A REVIEW OF FATE, TREATABILITY AND ANALYSES OF EMERGING CONTAMINANTS IN WET WEATHER FLOWS

by

VIJAY KUMAR EPPAKAYALA

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil, Construction and Environmental Engineering in the Graduate School of The University of Alabama

TUSCALOOSA, ALABAMA

2008

Copyright Vijay Kumar Eppakayala 2008 ALL RIGHTS RESERVED Submitted by Vijay Kumar Eppakayala in partial fulfillment of the requirements for the degree of Master of Science specializing in Environmental Engineering.

Accepted on behalf of the faculty of the Graduate School by the thesis committee:

S. Rocky Durrans, Ph.D.

Shirley E. Clark, Ph.D.

Robert E. Pitt, Ph.D. Chairperson

Kenneth J. Fridley, Ph.D. Department Chairperson

Date

David A. Francko, Ph.D. Dean of the Graduate School

Date

LIST OF ABBREVATIONS AND SYMBOLS

CSOs	Combined Sewer Overflows
C.I.	Confidence interval
ECs	Emerging Contaminants
ECD	Electron Capture Detector
EPA	Environmental Protection Agency
ESI	Electron Spray Ionization
GC	Gas chromatography
gm	Gram
Н	Henry's law constant
HPLC	High performance Liquid Chromatography
K _{OC}	Soil-organic partition coefficient
K _{OW}	Octanol-water partition coefficient
kg	Kilogram
L	Liter
LOD	Limit of Detection
LOQ	Limit of Quantification
Max	Maximum
Min	Minimum
mL	Milli liter
MS	Mass spectrophotometer

- ng Nanogram
- OC Organic content
- PCPs Personal Care Products
- PPCPs Pharmaceuticals and Personal Care Products
- SIM Selective Ion Monitoring
- SPE Solid Phase Extraction
- SS Suspended solids
- SSOs Separate Sewer Overflows
- STP Sewage Treatment Plant
- WWFs Wet Weather Flows
- μg Microgram
- μL Micro liter
- % Percent
- < Less than
- > Greater than

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude and heartfelt thanks to my advisor, Dr. Robert E. Pitt, for his inspiring guidance throughout the progress of this thesis work. I want to convey my thanks to the committee members: Dr. S. Rocky Durrans, and Dr. Shirley E. Clark. I would also like to thank U.S. Environmental Protection Agency for providing the financial assistance. I am thankful to my fellow research mates and friends Jejal, Humbertho, Sindhuri, Noboru, and Celina for their continuous encouragement.

Finally, I would like to express my thanks to my parents, Balaiah and Sujatha, and my brother Anil for their unbounded patience, co-operation and moral support during the entire period of my research work.

CONTENTS

LIST OF ABBREVIATIONS AND SYMBOLS	iii
ACKNOWLEDGEMENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	xviii
ABSTRACT	xxvii
CHAPTERS:	
I INTRODUCTION	1
II OCCURRENCES OF EMERGING CONTAMINANTS	
2.1 Pharmaceuticals and personal care products	
2.2 Veterinary Pharmaceuticals	7
2.3 Pesticides	7
III DETECTION of EMERGING CONTAMINANTS	9
3.1 Sample Extraction and Concentration	9
3.2 Analytical Methods for Detection of PPCPs	
3.3 Detection of Pesticides (EPA Method 508)	16
IV TREATABILITY OF EMERGING CONTAMINANTS	
4.1 Pharmaceuticals and personal care products	
4.2 Pesticides	
V FATE OF EMERGING CONTAMINANTS IN SURFACE WATERS	

5.1 Fugacity Approach for Predicting the Partitioning of PPCPs and Pesticides with Different Phases	. 29
5.2 Studying the Effects of Environmental Factors on PPCP and Pesticide Associations with different Phases using Fugacity Calculations	. 35
VI FATE OF EMERGING CONTAMINANTS IN THE VADOSE ZONE	. 42
6.1 An Overview on SESOIL	. 42
6.2 Modeling Capabilities	. 43
6.3 Methodology	. 43
6.4 Fate of Pharmaceuticals and Personal Care Products in Ground waters	. 45
VII CONCLUSIONS	. 50
REFERENCES	. 53
APPENDICES:	
A PROPERTIES AND FATE MODELING OF PPCPs	. 58
B PROPERTIES AND FATE MODELING OF PESTICIDES	. 92
C VADOSE ZONE MODELING OF PPCPs	150

LIST OF TABLES

1.1 Observed Concentrations of Pharmaceuticals in different waters based on Individual study
2.2 Veterinary pharmaceuticals and their uses
3.1 Analytical Methods and Extraction Recoveries of pharmaceuticals and personal care products
3.2 Single laboratory Accuracy, Precision, Method Detection Limits (MDLs) for Analytes from Reagent Water (NATIONAL EXPOSURE RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY, CINCINNATI, OHIO, 1995)
4.1 Removal rates of pharmaceuticals and PCPs with respect to different treatment processes
5.1 Level 1 Fugacity Parameters for Emerging Contaminants (Mackay Method)
5.2 Physical and Chemical Properties of PPCPs examined in the study
5.3 Physical and Chemical Properties of PPCPs examined in the study
5.4 Partition of PPCPs into different phases
5.5 Partition of pesticides into different phases
$5.6\ 2^3$ factorial design showing Experimental Conditions for 8 runs (Box et al 1978) 36
5.7 2 ³ Full Factorial Design variable data for PPCPs
5.8 Model Predicted Portioning of Nystatin with 2 ³ Factorial Design Variables
5.9 Calculated Effects of Factors and their Interactions on the Associations of Nystatin with Different Media
5.10 Model Predicted Portioning of Chloroneb with 2 ³ Factorial Design Variables 39
5.11 Calculated Effects of Factors and their Interactions on the Associations of Chloroneb with Different Media

6.1 High and low values of controlling factors (Mikula et al 2005)	46
6.2 Retardation factors for the PPCPs in saturated zone	48
A.1 Model Predicted Portioning of Nystatin with 2 ³ Factorial Design Variables	58
A.2 Calculated Effects of Factors and their Interactions on the Associations of Nystatin with Different Media	58
A.3 Model Predicted Portioning of Dexamethasone with 2 ³ Factorial Design Variables	60
A.4 Calculated Effects of Factors and their Interactions on the Associations of Dexamethasone with Different Media	60
A.5 Model Predicted Portioning of Methoprene with 2 ³ Factorial Design Variables	62
A.6 Calculated Effects of Factors and their Interactions on the Associations of Methoprene with Different Media	62
A.7 Model Predicted Portioning of Prednisone with 2 ³ Factorial Design Variables	64
A.8 Calculated Effects of Factors and their Interactions on the Associations of Predniso with Different Media	one 64
A.9 Model Predicted Portioning of Metronidazole with 2 ³ Factorial Design Variables	66
A.10 Calculated Effects of Factors and their Interactions on the Associations of Metronidazole with Different Media	66
A.11 Model Predicted Portioning of Clindamycin with 2 ³ Factorial Design Variables	68
A.12 Calculated Effects of Factors and their Interactions on the Associations of Clindamycin with Different Media	68
A.13 Model Predicted Portioning of Ketoconazole with 2 ³ Factorial Design Variables	70
A.14 Calculated Effects of Factors and their Interactions on the Associations of Ketoconazole with Different Media	70
A.15 Model Predicted Portioning of Carbamazepine with 2 ³ Factorial Design Variables	72

A.16 Calculated Effects of Factors and their Interactions on the Associations of Carbamazepine with Different Media
A.17 Model Predicted Portioning of Caffeine with 2 ³ Factorial Design Variables
A.18 Calculated Effects of Factors and their Interactions on the Associations of Caffeine with Different Media
A.19 Model Predicted Portioning of Ibuprofen with 2 ³ Factorial Design Variables76
A.20 Calculated Effects of Factors and their Interactions on the Associations of Ibuprofen with Different Media
A.21 Model Predicted Portioning of Diclofenac with 2 ³ Factorial Design Variables 78
A.22 Calculated Effects of Factors and their Interactions on the Associations of Diclofenac with Different Media
A.23 Model Predicted Portioning of Acetaminophen with 2 ³ Factorial Design Variables
A.24 Calculated Effects of Factors and their Interactions on the Associations of Acetaminophen with Different Media
A.25 Model Predicted Portioning of Triclosan with 2 ³ Factorial Design Variables 82
A.26 Calculated Effects of Factors and their Interactions on the Associations of Triclosan with Different Media
A.27 Model Predicted Portioning of Ciprofloxacin with 2 ³ Factorial Design Variables
A.28 Calculated Effects of Factors and their Interactions on the Associations of Ciprofloxacin with Different Media
A.29 Model Predicted Portioning of Metoprolol with 2 ³ Factorial Design Variables 86
A.30 Calculated Effects of Factors and their Interactions on the Associations of Metoprolol with Different Media
A.31 Model Predicted Portioning of Salicylic acid with 2 ³ Factorial Design Variables
A.32 Calculated Effects of Factors and their Interactions on the Associations of Salicylic acid with Different Media

A.34 Calculated Effects of Factors and their Interactions on the Associations of Dioxin with Different Media
B.1 Model Predicted Portioning of Aldrin with 2 ³ Factorial Design Variables
B.2 Calculated Effects of Factors and their Interactions on the Associations of Aldrin with Different Media
B.3 Model Predicted Portioning of Chloroneb with 2 ³ Factorial Design Variables94
B.4 Calculated Effects of Factors and their Interactions on the Associations of Chloroneb with Different Media
B.5 Model Predicted Portioning of Chlorothalonil with 2 ³ Factorial Design Variables
B.6 Calculated Effects of Factors and their Interactions on the Associations of Chlorothalonil with Different Media
B.7 Model Predicted Portioning of DDD with 2 ³ Factorial Design Variables
B.8 Calculated Effects of Factors and their Interactions on the Associations of DDD with Different Media
B.9 Model Predicted Portioning of DDE with 2 ³ Factorial Design Variables 100
B.10 Calculated Effects of Factors and their Interactions on the Associations of DDE with Different Media
B.11 Model Predicted Portioning of DDT with 2 ³ Factorial Design Variables 102
B.12 Calculated Effects of Factors and their Interactions on the Associations of DDT with Different Media
B.13 Model Predicted Portioning of Dieldrin with 2 ³ Factorial Design Variables 104
B.14 Calculated Effects of Factors and their Interactions on the Associations of Dieldrin with Different Media
B.15 Model Predicted Portioning of Endosulfan with 2 ³ Factorial Design Variables 106
B.16 Calculated Effects of Factors and their Interactions on the Associations of Endosulfan with Different Media

B.17 Model Predicted Portioning of Endrin with 2 ³ Factorial Design Variables
B.18 Calculated Effects of Factors and their Interactions on the Associations of Endrin with Different Media
B.19 Model Predicted Portioning of Etridiazole with 2 ³ Factorial Design Variables 110
B.20 Calculated Effects of Factors and their Interactions on the Associations of Etridiazole with Different Media
B.21 Model Predicted Portioning of HCH- α with 2 ³ Factorial Design Variables 112
B.22 Calculated Effects of Factors and their Interactions on the Associations of HCH-α with Different Media
B.23 Model Predicted Portioning of HCH- β with 2 ³ Factorial Design Variables
B.25 Model Predicted Portioning of HCH- δ with 2 ³ Factorial Design Variables 116
B.26 Calculated Effects of Factors and their Interactions on the Associations of HCH-δ with Different Media
B.27 Model Predicted Portioning of HCH- γ with 2 ³ Factorial Design Variables 118
B.28 Calculated Effects of Factors and their Interactions on the Associations of HCH-γ with Different Media
B.29 Model Predicted Portioning of Heptachlor with 2 ³ Factorial Design Variables 120
B.30 Calculated Effects of Factors and their Interactions on the Associations of Heptachlor with Different Media
B.31 Model Predicted Portioning of Heptachlor epoxide with 2 ³ Factorial Design Variables
B.32 Calculated Effects of Factors and their Interactions on the Associations of Heptachlor epoxide with Different Media
B.33 Model Predicted Portioning of Methoxychlor with 2 ³ Factorial Design Variables
B.34 Calculated Effects of Factors and their Interactions on the Associations of Methoxychlor with Different Media

