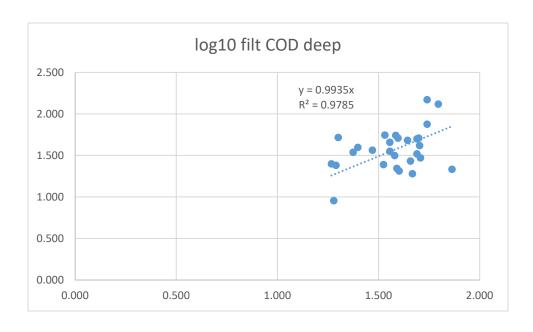
Regression and no terms significant.


|        | NO3+NO2<br>shallow mg/L | log10<br>NO3NO2<br>shallow | NO3+NO2<br>deep mg/L | log10NO3NO2<br>deep | % NO3+NO2<br>reduction |
|--------|-------------------------|----------------------------|----------------------|---------------------|------------------------|
| count  | 26                      | 26                         | 26                   | 26                  | 26                     |
| min    | 0.10                    | -1.000                     | 0                    | -0.523              | -488                   |
| max    | 1.95                    | 0.290                      | 5                    | 0.672               | 74                     |
| mean   | 1.74                    | 0.793                      | 2                    | 0.885               | -60                    |
| median | 0.80                    | -0.097                     | 1                    | -0.140              | -29                    |
| stdev  | 0.472656161             | 0.303                      | 0.980810105          | 0.287               | 134.645574             |
| COV    | 0.27                    | 0.38                       | 0.49                 | 0.32                | -2.23                  |



| SUMMARY OUTPUT        |           |          |          |           |                   |           |
|-----------------------|-----------|----------|----------|-----------|-------------------|-----------|
|                       |           |          |          |           |                   |           |
| Regression Statistics |           |          |          |           |                   |           |
| Multiple R            | 0.451511  |          |          |           |                   |           |
|                       | 073       |          |          |           |                   |           |
| R Square              | 0.203862  |          |          |           |                   |           |
|                       | 249       |          |          |           |                   |           |
| Adjusted R Square     | 0.163862  |          |          |           |                   |           |
|                       | 249       |          |          |           |                   |           |
| Standard Error        | 0.266775  |          |          |           |                   |           |
|                       | 734       |          |          |           |                   |           |
| Observations          | 26        |          |          |           |                   |           |
| ANOVA                 |           |          |          |           |                   |           |
|                       | df        | SS       | MS       | F         | Significance<br>F |           |
| Regression            | 1         | 0.455597 | 0.455597 | 6.4016009 | 0.01837588        |           |
|                       |           | 413      | 413      | 94        | 3                 |           |
| Residual              | 25        | 1.779232 | 0.071169 |           |                   |           |
|                       |           | 311      | 292      |           |                   |           |
| Total                 | 26        | 2.234829 |          |           |                   |           |
|                       |           | 724      |          |           |                   |           |
|                       |           |          |          |           |                   |           |
|                       | Coefficie | Standard | t Stat   | P-value   | Lower 95%         | Upper 95% |
|                       | nts       | Error    |          |           |                   |           |
| Intercept             | 0         | #N/A     | #N/A     | #N/A      | #N/A              | #N/A      |
| X Variable 1          | 0.382701  | 0.151257 | 2.530138 | 0.0180745 | 0.07118154        | 0.6942207 |
|                       | 167       | 001      | 533      | 51        | 2                 | 92        |

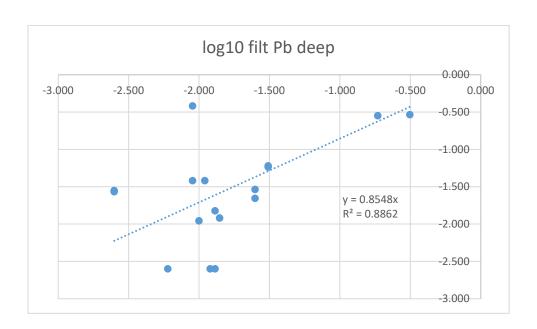
Significant regression and slope term (intercept not significant).