B.35 Model Predicted Portioning of Permethrin with 2 ³ Factorial Design Variables	126
B.36 Calculated Effects of Factors and their Interactions on the Associations of Permethrin with Different Media	126
B.37 Model Predicted Portioning of Propachlor with 2 ³ Factorial Design Variables 1	128
B.38 Calculated Effects of Factors and their Interactions on the Associations of Propachlor with Different Media	128
B.39 Model Predicted Portioning of Trifluralin with 2 ³ Factorial Design Variables	130
B.40 Calculated Effects of Factors and their Interactions on the Associations of Trifluralin with Different Media	130
B.41 Model Predicted Portioning of Aroclor 1016 with 2 ³ Factorial Design Variables	132
B.42 Calculated Effects of Factors and their Interactions on the Associations of Aroclo 1016 with Different Media	r 132
B.43 Model Predicted Portioning of Aroclor 1221 with 2 ³ Factorial Design Variables	134
B.44 Calculated Effects of Factors and their Interactions on the Associations of Aroclo 1221 with Different Media	r 134
B.45 Model Predicted Portioning of Aroclor 1232 with 2 ³ Factorial Design Variables	136
B.46 Calculated Effects of Factors and their Interactions on the Associations of Aroclo 1232 with Different Media	r 136
B.47 Model Predicted Portioning of Aroclor 1242 with 2 ³ Factorial Design Variables	138
B.48 Calculated Effects of Factors and their Interactions on the Associations of Aroclos 1242 with Different Media	r 138
B.49 Model Predicted Portioning of Aroclor 1248 with 2 ³ Factorial Design Variable	140

B.50 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1248 with Different Media
B.51 Model Predicted Portioning of Aroclor 1254 with 2 ³ Factorial Design Variables
B.52 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1254 with Different Media
B.53 Model Predicted Portioning of Aroclor 1260 with 2 ³ Factorial Design Variables
B.54 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1260 with Different Media
B.55 Model Predicted Portioning of Toxaphene with 2 ³ Factorial Design Variables146
B.56 Calculated Effects of Factors and their Interactions on the Associations of Toxaphene with Different Media
B.57 Model Predicted Portioning of Chlordane with 2 ³ Factorial Design Variables 148
B.58 Calculated Effects of Factors and their Interactions on the Associations of Chlordane with Different Media
C.1 Properties of PPCPs included in the study
C.2 SESOIL input values for Nystatin
C.3 SESOIL input values for Dexamethasone
C.4 SESOIL input values for Methoprene
C.5 SESOIL input values for Prednisone
C.6 SESOIL input values for Metronidazole
C.7 SESOIL input values for Clindamycin
C.8 SESOIL input values for Ketoconazole
C.9 SESOIL input values for Carbamazepine
C.10 SESOIL input values for Caffeine
C.11 SESOIL input values for Ibuprofen

C.12 SESOIL input values for Diclofenac	. 171
C.13 SESOIL input values for Acetaminophen	. 173
C.14 SESOIL input values for Triclosan	. 175
C.15 SESOIL input values for Ciprofloxacin	. 177
C.16 SESOIL input values for Metoprolol	. 179
C.17 SESOIL input values for Salicylic acid	. 181
C.18 SESOIL output values for Nystatin	. 183
C.19 SESOIL output values for Dexamethasone	. 185
C.20 SESOIL output values for Methoprene	. 187
C.21 SESOIL output values for Prednisone	. 189
C.22 SESOIL output values for Metronidazole	. 191
C.23 SESOIL output values for Clindamycin	. 193
C.24 SESOIL output values for Ketoconazole	. 195
C.25 SESOIL output values for Carbamazepine	. 197
C.26 SESOIL output values for Caffeine	. 199
C.27 SESOIL output values for Ibuprofen	. 201
C.28 SESOIL output values for Diclofenac	. 203
C.29 SESOIL output values for Acetaminophen	. 205
C.30 SESOIL output values for Triclosan	. 207
C.31 SESOIL output values for Ciprofloxacin	. 209
C.32 SESOIL output values for Metoprolol	. 211
C.33 SESOIL output values for Salicylic acid	. 213
C.34 Factorial Design for simulations of PPCPs	. 215

C.35 Calculated Effects of Factors and their Interactions on migration depth of Nystatin	217
C.36 Calculated Effects of Factors and their Interactions on migration depth of Dexamethasone	219
C.37 Calculated Effects of Factors and their Interactions on migration depth of Methoprene	221
C.38 Calculated Effects of Factors and their Interactions on migration depth of Prednisone	223
C.39 Calculated Effects of Factors and their Interactions on migration depth of Metronidazole	225
C.40 Calculated Effects of Factors and their Interactions on migration depth of Clindamycin	227
C.41 Calculated Effects of Factors and their Interactions on migration depth of Ketoconazole	229
C.42 Calculated Effects of Factors and their Interactions on migration depth of Carbamazepine.	231
C.43 Calculated Effects of Factors and their Interactions on migration depth of Caffeine	233
C.44 Calculated Effects of Factors and their Interactions on migration depth of Ibuprofen	235
C.45 Calculated Effects of Factors and their Interactions on migration depth of Diclofenac	237
C.46 Calculated Effects of Factors and their Interactions on migration depth of Acetaminophen	239
C.47 Calculated Effects of Factors and their Interactions on migration depth of Triclosan	241
C.48 Calculated Effects of Factors and their Interactions on migration depth of Ciprofloxacin	243
C.49 Calculated Effects of Factors and their Interactions on migration depth of Metoprolol	245

C.50 Calculated Effects of Factors	and their Interactions	on migration depth of Salicylic
acid		

LIST OF FIGURES

5.1 Probability plot of effects of partitioning of Nystatin with water	. 38
5.2 Probability plot of effects of partitioning of Nystatin with sediment	38
5.3 Probability plot of effects of partitioning of Nystatin with suspended sediment	38
5.4 Probability plot of effects of partitioning of Chloroneb with water	39
5.5 Probability plot of effects of partitioning of Chloroneb with sediment	. 40
5.6 Probability plot of effects of partitioning of Chloroneb with suspended sediment	. 40
6.1 Estimated main effects and effect interactions on nystatin migration in vadose zone	47
A.1 Probability plot of effects of partitioning of Nystatin with water	. 59
A.2 Probability plot of effects of partitioning of Nystatin with sediment	59
A.3 Probability plot of effects of partitioning of Nystatin with suspended sediment	59
A.4 Probability plot of effects of partitioning of Dexamethasone with water	. 61
A.5 Probability plot of effects of partitioning of Dexamethasone with sediment	61
A.6 Probability plot of effects of partitioning of Dexamethasone with suspended sedin	nent 61
A.7 Probability plot of effects of partitioning of Methoprene with water	63
A.8 Probability plot of effects of partitioning of Methoprene with sediment	63

A.9 Probability plot of effects of partitioning of Methoprene with suspended sediment. 63
A.10Probability plot of effects of partitioning of Prednisone with water
A.11Probability plot of effects of partitioning of Prednisone with sediment
A.12Probability plot of effects of partitioning of Prednisone with suspended sediment . 65
A.13Probability plot of effects of partitioning of Metronidazole with water
A.14Probability plot of effects of partitioning of Metronidazole with sediment
A.15Probability plot of effects of partitioning of Metronidazole with suspended sediment
A.16Probability plot of effects of partitioning of Clindamycin with water
A.17Probability plot of effects of partitioning of Clindamycin with sediment
A.18Probability plot of effects of partitioning of Clindamycin with suspended sediment
A.19Probability plot of effects of partitioning of Ketoconazole with water
A.20Probability plot of effects of partitioning of Ketoconazole with sediment71
A.21Probability plot of effects of partitioning of Ketoconazole with suspended sediment
A.22Probability plot of effects of partitioning of Carbamazepine with water73
A.23Probability plot of effects of partitioning of Carbamazepine with sediment73
A.24Probability plot of effects of partitioning of Carbamazepine with suspended sediment
A.25Probability plot of effects of partitioning of Caffeine with water
A.26Probability plot of effects of partitioning of Caffeine with sediment
A.27Probability plot of effects of partitioning of Caffeine with suspended sediment 75
A.28Probability plot of effects of partitioning of Ibuprofen with water
A.29Probability plot of effects of partitioning of Ibuprofen with sediment77

A.30Probability plot of effects of partitioning of Ibuprofen with suspended sediment '	77
A.31Probability plot of effects of partitioning of Diclofenac with water	79
A.32Probability plot of effects of partitioning of Diclofenac with sediment	79
A.33Probability plot of effects of partitioning of Diclofenac with suspended sediment	79
A.34Probability plot of effects of partitioning of Acetaminophen with water	81
A.35Probability plot of effects of partitioning of Acetaminophen with sediment	81
A.36Probability plot of effects of partitioning of Acetaminophen with suspended sediment	81
A.37Probability plot of effects of partitioning of Triclosan with water	83
A.38Probability plot of effects of partitioning of Triclosan with sediment	83
A.39Probability plot of effects of partitioning of Triclosan with suspended sediment	83
A.40Probability plot of effects of partitioning of Ciprofloxacin with water	85
A.41Probability plot of effects of partitioning of Ciprofloxacin with sediment	85
A.42Probability plot of effects of partitioning of Ciprofloxacin with suspended sedimen	.t 85
A.43Probability plot of effects of partitioning of Metoprolol with water	87
A.44Probability plot of effects of partitioning of Metoprolol with sediment	87
A.45Probability plot of effects of partitioning of Metoprolol with suspended sediment.	87
A.46Probability plot of effects of partitioning of Salicylic acid with water	89
A.47Probability plot of effects of partitioning of Salicylic acid with sediment	89
A.48Probability plot of effects of partitioning of Salicylic acid with suspended sediment	t 89
A.49Probability plot of effects of partitioning of Dioxin with water	91
A.50Probability plot of effects of partitioning of Dioxin with sediment	91
A.51Probability plot of effects of partitioning of Dioxin with suspended	

sediment	91
B.1 Probability plot of effects of partitioning of Aldrin with water	93
B.2 Probability plot of effects of partitioning of Aldrin with sediment	93
B.3 Probability plot of effects of partitioning of Aldrin with suspended sediment	93
B.4 Probability plot of effects of partitioning of Chloroneb with water	95
B.5 Probability plot of effects of partitioning of Chloroneb with sediment	95
B.6 Probability plot of effects of partitioning of Chloroneb with suspended sediment .	95
B.7 Probability plot of effects of partitioning of Chlorothalonil with water	97
B.8 Probability plot of effects of partitioning of Chlorothalonil with sediment	97
B.9 Probability plot of effects of partitioning of Chlorothalonil with suspended sedime	ent 97
B.10 Probability plot of effects of partitioning of DDD with water	99
B.11 Probability plot of effects of partitioning of DDD with sediment	99
B.12 Probability plot of effects of partitioning of DDD with suspended sediment	99
B.13 Probability plot of effects of partitioning of DDE with water	101
B.14 Probability plot of effects of partitioning of DDE with sediment	101
B.15 Probability plot of effects of partitioning of DDE with suspended sediment	101
B.16 Probability plot of effects of partitioning of DDT with water	103
B.17 Probability plot of effects of partitioning of DDT with sediment	103
B.18 Probability plot of effects of partitioning of DDT with suspended sediment	103
B.19 Probability plot of effects of partitioning of Dieldrin with water	105
B.20 Probability plot of effects of partitioning of Dieldrin with sediment	105
B.21 Probability plot of effects of partitioning of Dieldrin with suspended sediment	105
B.22 Probability plot of effects of partitioning of Endosulfan with water	107

B.23 Probability plot of effects of partitioning of Endosulfan with sediment 107
B.24 Probability plot of effects of partitioning of Endosulfan with suspended sediment
B.25 Probability plot of effects of partitioning of Endrin with water
B.26 Probability plot of effects of partitioning of Endrin with sediment 109
B.27 Probability plot of effects of partitioning of Endrin with suspended sediment 109
B.28 Probability plot of effects of partitioning of Etridiazole with water 111
B.29 Probability plot of effects of partitioning of Etridiazole with sediment 111
B.30 Probability plot of effects of partitioning of Etridiazole with suspended sediment111
B.31 Probability plot of effects of partitioning of HCH- α with water
B.32 Probability plot of effects of partitioning of HCH- α with sediment
B.33 Probability plot of effects of partitioning of HCH- α with suspended sediment 113
B.34 Probability plot of effects of partitioning of HCH- β with water 115
B.35 Probability plot of effects of partitioning of HCH- β with sediment
B.36 Probability plot of effects of partitioning of HCH- β with suspended sediment 115
B.37 Probability plot of effects of partitioning of HCH-δ with water
B.38 Probability plot of effects of partitioning of HCH- δ with sediment 117
B.39 Probability plot of effects of partitioning of HCH- δ with suspended sediment 117
B.40 Probability plot of effects of partitioning of HCH-γ with water
B.41 Probability plot of effects of partitioning of HCH-γ with sediment
B.42 Probability plot of effects of partitioning of HCH- γ with suspended sediment 119
B.43 Probability plot of effects of partitioning of Heptachlor with water 121
B.44 Probability plot of effects of partitioning of Heptachlor with sediment 121

B.45 Probability plot of effects of partitioning of Heptachlor with suspended sediment121
B.46 Probability plot of effects of partitioning of Heptachlor epoxide with water 123
B.47 Probability plot of effects of partitioning of Heptachlor epoxide with sediment 123
B.48 Probability plot of effects of partitioning of Heptachlor epoxide with suspended sediment
B.49 Probability plot of effects of partitioning of Methoxychlor with water 125
B.50 Probability plot of effects of partitioning of Methoxychlor with sediment 125
B.51 Probability plot of effects of partitioning of Methoxychlor with suspended sediment
B.52 Probability plot of effects of partitioning of Permethrin with water
B.53 Probability plot of effects of partitioning of Permethrin with sediment 127
B.54 Probability plot of effects of partitioning of Permethrin with suspended sediment127
B.55 Probability plot of effects of partitioning of Propachlor with water 129
B.56 Probability plot of effects of partitioning of Propachlor with sediment 129
B.57 Probability plot of effects of partitioning of Propachlor with suspended sediment129
B.58 Probability plot of effects of partitioning of Trifluralin with water
B.59 Probability plot of effects of partitioning of Trifluralin with sediment
B.60 Probability plot of effects of partitioning of Trifluralin with suspended sediment 131
B.61 Probability plot of effects of partitioning of Aroclor 1016 with water 133
B.62 Probability plot of effects of partitioning of Aroclor 1016 with sediment
B.63 Probability plot of effects of partitioning of Aroclor 1016 with suspended sediment
B.64 Probability plot of effects of partitioning of Aroclor 1221 with water 135
B.65 Probability plot of effects of partitioning of Aroclor 1221 with sediment

B.66 Probability plot of effects of partitioning of Aroclor 1221 with suspended sediment 135
B.67 Probability plot of effects of partitioning of Aroclor 1232 with water 137
B.68 Probability plot of effects of partitioning of Aroclor 1232 with sediment 137
B.69 Probability plot of effects of partitioning of Aroclor 1232 with suspended sediment
B.70 Probability plot of effects of partitioning of Aroclor 1242 with water 139
B.71 Probability plot of effects of partitioning of Aroclor 1242 with sediment 139
B.72 Probability plot of effects of partitioning of Aroclor 1242 with suspended sediment
B.73 Probability plot of effects of partitioning of Aroclor 1248 with water 141
B.74 Probability plot of effects of partitioning of Aroclor 1248 with sediment
B.75 Probability plot of effects of partitioning of Aroclor 1248 with suspended sediment
B.76 Probability plot of effects of partitioning of Aroclor 1254 with water 143
B.77 Probability plot of effects of partitioning of Aroclor 1254 with sediment 143
B.78 Probability plot of effects of partitioning of Aroclor 1254 with suspended sediment
B.79 Probability plot of effects of partitioning of Aroclor 1260 with water 145
B.80 Probability plot of effects of partitioning of Aroclor 1260 with sediment 145
B.81 Probability plot of effects of partitioning of Aroclor 1260 with suspended sediment
B.82 Probability plot of effects of partitioning of Toxaphene with water
B.83 Probability plot of effects of partitioning of Toxaphene with sediment 147
B.84 Probability plot of effects of partitioning of Toxaphene with suspended sediment147
B.85 Probability plot of effects of partitioning of Chlordane with water

B.86 Probability plot of effects of partitioning of Chlordane with sediment
B.87 Probability plot of effects of partitioning of Chlordane with suspended sediment 149
C.1 Estimated main effects and effect interactions on nystatin migration in vadose zone
C.2 Estimated main effects and effect interactions on dexamethasone migration in vadose zone
C.3 Estimated main effects and effect interactions on methoprene migration in vadose zone
C.4 Estimated main effects and effect interactions on prednisone migration in vadose zone
C.5 Estimated main effects and effect interactions on metronidazole migration in vadose zone
C.6 Estimated main effects and effect interactions on clindamycin migration in vadose zone
C.7 Estimated main effects and effect interactions on ketoconazole migration in vadose zone
C.8 Estimated main effects and effect interactions on carbamazepine migration in vadose zone
C.9 Estimated main effects and effect interactions on caffeine migration in vadose zone
C.10 Estimated main effects and effect interactions on ibuprofen migration in vadose zone
C.11 Estimated main effects and effect interactions on diclofenac migration in vadose zone
C.12 Estimated main effects and effect interactions on acetaminophen migration in vadose zone
C.13 Estimated main effects and effect interactions on triclosan migration in vadose zone
C.14 Estimated main effects and effect interactions on ciprofloxacin migration in vadose zone

C.15 Estimated main effects and effect interactions on metoprolol migration in vadose	
one24	46
C.16 Estimated main effects and effect interactions on salicylic acid migration in vados	e
one	48

ABSTRACT

Emerging contaminants are of great concern because their presence in the environment at low concentrations (μ g/L – ng/L) can be associated with significant health risks and, historically, most have not been regulated, especially considering their estrogenic properties. They have been detected in most of the nations' waters during recent years and many are not readily removed using conventional wastewater and water treatment methods. There is a long list of pollutants that are considered as emerging contaminants, but those that are most commonly studied include pharmaceuticals and personal care products (PCPs), and pesticides.

This thesis includes an extensive literature review of these emerging contaminants in wet weather flows (WWFs), specifically separate stormwater, CSOs, and SSOs, to document the presence of emerging contaminants and to summarize what is known about their treatability and fate. There is limited information regarding emerging contaminant presence in wet-weather flows. Therefore, information concerning wastewaters discharges and surface water observations was also reviewed. This thesis has focused on characterizing emerging contaminants, specifically their presence and magnitude, in wet weather flows. This thesis also compiled literature information on analytical methods that can be been used to quantify emerging contaminant concentrations in wet weather flows (especially the methods that have been successfully used for similar samples and that have the needed detection limits). The treatability information by unit process was compiled and reviewed for its applicability to wet-weather flows. Fugacity modeling was conducted to identify the likely fate of these compounds after discharge to urban receiving waters. Subsurface fate modeling was performed using a factorial design and a vadose zone model, representing the expected range of conditions.

CHAPTER I

INTRODUCTION

Many reports have been published in the last two decades on the occurrence, detection, and treatability of pharmaceuticals and PCPs in water bodies throughout the world. The analytical methods used to quantify these materials are not commonly available in many laboratories. Special methods have been developed to detect these compounds at the extremely low levels of interest. Typically, High Performance Liquid Chromatography with Mass Spectrophotometer Detector (HPLC-MS), research grade Gas Chromatography with Mass Spectrophotometer Detector (GC-MS), and High Performance Liquid Chromatography with Electro Spray and Dual Mass Spectrophotometer Detectors (HPLC-ESI-MS-MS) have been used for the detection of these compounds. Although most methods show relatively good performance, special sample preparation steps often are needed, such as compound derivatization steps for GC/MS, and signal suppression and matrix effects associated with LC-ESI-MS-MS. Most of these methods are expensive and time consuming and are not viable for most commercial laboratories.

The effective treatability of emerging contaminants in wet weather flows (combined sewage, sanitary sewage overflows, and stormwaters) may require varying steps ranging from conventional processes such as screening and disinfection, to advanced treatment methods using nanofiltration and membranes. The advanced treatment methods can be expensive as they require high energy usage, amongst other

1

consumable materials. Rather than using a single, expensive treatment technology, combinations of conventional wet weather treatment methods, such as sedimentation and filtration, may be a more cost-effective approach. Parameters such as particle size, settling properties, discharge rates, and retention times, however, need to be considered as major factors in the efficacy of these treatment methods. In order to obtain a better understanding of these issues, a full factorial experimental design was used to evaluate through modeling the factors affecting the partitioning and fate of the emerging contaminants in the environment.

During the literature review, the following ECs have been most commonly observed and studied:

- 1) Prescription medications
- 2) Over-the-counter drugs
- 3) Antibiotics
- 4) Hormones and steroids
- 5) Pesticides
- 6) Personal care products

Pesticides are frequently included as an emerging contaminant (Jacobsen et al 2005, Petrovic et al 2003) even though they have received some regulatory attention over the years. However, pesticide regulations often relate to their toxicity and not their possible other long-term estrogenic effects associated with low concentrations.

CHAPTER II

OCCURRENCES OF EMERGING CONTAMINANTS

2.1 Pharmaceuticals and personal care products

The most commonly occurring pharmaceuticals and personal care products are from several therauptic classes (Lee et al. 2003, Vanderford et al. 2003, and Castiglioni et al. 2003). Some of these medication classes, plus representative compounds in each class, are as follows:

Antibiotics: Erythromycin, Clarithromycin, Ciprofloxacin, Ofloxacin, Amoxycillin.

Analgesics: Ibuprofen, Naproxen, Ketoprofen, Fenoprofen, Indomethacin.

Estrogens: Estrone, 17β -estradiol.

Lipid Generators: Bezafibrate, Gemfibrozil.

Many of the publications during the last two decades have reported the occurrence of pharmaceuticals and personal care products in a wide variety of waters, but primarily in municipal wastewater treatment influents and effluents (Castiglioni et al. 2005, Miao etal. 2002, Lindqvist et al. 2005, Pedrouzo et al. 2007, Lee et al. 2005, Thomas et al. 2004), rivers (Lindqvist et al. 2005, Kosjek et al. 2005), other surface waters (Hao et al. 2006, Pedrouzo et al. 2007, Togola et al. 2007) and drinking waters (Kosjek et al. 2005). Representative occurrences of pharmaceuticals and PCPs, along with observed concentrations, are shown in Table 2.1.