|        | filtered P    | log10 filt P | filtered P, | log10 filt P | % filt P    |
|--------|---------------|--------------|-------------|--------------|-------------|
|        | shallow, mg/L | shallow      | deep, mg/L  | deep         | reduction   |
|        |               |              |             |              |             |
| count  | 28            | 28           | 28          | 28           | 28          |
| min    | 0.040         | -1.398       | 0           | -1.301       | -547        |
| max    | 0.670         | -0.174       | 1           | 0.134        | 73          |
| mean   | 1.126         | 0.122        | 1           | 0.181        | -56         |
| median | 0.128         | -0.895       | 0           | -0.921       | 6           |
| stdev  | 0.131792184   | 0.282        | 0.301941414 | 0.350        | 148.1764039 |
| COV    | 0.12          | 2.31         | 0.25        | 1.93         | -2.64       |



| SUMMARY OUTPUT        |             |           |           |           |                    |          |
|-----------------------|-------------|-----------|-----------|-----------|--------------------|----------|
|                       |             |           |           |           |                    |          |
| Regression Statistics |             |           |           |           |                    |          |
| Multiple R            | 0.9280770   |           |           |           |                    |          |
|                       | 99          |           |           |           |                    |          |
| R Square              | 0.8613271   |           |           |           |                    |          |
|                       | 02          |           |           |           |                    |          |
| Adjusted R Square     | 0.8242900   |           |           |           |                    |          |
|                       | 65          |           |           |           |                    |          |
| Standard Error        | 0.3344961   |           |           |           |                    |          |
|                       | 73          |           |           |           |                    |          |
| Observations          | 28          |           |           |           |                    |          |
| ANOVA                 |             |           |           |           |                    |          |
| ANOVA                 | 16          | 66        | 1.10      | _         | c: :c:             |          |
|                       | df          | SS        | MS        | F         | Significanc<br>e F |          |
| Regression            | 1           | 18.763877 | 18.763877 | 167.70278 | 7.60482E-          |          |
|                       |             | 58        | 58        | 84        | 13                 |          |
| Residual              | 27          | 3.0209676 | 0.1118876 |           |                    |          |
|                       |             | 27        | 9         |           |                    |          |
| Total                 | 28          | 21.784845 |           |           |                    |          |
|                       |             | 21        |           |           |                    |          |
|                       |             |           |           |           |                    |          |
|                       | Coefficient | Standard  | t Stat    | P-value   | Lower 95%          | Upper    |
|                       | S           | Error     |           |           |                    | 95%      |
| Intercept             | 0           | #N/A      | #N/A      | #N/A      | #N/A               | #N/A     |
| X Variable 1          | 0.8933656   | 0.0689857 | 12.950011 | 4.25755E- | 0.7518186          | 1.034912 |
|                       | 63          | 06        | 13        | 13        | 86                 | 64       |

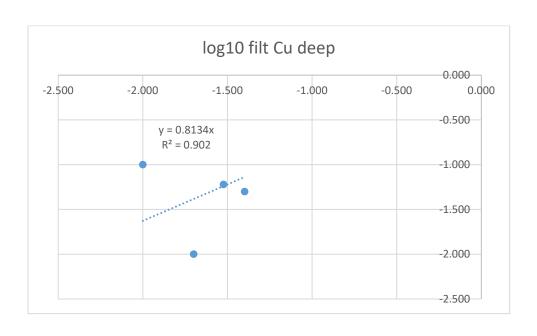
Significant regression and slope term (intercept not significant).


|        | filtered COD,<br>shallow, mg/L | log10 filt<br>COD shallow | filtered COD,<br>deep, mg/L | log10 filt COD<br>deep | % filt COD reduction |
|--------|--------------------------------|---------------------------|-----------------------------|------------------------|----------------------|
| count  | 28                             | 28                        | 28                          | 28                     | 28                   |
| min    | 19                             | 1.267                     | 9                           | 0.954                  | -169                 |
| max    | 73                             | 1.863                     | 148                         | 2.170                  | 71                   |
| mean   | 40                             | 2.486                     | 44                          | 2.482                  | -12                  |
| median | 39                             | 1.594                     | 36                          | 1.556                  | -6                   |
| stdev  | 13.70208486                    | 0.162                     | 30.65363767                 | 0.250                  | 60.52479729          |
| COV    | 0.35                           | 0.07                      | 0.70                        | 0.10                   | -4.96                |



| SUMMARY OUTPUT        |            |          |           |             |                    |          |
|-----------------------|------------|----------|-----------|-------------|--------------------|----------|
|                       |            |          |           |             |                    |          |
| Regression Statistics | -          |          |           |             |                    |          |
| Multiple R            | 0.989184   |          |           |             |                    |          |
|                       | 4          |          |           |             |                    |          |
| R Square              | 0.978485   |          |           |             |                    |          |
|                       | 778        |          |           |             |                    |          |
| Adjusted R Square     | 0.941448   |          |           |             |                    |          |
|                       | 741        |          |           |             |                    |          |
| Standard Error        | 0.237497   |          |           |             |                    |          |
|                       | 629        |          |           |             |                    |          |
| Observations          | 28         |          |           |             |                    |          |
| ANOVA                 |            |          |           |             |                    |          |
|                       | df         | SS       | MS        | F           | Significanc<br>e F |          |
| Regression            | 1          | 69.26457 | 69.264577 | 1227.98378  | 2.04814E-          |          |
| J                     |            | 752      | 52        | 9           | 23                 |          |
| Residual              | 27         | 1.522938 | 0.0564051 |             |                    |          |
|                       |            | 339      | 24        |             |                    |          |
| Total                 | 28         | 70.78751 |           |             |                    |          |
|                       |            | 586      |           |             |                    |          |
|                       |            |          |           |             |                    |          |
|                       | Coefficien | Standard | t Stat    | P-value     | Lower              | Upper    |
|                       | ts         | Error    |           |             | 95%                | 95%      |
| Intercept             | 0          | #N/A     | #N/A      | #N/A        | #N/A               | #N/A     |
| X Variable 1          | 0.993481   | 0.028350 | 35.042599 | 4.76901E-24 | 0.9353103          | 1.051651 |
|                       | 105        | 668      | 64        |             | 4                  | 871      |