	Observed Concentrations (ng/L)													
Compound	ST	P influe	nt	S	TP efflue	ent	Ri	River waters Surface waters Refer		Surface waters		Referen	се	
	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean		
Ibuprofen				nd	nd	nd								
Ciproflaxin				27	514									
Clofibric acid				0.5	82								Castiglioni etal	
Diazepam				nd	nd									
Carbamazepine				33	1318								2000	
Bezafibrate				0.3	117									
Atenolol				27	1168									
Ibuprofen				10	15								Miao etal 2002	
Naproxen				25	300									
Bezafibrate				20	65									
Diclofenac				25	65									
Gemfibrozil				30	60									
Fenoprofen				20	25									
Carbamazepine	290	310		380	470		20	66						
Atenolol	510	800		40	440		12	25					Vieno etal 200	
Metoprolol	980	1350		910	1070		20	116						
Diazepam			nd			nd		33					Ternes e	etal
Caffeine			147000			190		880					2001	
Naproxen												41	Hao etal 2	2006

Table 1.1 Observed Concentrations of Pharmaceuticals in different waters based on Individual study

	Continua	tion o	fabove	e table
--	----------	--------	--------	---------

	Observed Concentrations (ng/L)													
Compound	STP influent		STP effluent			River waters			Surface waters		Reference			
	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Мах	Mean		
Carbamazepine												1.5,4.2,16		
Gemfibrozil												13		
Erythromycin												1.9,6.9		
Ibuprofen			13100	80	3920									
Naproxen			4900	160	1920								Lindqvist etal 2005	
Bezafibrate			420	20	840									
Diclofenac			350	160	360									
Ketoprofen			2000	40	1280									
Ibuprofen	1610	5990		20	690					18	44			
Naproxen	340	8620		20	450									
Clofibric acid	30	2020		10	120					11	14		Pedrouzo etal 2007	
Carbamazepine	60	480		80	290					9	37			
Bezafibrate	Nd	nd		70	340									
Diclofenac	120	550		10	460					25	41			
Caffeine	420	40120		20	1010					106	240			
Ibuprofen	2740	9210		40	970								Lee etal 2003	
Naproxen	1100	6060		210	1110									
Diclofenac	30	200		20	210									
Ketoprofen	30	700		30	150									

	Observed Concentrations (ng/L)													
Compound	STP influent		STP effluent			River waters			Surface waters			Reference		
	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean		
Gemfibrozil	100	750		20	540									
Triclosan	370	3240		30	740								Lee et al 2003	
Indomethacin	50	200		30	240									
Ibuprofen				2.4	197.6					3	610.6			
Naproxen				13.6	2666.8					2.6	274.6			
Carbamazepine				30.9	2519.3					1.8	82.7		Togola etal 2007	
Diclofenac				26.3	918.6					7.1	172.5			
Ketoprofen				15.2	1136.5					4.4	33.2			
Gemfibrozil				4.3	108.8					2.7	85.8			
Caffeine				2.6	3257.2					3.5	159.8			
Ibuprofen	4100	10210		110	2170									
Naproxen	1730	6030		360	2540								Lee etal 2005	
Diclofenac	50	2450		70	250									
Ketoprofen	60	150		40	90									
Gemfibrozil	120	36530		80	2090									
Triclosan	870	1830		50	360									
Estrone	8	52		<1	54									
Indomethacin	30	430		40	490									
Ibuprofen						18							Thomas etal	
Naproxen						31								
Diclofenac						nd								
Ketoprofen						23							2004	
Triclosan						72								
Caffeine						36								

Continuation of above table

nd: not detected

2.2 Veterinary Pharmaceuticals

Because separate stormwater flows, unless contaminated through surface leakage of septic water or leaky sewers, are not likely to contain human pharmaceuticals, the scope of the research was extended to consider veterinary pharmaceuticals as a class of emerging contaminants. Specifically, this research hypothesized that dog feces are a likely source of these compounds in separate stormwater runoff since dogs do not bury their feces. However, there were no specific literature references available for these compounds. Interviews were held with local veterinarians (personal communications) to determine the most commonly used pet medicines, and their uses. Table 2.2 lists these pet pharmaceuticals, and their use.

Compound	Usage						
Nystatin	Anti-infective						
Thiabendazole	Anti-infective						
Dexamethasone	Anti-infective						
Metronidazole	Anti-infective						
Clindamycin	Anti-infective						
Permethrin	Flea preventative						
Fipronil	Flea preventative						
Imidacloprid	Flea preventative						
Methoprene	Flea preventative						
Prednisone	Anti Inflammatory						
Betamethasone	Anti Inflammatory						
Ketoconazole	Anti-fungal						
Ivermectin	Heart worm preventative						
Amoxicillin	Antibiotic						
Tetracycline	Antibiotic						
Gentamicin	Antibiotic						

Table 2.2 Veterinary pharmaceuticals and their usage

2.3 Pesticides
As noted above, pesticides are another class of emerging contaminants and are frequently detected in wet weather flows. The usage of pesticides in urban areas is mostly for weed and insect control near houses, along roads and railway rights of way, parks, lawns and golf courses (Recke et al. 1993). Kunimatsu et al. (1992) found that the concentrations of pesticides varied for each monitored storm runoff event and no clear correlation was observed with precipitation. Instead, the loading rates depended on the length of period after application, drainage system, application method, volatilization, microorganisms and sunlight. Schiff et al. (2004) also identified first flush effects for pesticides. Pesticides commonly are analyzed using EPA Method 508, described in Chapter 3.

CHAPTER III

DETECTION of EMERGING CONTAMINANTS

Emerging contaminants, unlike the major pollutants associated with wet-weather and sewage flows, occur in extremely low levels and require special methods for their detection. The methods used for the detection of emerging contaminants are commonly not available in many laboratories, and some of the most commonly used analytical methods for their detection are High Performance Liquid Chromatography with Mass Spectrophotometer Detector (HPLC-MS), research grade Gas Chromatography with Mass Spectrophotometer Detector (GC-MS), and High Performance Liquid Chromatography with Electro Spray and Dual Mass Spectrophotometer Detectors (HPLC-ESI-MS-MS). The following section briefly describes these analytical methods, along with sample preparation methods.

3.1 Sample Extraction and Concentration

Solid Phase Extraction

Solid Phase Extraction (SPE) is used commonly to extract and concentrate the analytes from the water matrix. It involves different steps which include dilution, buffer addition, pH adjustment, and elution. SPE is considered to be the most effective extraction technique when compared with the traditional techniques for dissolved pollutants: liquidliquid extraction, Soxhlet, automated Soxhlet, and steam distillation. Comparatively, it is accurate, reproducible, reliable, and capable of multi-analyte determination. However it is not suitable when analytes need to be extracted from particulates in the samples. Some of the most commonly used SPE cartridges include Oasis HLB, Oasis MCX, Strata-X, Lichrolut EN, and RP-C₁₈. At least one study has reported that Oasis HLB cartridges are efficient and resulted in high recoveries of the analytes investigated in the study (Zhang et al. 2007). Most of the acidic compounds are recovered better at pH < 3, and the neutral and basic compounds are recovered better at pH values between 7 and 10. These pH ranges result in better adsorption of analytes onto the SPE cartridges (Miao et al. 2002, Vieno et al. 2006, Ternes et al. 2001, Togola et al. 2007, and Gibson et al. 2007).

3.2 Analytical Methods for Detection of PPCPs

HPLC-ESI-MS-MS (High Performance Liquid Chromatography with Electro Spray and Dual Mass Spectrophotometer Detectors)

HPLC-ESI-MS-MS is effective for the detection of most of the emerging contaminants because of their polar nature, low volatility and thermal instability. Electrospray ionization often is used to convert the analyte into a sole ion which can be detected by a mass spectrometer. Tandem mass spectrometry involves multiple steps of mass selection for the detection of analyte ions. MS/MS involves the quantification of the ions in SIM (selective ion monitoring) and MRM (multiple reaction monitoring) modes which increases the specificity of detection. Some of the most commonly used HPLC equipment include the Waters 2690 HPLC equipped with a Genesis C₁₈ column, LC (Agilent 1100 system, which consists of a binary pump, a vacuum degasser, an autosampler, and a thermostated column), with a Waters 2695 HPLC separation module equipped with a Waters Symmetry C₁₈ column.

HPLC-ESI-MS-MS is effective in analyzing most of the pharmaceutical compounds with retention times ranging between 2 and 35 min (Castiglioni et al 2005,

10

Miao et al. 2002, Vanderford et al. 2003, Vieno et al. 2006, Zhang et al. 2007). A few of the compounds had analytical difficulty because of the signal suppression during the ESI step. To overcome this, more efficient sample preparation (such as addition of surrogate standards) was required to achieve better recoveries of the analytes.

GC-MS (Gas Chromatography with Mass Spectrophotometer Detector)

Gas chromatography, although less selective when compared to HPLC, is less complex and more cost effective. It is used for the analysis of compounds that are volatile in nature and thermally stable. Gas chromatography often involves the conversion of analytes into derivatives, which reduces the molecule's polarity and increases its volatility. The most common derivatizing steps include using trimethylsilyl (TMS), N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), N-(t-butyldimethylsilyl)-Nmethyltrifluoroacetamide (MTBSTFA) and pentafluorobenzyl bromide (PFBBr). The respective derivatives are analyzed then by GC-MS (Gibson et al. 2007, Lee et al. 2003, Reddersen et al. 2003, Thomas et al. 2004, and Togola et al. 2007). Recoveries for most of the compounds studied met the analytical requirements, although some poor recoveries were observed due to inefficient sample preparation and storage steps.

Recoveries and detection limits for some of the pharmaceuticals using the above listed analytical methods are summarized in Table 3.1.

11

Analyte	Extraction Method	Recovery (%)	Analytical Method	LOD(ng/L)	LOQ(ng/L)	Reference
Ibuprofen	SPE	92±3.7 ^a	HPLC-MS-MS		1.38 ^a	Castiglioni et al 2005
	SPE	71 ^a	HPLC-MS-MS	5		Miao et al 2002
	SPE	96±15	HPLC-MS-MS	1		Vanderford et al 2003
	SPE	93±7 ^c ,96±5 ^d ,46±2 ^a ,68±9 ^b	HPLC-MS-MS		1 ^{c,d} ,5 ^{a,b}	Lindqvist et al 2005
	SPE-Derivatization	67 [†] ,110 ^d	GC-MS	3.5		Sacher et al 2001
	SPE-Derivatization	97±3 ⁹ ,92±6 ^a	GC-MS	10		Lee et al 2003
	SPE-Derivatization	87±4 ^g	GC-MS	10		Lee et al 2005
	SPE-Derivatization	108±5 ⁹	GC-MS	10		Thomas et al 2004
	SPE-Derivatization	67±18	GC-MS	36 (full scan mode), 0.6 (SIM)	104(full scan mode), 1.6 (SIM)	Koutsouba et al 2003
	SPE-Derivatization	86.4±11 ⁹	GC-MS		30	Moldovan et al 2006
Naproxen	SPE	68.4 ^a	HPLC-MS-MS		10	Castiglioni et al 2005
	SPE	91±9	HPLC-MS-MS	1		Vanderford et al 2003
	SPE	87±6 ^c ,89±4 ^d ,81±6 ^a ,86±6 ^b	HPLC-MS-MS		5 ^{c,d} ,25 ^{a,b}	Lindqvist et al 2005
	SPE	50±16 ^ª ,50±10 ^b ,25 ^e	HPLC-MS-MS	15 ^e		Pedrouzo et al 2007
	SPE-Derivatization	101±4 ⁹ ,93±5 ^a	GC-MS	10		Lee et al 2003
	SPE-Derivatization	101±3 ⁹	GC-MS	10		Lee et al 2005
	SPE-Derivatization	101±4 ^g	GC-MS	9		Thomas et al 2004
Clofibric acid	SPE	81±1.8 ^a	HPLC-MS-MS		0.36 ^a	Castiglioni et al 2005
	SPE	82.2	HPLC-MS-MS	10		Miao et al 2002
	SPE	54±20 ^a ,33±20 ^b ,61 ^e	HPLC-MS-MS	5 ^e		Pedrouzo et al 2007
	SPE-Derivatization	77 ^f ,103 ^d	GC-MS	5.3		Sacher et al 2001

Table 3.1 Analytical Methods and Extraction Recoveries of pharmaceuticals and personal care products

Analyte	Extraction Method	Recovery (%)	Analytical Method	LOD(ng/L)	LOQ(ng/L)	Reference
	SPE-Derivatization	99±2 ⁹ ,95±5 ^a	GC-MS	10		Lee et al 2003
	SPE-Derivatization	90±15	GC-MS	244 (full scan mode),1.8 (SIM)	714(full scan mode), 5 (SIM)	Koutsouba et al 2003
Diazepam	SPE	96±5.1 ^ª	HPLC-MS-MS		1.08	Castiglioni et al 2005
	SPE	80±19	HPLC-MS-MS	1		Vanderford et al 2003
	SPE-Derivatization	77 ^f ,93 ^d	GC-MS	6.9		Sacher et al 2001
	SPE-Derivatization	78.9±5.4 ⁹	GC-MS		30	Moldovan et al 2006
Carbamazepine	SPE	98±7.2	HPLC-MS-MS		1.3	Castiglioni et al 2005
	SPE	67±10 ^ª ,34±26 ^b ,101 ^e	HPLC-MS-MS	3 ^e		Pedrouzo et al 2007
	SPE-Derivatization	80 ^f ,74 ^d	GC-MS	9.6		Sacher etal 2001
	SPE-Derivatization	103±5 ^f ,99±7 ^c ,108±10 ^e ,79±2 ^a	GC-MS		8	Lin et al 2005
	SPE-Derivatization	109.7±16.4	GC-MS		30	Moldovan et al 2006
Bezafibrate	SPE	76±2.6 ^a	HPLC-MS-MS		0.1 ^a	Castiglioni et al 2005
	SPE	67.1 ^a	HPLC-MS-MS	10		Miao et al 2002
	SPE	73±4 ^c ,64±2 ^d ,58±1 ^a ,64±2 ^b	HPLC-MS-MS		1 ^{c,d} ,5 ^{a,b}	Lindqvist et al 2005
	SPE-Derivatization	93 ^f ,151 ^d	GC-MS	7.5		Sacher etal 2001
Diclofenac	SPE	62.8 ^a	HPLC-MS-MS	10		Miao et al 2002
	SPE	83±11	HPLC-MS-MS	1		Vanderford et al 2003
	SPE	75±11 ^c ,77±6 ^d ,64±1 ^a ,77±6 ^b	HPLC-MS-MS		1 ^{c,d} ,5 ^{a,b}	Lindqvist et al 2005
	SPE	57±18 ^a ,37±2 ^b ,47 ^e	HPLC-MS-MS	5 ^e		Pedrouzo et al 2007

Analyte	Extraction Method	Recovery (%)	Analytical Method	LOD(ng/L)	LOQ(ng/L)	Reference
	SPE-Derivatization	70 ^f ,70 ^d	GC-MS	8.7		Sacher et al 2001
	SPE-Derivatization	80±2 ⁹	GC-MS	45		Thomas et al 2004
	SPE-Derivatization	80±9 ^f ,81±9 ^c ,63±4 ^e ,54±7 ^a	GC-MS		2	Lin et al 2005
	SPE-Derivatization	76±9		38(Full scan mode), 1(SIM)	108(Full scan mode), 2(SIM)	Koutsouba et al 2003
Ketoprofen	SPE	83.9	HPLC-MS-MS	20		Miao et al 2002
	SPE	95±6 ^c ,83±5 ^d ,69±2 ^a ,83±5 ^b	HPLC-MS-MS		5 ^{c,d} ,25 ^{a,b}	Lindqvist et al 2005
	SPE-Derivatization	102±4 ^g	GC-MS	10		Lee etal 2005
	SPE-Derivatization	50±6 ^f ,59±5 ^c ,77±7 ^e ,83±2 ^a	GC-MS		2	Lin et al 2005
Gemfibrozil	SPE	78.2 ^a	HPLC-MS-MS	5		Miao et al 2002
	SPE	94±10	HPLC-MS-MS	1		Vanderford et al 2003
	SPE-Derivatization	49 ^f ,89 ^d 100+3 ^g 98+6 ^a	GC-MS	5.2		Sacher et al 2001
	SPE-Derivatization	99+4 ⁹	GC-MS	10		Lee et al 2005
		0011		10		200 01 01 2000
Atenolol	SPE	106±6 ^a	HPLC-MS-MS		1.07 ^a	Castiglioni et al 2005
	SPE	81±3 ^c ,90±6 ^d ,101±4 ^a ,108±10 ^b	HPLC-MS-MS		6.5 ^c ,11.8 ^d ,21 ^a ,49 ^b	Vieno et al 2006
	SPE	86 ^f ,67 ^d	HPLC-MS-MS	2.4		Sacher et al 2001
Triclosan	SPE	79±17	HPLC-MS-MS	1		Vanderford et al 2003
	SPE-Derivatization	89±2 ⁹ ,84±6 ^a	GC-MS	10		Lee et al 2003
	SPE-Derivatization	93±5 ⁹	GC-MS	10		Lee et al 2005

Analyte	Extraction Method	Recovery (%)	Analytical Method	LOD(ng/L)	LOQ(ng/L)	Reference
	SPE-Derivatization	79.2±7.3	GC-MS		30	Moldovan etal 2006
Fenoprofen	SPE	91.5	HPLC-MS-MS	10		Miao et al 2002
	SPE-Derivatization	71 ^f ,99 ^d	GC-MS	3.3		Sacher et al 2001
	SPE-Derivatization	95±4 ⁹ ,96±5 ^a	GC-MS	10		Lee et al 2003
	SPE-Derivatization	98±3 ⁹	GC-MS	10		Lee et al 2005
Caffeine	SPE	93±10	HPLC-MS-MS	1		Vanderford et al 2003
	SPE	84±7 ^a ,50±1 ^b ,45 ^e	HPLC-MS-MS	3 ^e		Pedrouzo et al 2007
	SPE-Derivatization	34±11 ^g	GC-MS	9		Thomas et al 2004
	SPE-Derivatization	64.1±6.5	GC-MS		30	Moldovan et al 2006
Estrone	SPE	97±6.4 ^a	HPLC-MS-MS		1.5 ^a	Castiglioni et al 2005
	SPE-Derivatization	105±6 ⁹	GC-MS	10		Lee et al 2005
Erythromycin	SPE	50±5.1 ^a	HPLC-MS-MS		0.4 ^a	Castiglioni et al 2005
	SPE	71±10	HPLC-MS-MS	1		Vanderford et al 2003
Indomethacin	SPE	58.5±10	HPLC-MS-MS	10		Miao et al 2002
	SPE-Derivatization	86 ^f ,114 ^d	GC-MS	5.4		Sacher et al 2001
	SPE-Derivatization	93±4 ^g ,83±7 ^a	GC-MS	10		Lee et al 2003
	SPE-Derivatization	107±5 ⁹	GC-MS	10		Lee et al 2005

a: spiked with STP effluent, b: spiked with STP influent, c: spiked with ground water, d: spiked with surface water, e: spiked with river water, f: spiked with tap water, g: spiked with distilled water

3.3 Detection of Pesticides (EPA Method 508)

In EPA Method 508, the analytes of interest are extracted manually or by an auto extraction technique and then analyzed in a gas chromatograph with an electron capture detector (GC/ECD). Methylene chloride is used as the extracting solvent. As in all very low level analyses, interferences and matrix effects are of concern. Recovery values and method detection limits for the targeted pesticides are shown in Table 3.2.

Table 3.2 Single laboratory Accuracy, Precision, Method Detection Limits (MDLs) for Analytes from Reagent Water (NATIONAL EXPOSURE RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL

	Fortified				
	Conc			RSD	
Analyte	(µg/L)	N ^a	Recovery (%)	%	MDL (µg/L)
Aldrin	0.075	7	66	9	0.014
Chlordane-alpha	0.015	7	117	8	0.0041
Chlordane-gamma	0.015	7	109	3	0.0016
Chloroneb	0.5	7	47	34	0.25
Chlorobenzilate	5	8	99	5	2.2
Chlorothalonil	0.025	7	119	12	0.011
DCPA	0.025	7	112	4	0.0032
4,4'-DDD	0.025	7	115	5	0.0044
4,4'-DDE	0.01	7	127	6	0.0025
4,4'-DDT	0.06	7	87	23	0.039
Dieldrin	0.02	7	77	22	0.011
Endosulfan I	0.015	7	78	25	0.0092
Endosulfan Sulfate	0.015	7	129	4	0.0024
Endrin	0.015	7	72	18	0.0062
Endrin Aldehyde	0.025	7	95	15	0.011
Endosulfan II	0.015	7	148	35	0.024
Etridiazole	0.025	7	96	17	0.013
HCH-alpha	0.025	8	94	8	0.0053
HCH-beta	0.01	7	95	12	0.0036
HCH-delta	0.01	7	84	7	0.002

PROTECTION AGENCY, CINCINNATI, OHIO, 1995)

	Fortified Conc			RSD	
Analyte	(µg/L)	N ^a	Recovery (%)	%	MDL (µg/L)
HCH-gamma	0.015	7	80	16	0.006
Heptachlor	0.01	7	67	7	0.0015
Heptachlor Epoxide	0.015	7	71	18	0.0059
Hexachlorobenzene	0.005	7	115	43	0.0077
Methoxychlor	0.05	7	120	11	0.022
cis-Permethrin	5	7	64	24	0.25
trans-Permethrin	5	7	122	9	0.18
Propachlor	5	7	90	18	0.25
Trifluralin	0.025	7	108	3	0.0026

^aN = Number of sample replicates.

RSD: Relative Standard Deviation (absolute value of the coefficient of variation

expressed as a percentage).

MDL: Method Detection Limit (minimum amount of substance that can be detected with a given confidence).

CHAPTER IV TREATABILITY OF EMERGING CONTAMINANTS

4.1 Pharmaceuticals and personal care products

Many reports have been published in the last two decades describing the effectiveness of different treatment methods for removing these emerging contaminants, mostly based on the treatment of municipal wastewaters. The treatment methods examined included sedimentation, flocculation, coagulation, rapid sand filtration, ozonation, adsorption, activated sludge, membrane bioreactors, nano- and ultra filtration, and ultraviolet (UV) light and chlorine disinfection.

Primary sedimentation and flocculation processes at municipal treatment plants were not very effective at removing the pharmaceutical compounds, with most removal rates < 40% (Thomas et al. 2005, Carballa et al. 2004). Sedimentation after ferric chloride coagulation followed by rapid sand filtration (Vieno et al. 2007) also was ineffective, with removal rates of about 10% for the pharmaceuticals studied. Ozonation, according to many researchers, has been much more effective at removing most of the compounds. Several studies (Vieno et al. 2007, Snyder et al. 2006, and Jasim et al. 2006) reported removal rates for most of the compounds between 60 and 99% using ozone. Increasing the ozone dosage and the addition of H_2O_2 improved the removal rates for some of the compounds (Snyder et al. 2006). Reaction time, amount of ozone dosage, alkalinity of the water, and the reactivity of the compounds towards ozone, are reported to be important factors affecting the increase of removal rates.

Conventional activated sludge treatment also was studied (Radjenovic et al. 2006, Lishman et al. 2006, Nakada et al. 2006) for its effectiveness on these compounds. For most of the compounds examined, the removal rates were greater than 60%. The two mechanisms associated with the reduction of the EC compounds were sorption/desorption from the sludge itself and biodegradation by the microorganisms in the sludge (Carballa et al. 2004, Radjenovic et al. 2006). For some of the compounds examined, the removal rates increased with an increase of SRT (sludge retention time), but the effect was not consistent for all compounds. Several researchers suggested that the effect of different SRTs and temperatures were areas for future research to enhance EC treatment.