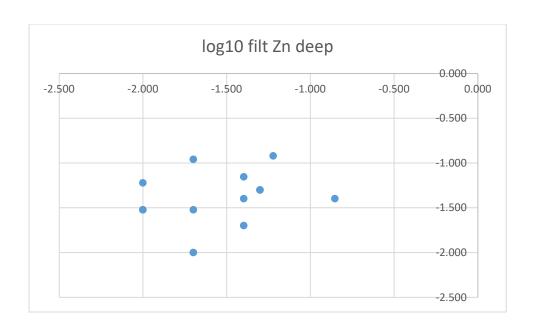
Significant regression and slope term (intercept not significant), but slope term is 0.99 indicating only a 1% reduction! Therefore, ignore the regression and y = x.


|        | filtered Pb,  | log10 filt Pb | filtered Pb, | log10 filt Pb | % filt Pb   |
|--------|---------------|---------------|--------------|---------------|-------------|
|        | shallow, mg/L | shallow       | deep, mg/L   | deep          | reduction   |
|        |               |               |              |               |             |
| count  | 17            | 17            | 17           | 17            | 17          |
| min    | 0.003         | -2.602        | 0            | -2.602        | -4,133      |
| max    | 0.314         | -0.503        | 0            | -0.419        | 81          |
| mean   | 0.984         | -0.749        | 1            | -0.535        | -373        |
| median | 0.013         | -1.886        | 0            | -1.553        | -16         |
| stdev  | 0.081962453   | 0.545         | 0.118117908  | 0.673         | 1019.403612 |
| COV    | 0.08          | -0.73         | 0.12         | -1.26         | -2.74       |



| SUMMARY OUTPUT        |              |                   |             |             |                   |             |
|-----------------------|--------------|-------------------|-------------|-------------|-------------------|-------------|
| Regression Statistics |              |                   |             |             |                   |             |
| Multiple R            | 0.941390397  |                   |             |             |                   |             |
| R Square              | 0.886215879  |                   |             |             |                   |             |
| Adjusted R Square     | 0.823715879  |                   |             |             |                   |             |
| Standard Error        | 0.590124621  |                   |             |             |                   |             |
| Observations          | 17           |                   |             |             |                   |             |
|                       |              |                   |             |             |                   |             |
| ANOVA                 |              |                   |             |             |                   |             |
|                       | df           | SS                | MS          | F           | Significance<br>F |             |
| Regression            | 1            | 43.39756081       | 43.39756081 | 124.6171606 | 1.15334E-08       |             |
| Residual              | 16           | 5.571953091       | 0.348247068 |             |                   |             |
| Total                 | 17           | 48.9695139        |             |             |                   |             |
|                       | Coefficients | Standard<br>Error | t Stat      | P-value     | Lower 95%         | Upper 95%   |
| Intercept             | 0            | #N/A              | #N/A        | #N/A        | #N/A              | #N/A        |
| X Variable 1          | 0.854771496  | 0.076570433       | 11.16320566 | 5.82012E-09 | 0.692449428       | 1.017093563 |

Significant regression and slope term (intercept not significant).


|        | filtered Cu,<br>shallow,<br>mg/L | log10 filt Cu<br>shallow | filtered Cu,<br>deep, mg/L | log10 filt Cu<br>deep | % filt Cu<br>reduction |
|--------|----------------------------------|--------------------------|----------------------------|-----------------------|------------------------|
| count  | 4                                | 4                        | 4                          | 4                     | 4                      |
| min    | 0.010                            | -2.000                   | 0                          | -2.000                | -900                   |
| max    | 0.040                            | -1.398                   | 0                          | -1.000                | 50                     |
| mean   | 0.820                            | -0.524                   | 1                          | -0.305                | -194                   |
| median | 0.025                            | -1.611                   | 0                          | -1.261                | -63                    |
| stdev  | 0.012909944                      | 0.261                    | 0.036968455                | 0.432                 | 441.7649262            |
| COV    | 0.02                             | -0.50                    | 0.04                       | -1.42                 | -2.27                  |