Contaminant	Type of water	Unit processes examined	Removal (%)	Influent	Effluent conc (ug/L)	Reference
Carbamazepine	River water	Ferric coag+sed+ rapid sand filtration	7	<u> </u>		Vieno et al 2007
Carbamazepine	River water	Ozonation alone after (Ferric coag+sed+ rapid sand filtration)	>99			Vieno et al 2007
Carbamazepine	Sanitary waste water	Primary+ Activated sludge	0			Castiglioni et al 2006
Carbamazepine	Sewage sludge	Anaerobic digestion	0			Carballa et al 2007
Carbamazepine	Sanitary waste water	Membrane bioreactor	0	0.24(median)	0.3(median)	Radjenovic et al 2006
Carbamazepine	Sanitary waste water	Conventional Activated Sludge	0	0.24(median)	0.25(median)	Radjenovic et al 2006
Carbamazepine	Sanitary waste water	Primary+ Activated sludge	upto 78	15-350	15-160	Nakada et al 2006
Caffeine	Sanitary waste water	Primary+ Activated Sludge+ (Alum+ Gravity Filtration+ Disinfection)	17,99.9			Thomas et al 2005
Caffeine	Distilled water	Floc/Sed+ Dual Media Filtration+ Disinfection	3.4-12.7			Bundy et al 2007
Caffeine	Distilled water	Floc/Sed+ Dual Media Filtration+GAC Disinfection	>94			Bundy et al 2007
lbuprofen	Sanitary waste water	Activated Sludge	95	8.45(mean)	0.384(mean)	Lishman et al 2006
lbuprofen	Sanitary waste water	primary+ biological reactor	63			Carballa et al 2004

Table 4.1 Removal rates of pharmaceuticals and PCPs with respect to different treatment processes

Contaminant	Type of water	Unit processes examined	Removal (%)	Influent conc.(µg/L)	Effluent conc.(µg/L)	Reference
lbuprofen	River water	ozonation alone after (Ferric coag+sed+ rapid sand filtration)	92			Vieno et al 2007
Ibuprofen	Sanitary waste water	Primary+ Activated sludge	38 ^d ,93 ^e			Castiglioni et al 2006
Ibuprofen	Sewage sludge	Anaerobic digestion	41±15			Carballa et al 2007
Ibuprofen	Sanitary waste water	Membrane bioreactor	99.8±0.386	17(median)	0(median)	Radjenovic et al 2006
Ibuprofen	Sanitary waste water	Conventional Activated Sludge	82.5±15.8	17(median)	2(median)	Radjenovic et al 2006
Ibuprofen	Sanitary waste water	Primary+ Activated Sludge	83-99	300-1200	1-110	Nakada et al 2006
Naproxen	Sanitary waste water	Activated Sludge	93	5.58(mean)	0.452(mean)	Lishman et al 2006
Naproxen	Sanitary waste water	primary + biological reactor	48			Carballa et al 2004
Naproxen	River water	Ferric coag+sed+ rapid sand filtration	10			Vieno et al 2007
Naproxen	River water	ozonation alone after (Ferric coag+sed+ rapid sand filtration)	75			Vieno et al 2007
Naproxen	Sanitary waste water	Primary+ Activated Sludge+ (Alum+ Gravity Filtration+ Disinfection)	3 ^a ,99.8 ^b			Thomas et al 2005

		Unit processes		Influent		
Contaminant	Type of water	examined	Removal (%)	conc.(µg/L)	Effluent conc.(µg/L)	Reference
Naproxen	Sanitary waste water	Membrane Bioreactor	99.3±1.52	11.6(median)	0(median)	Radjenovic et al 2006
Naproxen	Sanitary waste water	Conventional Activated Sludge	85.1±11.4	11.6(median)	3(median)	Radjenovic et al 2006
Naproxen	Sanitary waste water	Primary+ Activated Sludge	upto 82	30-250	11-150	Nakada et al 2006
Diazepam	Sewage sludge	Anaerobic Digestion	50±16			Carballa et al 2007
Diclofenac	River water	Ferric coag+sed+ rapid sand filtration	8			Vieno et al 2007
Diclofenac	River water	ozonation alone after (Ferric coag+sed+ rapid sand filtration)	>94			Vieno et al 2007
Diclofenac	Sanitary waste water	Primary+ Activated Sludge+ (Alum+ Gravity Filtration+ Disinfection)	14 ^ª ,89 ^b ,100 ^c			Thomas et al 2005
Diclofenac	Sewage sludge	Anaerobic Digestion	69±10			Carballa et al 2007
Diclofenac	Sanitary waste water	Membrane bioreactor	87.4±14.1	2.8(median)	0.2(median)	Radjenovic et al 2006
Diclofenac	Sanitary waste water	Conventional Activated Sludge	50.1±20.1	2.8(median)	1.2(median)	Radjenovic et al 2006
Gemfibrozil	Sanitary waste water	Activated sludge	66			Lishman et al 2006
Gemfibrozil	Sanitary waste water	Membrane bioreactor	89.6±23.3	3.8(median)	0(median)	Radjenovic et al 2006
Gemfibrozil	Sanitary waste water	Conventional Activated Sludge	38.8±16.9	3.8(median)	2.5(median)	Radjenovic et al 2006

Contaminant	Type of water	Unit processes examined	Removal (%)	Influent conc.(µg/L)	Effluent conc.(µg/L)	Reference
Acetaminophen	Sanitary waste water	Membrane bioreactor	99.6±0.299	18(median)	0(median)	Radjenovic et al 2006
Acetaminophen	Sanitary waste water	Conventional Activated Sludge	98.4±1.72	18(median)	0.1(median)	Radjenovic et al 2006
lopromide	Sewage sludge	Anaerobic Digestion	22±11			Carballa et al 2007
Estrone	Sanitary waste water	Lagoon	86	0.0295(mean)	0.0076(mean)	Lishman et al 2006
Estrone	Sanitary waste water	Primary+ Activated sludge	0			Castiglioni et al 2006
Estrone	Sewage sludge	Anaerobic Digestion	88±6			Carballa et al 2007
Estrone	Sanitary waste water	Primary+ Activated sludge	83-90	25-200	3-110	Nakada et al 2006
Bezafibrate	River water	Ferric coag+sed+ rapid sand filtration	27			Vieno et al 2007
Bezafibrate	River water	ozonation alone after (Ferric coag+sed+ rapid sand filtration)	>77			Vieno et al 2007
Bezafibrate	Sanitary waste water	Primary+ Activated sludge	15 ^d ,87 ^e			Castiglioni et al 2006
Bezafibrate	Sanitary waste water	Membrane bioreactor	95.8±8.66	1.75(median)	0.1(median)	Radjenovic et al 2006
Bezafibrate	Sanitary waste water	Conventional Activated Sludge	48.4±33.8	1.75(median)	0.75(median)	Radjenovic et al 2006
Triclosan	Sanitary waste water	Activated Sludge	93	1.93(mean)	0.108(mean)	Lishman et al 2006

Contaminant	Type of water	Unit processes examined	Removal (%)	Influent conc.(µg/L)	Effluent conc.(µg/L)	Reference
Triclosan	Sanitary waste water	Activated sludge + filtration	95			Lishman et al 2006
Triclosan	Sanitary waste water	Primary+ Activated Sludge+ (Alum+ Gravity Filtration+ Disinfection)	26 ^ª ,98.4 ^b			Thomas et al 2005
Triclosan	Sanitary waste water	Primary+ Activated Sludge	46-92	200-1000	20-200	Nakada et al 2006
Ketoprofen	Sanitary waste water	Activated sludge	44			Lishman et al 2006
Ketoprofen	Sanitary waste water	Primary+ Activated Sludge+ (Alum+ Gravity Filtration+ Disinfection)	7ª,94 ^b ,98.9 ^c			Thomas et al 2005
Ketoprofen	River water	Ferric coag+sed+ rapid sand filtration	13			Vieno et al 2007
Ketoprofen	River water	Ozonation alone after (Ferric coag+sed+ rapid sand filtration)	>62			Vieno et al 2007
Ketoprofen	Sanitary waste water	Membrane bioreactor	91.9±6.55	1.8(median)	0.2(median)	Radjenovic et al 2006
Ketoprofen	Sanitary waste water	Conventional Activated Sludge	51.5±22.9	1.8(median)	0.75(median)	Radjenovic et al 2006
Ketoprofen	Sanitary waste water	Primary+ Activated Sludge	15-68	100-400	50-200	Nakada et al 2006
Clofibric Acid	Sanitary waste water	Primary+ Activated sludge	30 ^d , <0.36 ^e			Castiglioni et al 2006
Clofibric Acid	Sanitary waste water	Membrane bioreactor	71.8±30.9	0.11(median)	0.02(median)	Radjenovic et al 2006

Contaminant	Type of water	Unit processes examined	Removal (%)	Influent conc.(µg/L)	Effluent conc.(µg/L)	Reference
Atenolol	River water	Ferric coag+sed+ rapid sand filtration	12			Vieno et al 2007
Atenolol	River water	Ozonation alone after (Ferric coag+sed+ rapid sand filtration)	>73			Vieno et al 2007
Atenolol	Sanitary waste water	Primary+ Activated sludge	10 ^d ,55 ^e			Castiglioni et al 2006
Atenolol	Sanitary waste water	Membrane bioreactor	65.5±36.2	1.5(median)	0.5(median)	Radjenovic et al 2006
Ciprofloxacin	River water	Ferric coag+sed+ rapid sand filtration	35			Vieno et al 2007
Ciprofloxacin	River water	Ozonation alone after (Ferric coag+sed+ rapid sand filtration)	16			Vieno et al 2007
Ciprofloxacin	Sanitary waste water	Primary+ Activated sludge	60 ^d ,63 ^e			Castiglioni et al 2006
Ofloxacin	Sanitary waste water	Primary+ Activated sludge	43,57			Castiglioni et al 2006
Ofloxacin	Sanitary waste water	Membrane bioreactor	94±6.51	0.44(median)	0.04(median)	Radjenovic et al 2006
Ofloxacin	Sanitary waste water	Conventional Activated Sludge	23.8±23.5	0.44(median)	0.3(median)	Radjenovic et al 2006
Erythromycin	Sanitary waste water	Primary+ Activated sludge	0			Castiglioni et al 2006
Erythromycin	Sanitary waste water	Membrane bioreactor	67.3±16.1	0.15(median)	0.05(median)	Radjenovic et al 2006
Erythromycin	Sanitary waste water	Conventional Activated Sludge	23.8±29.2	0.15(median)	0.08(median)	Radjenovic et al 2006

Contaminant	Type of water	Unit processes examined	Removal (%)	Influent conc.(µg/L)	Effluent conc.(µg/L)	Reference
Fenoprofen	Sanitary waste water	Primary+ Activated Sludge	65-97	15-90	29	Nakada et al 2006
Indomethacin	Sanitary waste water	Activated sludge	23	0.23(mean)	0.19(mean)	Lishman et al 2006
Indomethacin	Sanitary waste water	Membrane bioreactor	46.6±23.2	0.11(median)	0.06(median)	Radjenovic et al 2006
Indomethacin	Sanitary waste water	Conventional Activated Sludge	23.4±22.3	0.11(median)	0.085(median)	Radjenovic et al 2006
Metoprolol	River water	Ferric coag+sed+ rapid sand filtration	11			Vieno et al 2007
Metoprolol	River water	Ozonation alone after (Ferric coag+sed+ rapid sand filtration)	>95			Vieno et al 2007
Metoprolol	Sanitary waste water	Membrane bioreactor	58.7±72.8	0.3(median)	0.1(median)	Radjenovic et al 2006
Metoprolol	Sanitary waste water	Conventional Activated Sludge	<10	0.3(median)	0.27(median)	Radjenovic et al 2006

a: mean reduction after primary treatment, b: mean reduction after secondary treatment, c: mean reduction after advanced treatment, d: median reduction rate in winter, e: median reduction rate in summer

The addition of an adsorption step (GAC, granular activated carbon, or PAC, powdered activated carbon) in most of the studied processes (Bundy et al. 2007, Snyder etal 2007, and Vieno et al. 2007) significantly increased the removal of the pharmaceuticals and PCPs, resulting in removal rates close to 90%. The amount of the powdered activated carbon used, the nature of the compound, and the reaction times, must be taken into consideration when optimizing EC removal from wastewater and potentially from stormwaters.

The membrane processes using RO (reverse osmosis) or nano- and ultra filtration, proved to be very effective in the treatment of pharmaceuticals and PCPs, with removal rates greater than 90% for most of the compounds (Snyder et al. 2007, Yoon et al. 2007). The removal is likely due to the retention of the compounds onto the membranes as a result of the hydrophobic nature of the compounds. The adsorption increased with increasing Kow values of the EC, indicating increasing hydrophobicity. In addition, ion exchange processes may influence this removal.

Most of the veterinary pharmaceuticals behave similarly to compounds in the general PPCP listing. Therefore, the treatability expectations discussed above can also be used as general guidance for their reduction.

4.2 Pesticides

The most effective treatment of most pesticides usually involves carbon adsorption using activated carbon. This treatment technology is employed already in several stormwater treatment devices that include a filtration unit.

Pesticide removals can occur in vegetated filter strips during stormwater infiltration. The pesticide removals were associated with sorption to soil and vegetation

27

(Arora et al. 1996). The addition of vegetation in the stormwater flow path increased the microbial activity, leading to some pesticide degradation (Staddon et al. 2001). These researchers found that soil type, slope, length, vegetation density, and vegetation type influenced the efficiency of microbial degradation of pesticides.

CHAPTER V

FATE OF EMERGING CONTAMINANTS IN SURFACE WATERS

Any compound released into the environment will partition between solid, liquid and gaseous phases. The partitioning of a compound into different phases depends on the physical and chemical properties of the phases and of the compound itself. Typically, pollutants with high Koc and Kow values tend to adsorb onto the solid phase. Those with lower Koc and Kow values (and if polar) associate with the liquid phase. A fugacity model developed by Mackay, et al. (1992) was used to predict the partitioning of these emerging pollutants into the three phases. The modeling approach is described in the following section

5.1 Fugacity Approach for Predicting the Partitioning of PPCPs and Pesticides with Different Phases

Fugacity literally means the "tendency to flee." Fugacity modeling is based on chemical equilibrium and is used to determine the relative concentrations of a chemical in air, water, and soil phases. The Level I Fugacity model (Mackay, et al., 1992) was used to calculate the likely fate of representative emerging compounds. These calculations were based on pre-specified control volumes for each media compartment. A Level I Fugacity model assumes the equilibrium distribution of a fixed quantity of conserved chemical, in a closed environment at equilibrium. It does not account for degradation reactions, advective processes, or other intermediate transport processes. The characteristics of different compartments used in these calculations are shown in Table 5.1.

Compartment	Air	Water	Soil	Sediment	Suspended sediment	Fish
Volume, V (m ³)	1E+14	2E+11	9E+09	1E+08	1E+06	2E+05
Depth, h (m)	1000	20	0.1	0.01		
Area, A (m^2)	1E+11	1.E+10	9E+11	1E+10		
Fraction OC			0.02	0.04	0.2	
Density, ρ (kg/m ³)	1.2	1000	2400	2400	1500	1000
Adv. Residence time, T (hrs)	100	100		5E+04		
Adv. Flow, G	1E+12	2E+09		2000		

Table 5.1 Level 1 Fugacity Parameters for Emerging Contaminants (Mackay Method)

The fugacity of a compound is calculated as $f = M/\Sigma V_i Z_i$ (eq. 5.1)

Where M is the total amount of chemical (mol)

 V_i is the medium volume (m³)

 Z_i is the corresponding fugacity capacity for the chemical in each medium

The number of moles partitioned into each respective phase is in turn calculated as:

 $M=f^*\Sigma V_i Z_i$

The equations for phase Z values used in Level I calculations are as shown below:

Air:
$$Z_1 = \frac{1}{RT}$$
 (eq. 5.2)

Water:
$$Z_2 = \frac{1}{H}$$
 (eq. 5.3)

Sediment:
$$Z_3 = Z_2 * P_3 * \phi_3 * \frac{K_{OC}}{1000}$$
 (eq. 5.4)

Suspended Sediment:
$$Z_4 = Z_2 * P_4 * \phi_4 * \frac{K_{OC}}{1000}$$
 (eq. 5.5)

Fish:
$$Z_5 = Z_2 * P_5 * L * \frac{K_{OW}}{1000}$$
 (eq. 5.6)

Where:

R = gas constant (8.314 J/mol K)

T = absolute temperature (K)

H = Henry's law constant (atm*m³/mol)

Kow = Octanol-water partition coefficient

Koc = Organic-carbon partition coefficient

 ρ_i = density of phase i (kg/m³)

 ϕ_i = mass fraction of organic fraction in phase i (g/g)

L= lipid content of fish

The physical and chemical properties of the compounds included in this modeling

study are shown in Tables 5.2 and 5.3.

Compound	Log Kow	Koc	Henrys constant (atm m ³ /mole)
Nystatin	7.08	170	2E-07
Dexamethasone	1.83	240	7.2E-08
Methoprene	5.5	23000	6.9E-06
Prednisone	1.46	150	2.8E-10
Metronidazole	-0.02	23	1.7E-11
Clindamycin	2.16	360	2.9E-22
Ketoconazole	4.34	8970	5.6E-20
Carbamazepine	2.45	510	1.1E-10
Caffeine	-0.07	22	3.6E-11
Ibuprofen	3.97	3400	1.5E-07
Diclofenac	4.51	830	4.7E-12
Acetaminophen	0.46	42	6.4E-13
Triclosan	4.76	9200	1.5E-07
Ciprofloxacin	0.28	61000	5.1E-19
Metoprolol	1.88	62	2.1E-11
Salicylic acid	2.62	65,104	7.34E-09
Dioxin	6.8	24000000	5.0E-05

Table 5.2 Physical and Chemical Properties of PPCPs examined in the study

Compound	Log Kow	Koc	Henrys constant
			(atm-m ³ /mole)
Aldrin	7.08	22909	4.4E-05
Chloroneb	2.47	1260	1.0E-04
Chlorothalonil	1.83	1800	2.5E-07
DDD	6.5	724436	6.6E-06
DDE	4	50118	4.2E-05
DDT	5.5	239883	8.3E-06
Dieldrin	1.46	8730	1.0E-05
Endosulfan	-0.02	2884	6.6E-05
Endrin	2.16	10000	6.4E-06
Etridiazole	4.34	1000	3.0E-05
НСН-а	2.45	2089	6.7E-06
ΗСΗ-β	-0.07	9550	4.4E-07
НСН-б	3.97	661	4.3E-07
НСН-ү	4.51	1071	5.1E-06
Heptachlor	0.46	23988	2.9E-04
Heptachlor	4.76	7800	3.2E-05
epoxide			
Methoxychlor	0.28	80000	2.0E-07
Permethrin	1.88	10715	1.9E-06
Propachlor	2.62	79	3.6E-07
Trifluralin	6.8	7943	1.0E-04
Aroclor 1016	7.08	17783	1.3E-04
Aroclor 1221	2.47	5754	2.3E-04
Aroclor 1232	1.83	7079	3.1E-04
Aroclor 1242	6.5	66070	3.4E-04
Aroclor 1248	4	275423	4.4E-04
Aroclor 1254	5.5	1000000	2.8E-04
Aroclor 1260	1.46	6760830	3.4E-04
Toxaphene	-0.02	7244	6.0E-06
Chlordane	2.16	21380	4.9E-05

Table 5.3 Physical and Chemical Properties of PPCPs examined in the Fugacity study

These fugacity calculations assumed that 100,000 kg of each compound was

released into the environment and the percentage partitions into different phases were as

shown in Table 5.4 and 5.5

		Partitioning into different phases				
Compound	Fugacity	% in	% in	% in	% in	% in
		air	water	sediment	suspended	fish
					sediment	
Nystatin	6.7E-14	0.25	61.97	0.51	0.02	37.25
Dexamethasone	9.1E-14	0.15	98.68	1.14	0.04	0.00
Methoprene	4.8E-12	6.14	43.57	48.10	1.50	0.69
Prednisone	3.9E-16	0.00	99.26	0.71	0.02	0.00
Metronidazole	5.0E-17	0.00	99.89	0.11	0.00	0.00
Clindamycin	3.4E-28	0.00	98.25	1.70	0.05	0.00
ketoconazole	3.6E-26	0.00	69.20	29.79	0.93	0.08
Carbamazepine	2.3E-16	0.00	97.54	2.39	0.07	0.00
Caffeine	9.3E-17	0.00	99.89	0.11	0.00	0.00
Ibuprofen	3.1E-13	0.26	85.34	13.93	0.44	0.04
Diclofenac	7.6E-18	0.00	95.90	3.82	0.12	0.16
Acetaminophen	2.1E-18	0.00	99.79	0.20	0.01	0.00
Triclosan	1.8E-13	0.21	68.43	30.22	0.94	0.20
Ciprofloxacin	1.9E-25	0.00	24.88	72.84	2.28	0.00
Metoprolol	3.9E-17	0.00	99.69	0.30	0.01	0.00
Salicylic acid	6.3E-15	0.00	23.68	74.00	2.31	0.00
Dioxin	6.5E-14	0.09	0.08	96.78	3.02	0.03

Table 5.4 Partitioning of PPCPs into different phases

		Partition into different phases				
Compound	Fugacity	% in	% in	% in	% in	% in
		air	water	sediment	suspended	fish
	1.05.11			2446	sediment	
Aldrin	1.9E-11	28.18	31.33	34.46	1.08	4.95
Chloroneb	7.8E-11	66.24	31.78	1.92	0.06	0.00
Chlorothalonil	4.3E-13	0.47	91.39	7.90	0.25	0.00
DDD	2.8E-13	0.36	2.70	93.78	2.93	0.22
DDE	1.4E-11	17.76	20.89	50.25	1.57	9.53
DDT	8.7E-13	1.26	7.43	85.61	2.68	3.02
Dieldrin	8.0E-12	12.43	60.81	25.48	0.80	0.48
Endosulfan	3.3E-11	54.13	40.13	5.56	0.17	0.01
Endrin	5.1E-12	7.96	61.24	29.40	0.92	0.49
Etridiazole	3.6E-11	36.88	60.15	2.89	0.09	0.00
HCH-α	9.3E-12	11.01	80.63	8.08	0.25	0.03
ΗСΗ-β	5.1E-13	0.61	67.48	30.93	0.97	0.02
НСН-б	7.1E-13	0.84	95.95	3.04	0.10	0.07
НСН-ү	7.6E-12	9.07	86.33	4.44	0.14	0.02
Heptachlor	4.8E-11	73.23	12.19	14.03	0.44	0.11
Heptachlor	2.0E-11	31.86	48.72	18.24	0.57	0.61
epoxide						
Methoxychlor	5.9E-14	0.08	20.12	77.26	2.41	0.12
Permethrin	1.4E-12	2.21	57.91	29.79	0.93	9.16
Propachlor	8.4E-13	0.73	98.89	0.37	0.01	0.00
Trifluralin	4.4E-11	59.99	28.50	10.87	0.34	0.31
Aroclor 1016	5.6E-11	58.54	22.03	18.81	0.59	0.03
Aroclor 1221	1.0E-10	78.53	16.71	4.61	0.14	0.01
Aroclor 1232	9.1E-11	82.41	13.01	4.42	0.14	0.02
Aroclor 1242	5.8E-11	62.14	8.86	28.11	0.88	0.01
Aroclor 1248	3.2E-11	37.93	4.22	55.77	1.74	0.33
Aroclor 1254	7.7E-12	10.26	1.77	85.13	2.66	0.18
Aroclor 1260	1.3E-12	2.03	0.29	94.63	2.96	0.09
Toxaphene	4.8E-12	8.19	66.80	23.23	0.73	1.06
Chlordane	1.9E-11	31.80	32.01	32.85	1.03	2.31

Table 5.5 Partitioning of pesticides into different phases

These fugacity calculations show that the compounds are predominantly partitioned into either the water or sediment phases, with only a few compounds primarily partitioning into the air phase. The concentrations of compounds associated with particulates likely can be reduced substantially using traditional sediment practices, either in wastewater treatment plants, or in stormwater detention ponds. However, the effectiveness of sedimentation will depend on the size of the particles with which these compounds are associated. Sedimentation basins are designed to provide close to 100% treatment of a specific particle size, and larger. If the compounds associate with smaller particles than this critical particle size, sedimentation will be less efficient. Media filtration may reduce the compounds predominantly found both in the water and particulate-associated phases, especially with suitable selection of media (activated carbon). Media filtration's critical particle size limit is determined by the pore size of the media itself and it has been shown to be effective at removing particles $< 10 \ \mu m$ from stormwater runoff. The addition of sorption media, such as activated carbon, allows the media to remove both particulate and dissolved pollutants provided that there is sufficient contact time for the chemical- or physical-sorption to occur. The modeling showed substantial partitioning into the water phase, indicating that wet-weather treatment technologies may require "filtration" (ion exchange or sorption unit processes) to be incorporated in the treatment train.