| SUMMARY OUTPUT        |            |          |           |            |             |           |
|-----------------------|------------|----------|-----------|------------|-------------|-----------|
|                       |            |          |           |            |             |           |
| Regression Statistics |            |          |           |            |             |           |
| Multiple R            | 0.949746   |          |           |            |             |           |
|                       | 583        |          |           |            |             |           |
| R Square              | 0.902018   |          |           |            |             |           |
|                       | 573        |          |           |            |             |           |
| Adjusted R Square     | 0.568685   |          |           |            |             |           |
|                       | 239        |          |           |            |             |           |
| Standard Error        | 0.517054   |          |           |            |             |           |
|                       | 519        |          |           |            |             |           |
| Observations          | 4          |          |           |            |             |           |
|                       |            |          |           |            |             |           |
| ANOVA                 |            |          |           |            |             |           |
|                       | df         | SS       | MS        | F          | Significanc |           |
|                       |            |          |           |            | e F         |           |
| Regression            | 1          | 7.383557 | 7.3835572 | 27.6180475 | 0.0343532   |           |
|                       |            | 29       | 9         | 3          | 72          |           |
| Residual              | 3          | 0.802036 | 0.2673453 |            |             |           |
|                       |            | 127      | 76        |            |             |           |
| Total                 | 4          | 8.185593 |           |            |             |           |
|                       |            | 417      |           |            |             |           |
|                       |            |          |           |            |             |           |
|                       | Coefficien | Standard | t Stat    | P-value    | Lower 95%   | Upper 95% |
|                       | ts         | Error    |           |            |             |           |
| Intercept             | 0          | #N/A     | #N/A      | #N/A       | #N/A        | #N/A      |
| X Variable 1          | 0.813397   | 0.154776 | 5.2552875 | 0.01342088 | 0.3208280   | 1.3059667 |
|                       | 381        | 95       | 78        | 6          | 5           | 13        |

Regression and slope term both significant (intercept not significant), but only 4 pairs of detected data, so uncertain how consistent this regression is.

|        | filtered Zn,  | log10 filt Zn | filtered Zn, | log10 filt Zn | % filt Zn   |
|--------|---------------|---------------|--------------|---------------|-------------|
|        | shallow, mg/L | shallow       | deep, mg/L   | deep          | reduction   |
|        |               |               |              |               |             |
| count  | 13            | 13            | 13           | 13            | 13          |
| min    | 0.010         | -2.000        | 0.010        | -2.000        | -500        |
| max    | 0.140         | -0.854        | 0.120        | -0.921        | 71          |
| mean   | 0.965         | -0.498        | 0.976        | -0.352        | -99         |
| median | 0.040         | -1.398        | 0.040        | -1.398        | -50         |
| stdev  | 0.034751868   | 0.348         | 0.032777416  | 0.292         | 184.6590548 |
| COV    | 0.04          | -0.70         | 0.03         | -0.83         | -1.86       |



| SUMMARY OUTPUT        |              |                   |             |             |                   |              |
|-----------------------|--------------|-------------------|-------------|-------------|-------------------|--------------|
| Regression Statistics |              |                   |             |             |                   |              |
|                       | 0.219786978  |                   |             |             |                   |              |
| Multiple R            |              |                   |             |             |                   |              |
| R Square              | 0.048306316  |                   |             |             |                   |              |
| Adjusted R Square     | -            |                   |             |             |                   |              |
|                       | 0.038211292  |                   |             |             |                   |              |
| Standard Error        | 0.297731129  |                   |             |             |                   |              |
| Observations          | 13           |                   |             |             |                   |              |
| ANIOVA                |              |                   |             |             |                   |              |
| ANOVA                 |              |                   |             |             |                   |              |
|                       | df           | SS                | MS          | F           | Significance<br>F |              |
| Regression            | 1            | 0.04949347        | 0.04949347  | 0.558340863 | 0.470601          |              |
| Residual              | 11           | 0.975082074       | 0.088643825 |             |                   |              |
| Total                 | 12           | 1.024575544       |             |             |                   |              |
|                       |              |                   |             |             |                   |              |
|                       | Coefficients | Standard<br>Error | t Stat      | P-value     | Lower 95%         | Upper<br>95% |
| Intercept             | -            | 0.387749835       | -           | 0.016510727 | -1.94894          | -0.24207     |
|                       | 1.095505185  |                   | 2.825288591 |             |                   |              |
| X Variable 1          | 0.184297952  | 0.24664414        | 0.747222098 | 0.47060086  | -0.35856          | 0.727158     |

Regression equation and coefficients are not significant.