5.2 Studying the Effects of Environmental Factors on PPCP and Pesticide Associations with different Phases using Fugacity Calculations

The effects of different environmental factors on the partitioning of emerging contaminants into different media were studied using a full 2^3 factorial design. The

35

number of runs and possible interactions of the factors were shown in Table 5.6. The high value of a factor is shown by a '+' and the low value by a '-'sign. The high and low values of the factors are based on the available literature.

17/0)								
Run	А	В	С	AB	AC	BC	ABC	
1	+	+	+	+	+	+	+	
2	+	+	-	+	-	-	-	
3	+	-	+	-	+	-	-	
4	+	-	-	-	-	+	+	
5	-	+	+	-	-	+	-	
6	-	+	-	-	+	-	+	
7	-	-	+	+	-	-	+	
8	-	-	-	+	+	+	-	

Table 5.6 2^3 Factorial Design showing Experimental Conditions for Eight Runs (Box et al 1978)

A: Concentration of Contaminant

B: Concentration of Suspended Sediment

C: Organic Fraction of Suspended Sediment

The high and low values of the factors considered in the design are shown in

Tables 5.7 and 5.8.

2)				
T-1-1- 5 7 73	P = -11 = -4 = -1	D	X7 1-1 -	D-4-	f DDCD-
I anie 5777	EIIII Eactorial	Deston	varianie	I JATA	TOT PPI PS
1 4010 5.7 4	I un I actoriar	DUSIEII	variable	Data	

	Low	High
Variable	value	value
Concentration of Carbamazepine (A), µg/L	0.002	0.083
Concentration of Caffeine (A), µg/L	0.004	0.24
Concentration of Ibuprofen (A), µg/L	0.003	0.6
Concentration of Diclofenac (A), µg/L	0.007	0.18
Concentration of Acetaminophen (A), µg/L	0.012	0.03
Concentration of Triclosan (A), µg/L	0.03	0.74
Concentration of Ciprofloxacin (A), µg/L	0.027	0.5
Concentration of Metoprolol (A), µg/L	0.02	0.12
Concentration of Salicylic acid (A), µg/L	0.013	0.22
Concentration of Dioxin (A), µg/L	0.004	0.071
Concentration of Nystatin(A), µg/L	0.002	0.74
Concentration of Dexamethasone(A), µg/L	0.002	0.74
Concentration of methoprene(A), µg/L	0.002	0.74
Concentration of prednisone (A), µg/L	0.002	0.74
Concentration of Metronidazole (A), µg/L	0.002	0.74
Concentration of Clindamycin (A), µg/L	0.002	0.74
Concentration of Ketoconazole(A), µg/L	0.002	0.74
Concentration of Suspended solids (B), mg/L	10	500
Organic Fraction of Suspended Solids (C)	0.05	0.2

	Low	High
Variable	value	value
Concentration of Contaminant (A), µg/L	0.002	0.083
Concentration of Suspended solids (B), mg/L	10	500
Organic Fraction of Suspended Solids (C)	0.05	0.2

Table 5.7 2³ Full Factorial Design Variable Data for Pesticides

The effects of selected factors on partitioning of emerging contaminants into water, sediment and suspended sediment were analyzed and the results were shown in Appendices A and B. As an example, the results of the nystatin and chloroneb analyses are shown below.

I	Factor Value			Moles of Analyte Partitioned Into			
А	В	С	Water	Sediment	Suspended Sediment		
+	+	+	5.0E+07	4.0E+05	4.2E+03		
+	+	-	5.0E+07	4.0E+05	1.1E+03		
+	-	+	5.0E+07	4.0E+05	8.4E+01		
+	-	-	5.0E+07	4.0E+05	2.1E+01		
-	+	+	1.3E+05	1.1E+03	2.8E+00		
-	+	-	1.3E+05	1.1E+03	2.8E+00		
_	-	+	1.3E+05	1.1E+03	2.3E-01		
-	-	-	1.3E+05	1.1E+03	5.7E-02		

Table 5.8 Model Predicted Portioning of Nystatin with 2³ Factorial Design Variables

Table 5.9 Calculated Effects of Factors and their Interactions on the Associations of Nystatin with Different Media

Factors/Interactions	Effect					
ractors/interactions	Water	Sediment	Suspended Sediment			
A	2.0E+08	1.6E+06	5.4E+03			
В	-3.2E+03	-2.6E+01	5.2E+03			
С	-2.0E+03	-1.6E+01	3.2E+03			
AB	-3.2E+03	-2.6E+01	5.2E+03			
AC	-2.0E+03	-1.6E+01	3.2E+03			
BC	-1.9E+03	-1.6E+01	3.1E+03			
ABC	-1.9E+03	-1.6E+01	3.1E+03			

Figure 5.1 Probability plot of effects of partitioning of Nystatin with water

Figure 5.2 Probability plot of effects of partitioning of Nystatin with sediment

Figure 5.3 Probability plot of effects of partitioning of Nystatin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
А	В	С	Water	Sediment	Suspended Sediment
+	+	+	1.5E+09	9.3E+07	9.7E+05
+	+	-	1.5E+09	9.3E+07	2.4E+05
+	-	+	1.5E+09	9.3E+07	1.9E+04
+	-	-	1.5E+09	9.3E+07	4.8E+03
-	+	+	1.5E+07	9.3E+05	9.7E+03
-	+	-	1.5E+07	9.3E+05	2.4E+03
-	-	+	1.5E+07	9.3E+05	1.9E+02
-	-	-	1.5E+07	9.3E+05	4.8E+01

Table 5.10 Model Predicted Portioning of Chloroneb with 2³ Factorial Design Variables

Table 5.11 Calculated Effects of Factors and their Interactions on the Associations of Chloroneb with Different Media

Factors/Interactions	Effect				
Factors/interactions	Water	Sediment	Suspended Sediment		
А	6.1E+09	3.7E+08	1.2E+06		
В	-3.8E+05	-2.3E+04	1.2E+06		
С	-2.4E+05	-1.4E+04	7.5E+05		
AB	-3.7E+05	-2.3E+04	1.2E+06		
AC	-2.3E+05	-1.4E+04	7.3E+05		
BC	-2.3E+05	-1.4E+04	7.2E+05		
ABC	-2.2E+05	-1.4E+04	7.0E+05		

Figure 5.4 Probability plot of effects of partitioning of Chloroneb with water

Figure 5.5 Probability plot of effects of partitioning of Chloroneb with sediment

Figure 5.6 Probability plot of effects of partitioning of Chloroneb with suspended sediment

Tables 5.8 and 5.10 show the predicted portioned moles of nystatin and chloroneb into water, sediment and suspended sediment under the different combinations of the factors, based on the 2^3 factorial design. Tables 5.9 and 5.11 show the calculated effects of the factors and their interactions on the partitioning of nystatin and chloroneb with water, sediment and suspended sediment. Figures 5.1 - 5.6 are probability plots of the effects of the factors and their interactions on partitioning of nystatin and chloroneb into the three main phases and illustrate the significant factors affecting the partitioning. The probability plots for the water and sediment phases (Figures 5.1, 5.2, 5.4, 5.5) indicate that the concentrations of the contaminant (A) in the system significantly (and positively) affected the partitioning of the compounds. In the case of partitioning to the suspended sediment phase (Figures 5.3, 5.6), the concentrations of the contaminant (A), concentrations of the suspended sediment (B), and their interaction (AB) had the greatest effects on partitioning. Similar results were found when the results of the factorial analyses and Fugacity modeling were compared for all the other PPCPs and pesticides, as shown in Appendices A and B.

CHAPTER VI

FATE OF EMERGING CONTAMINANTS IN THE VADOSE ZONE

Stormwater infiltration as a designed engineering practice may facilitate transport of ECs to the groundwater. In the recent years, there have been extensive studies on the fate and transport of various organic and inorganic pollutants in the saturated and unsaturated layers of the soil. Various computer models have been developed to determine the movement of the pollutants in the sub surfaces of the soil. SESOIL (Waterloo Hydrogeologic Inc) was selected as a suitable model to evaluate the processes and predict the fate of these contaminants as a result of wet-weather flow infiltration.

6.1 An Overview on SESOIL

The Seasonal Soil Compartment Model (SESOIL) is an integrated screening-level soil compartment model, which is used to model the water transport, sediment transport and the fate of the pollutants in the subsurface. It simulates contaminant transport and fate based on diffusion, adsorption, volatilization, biodegradation, and hydrolysis. Arthur D. Little, Inc (ADL), developed the model for EPA's Office of Water and the Office of Toxic Substances (OTS) in 1981, and, in 1984, a fourth soil compartment was added to enhance the existing three. During the end of the 1980s, it was integrated with the Graphical Exposure Modeling System for the PC (PCGEMS) that was later named RISKPRO.

6.2 Modeling Capabilities

SESOIL was developed as a screening-level model, using soil, chemical, and meteorological values as input information. The data requirements for SESOIL were generally less than needed for most other similar models. As it accepts time varying pollutant loading, it has a capability of simulating chemical releases into soil from various sources such as landfill sites, accidental leaks, agricultural applications, leaking underground storage tanks, or deposition from the atmosphere.

6.3 Methodology

The various processes modeled by SESOIL are subdivided into three cycles – the hydrologic cycle, the sediment cycle and the pollutant fate cycle. The hydrologic cycle focuses on moisture movement, the sediment cycle deals with runoff from the soil surface, and the pollutant fate cycle deals with the movement of the pollutant through the soil.

Hydrologic Cycle

The hydrologic cycle simulates the movement of the moisture through the soil compartment. Only vertical movement is considered here. The hydrology of the site is obtained from the output of this module. These results are passed then onto the sediment washload cycle. This submodel is based on the adaptation of the water balance dynamics theory of Eagleson (1978). The water balance equations used by Eagleson are:

$$P - E - MR = S + G - Y \qquad (eq. 6.1)$$

$$\mathbf{I} = \mathbf{P} - \mathbf{S} \tag{eq. 6.2}$$

where the yield (Y) is equal to the sum of the surface runoff (S) and groundwater recharge (G). Yield is also a function of the total precipitation (P), evapotranspiration (E), and moisture retention (MR). And infiltration (I) equals to the difference of total precipitation and the surface runoff.
Sediment Washload Cycle

This submodel is used to estimate the erosion and sediment yield on watersheds. This model uses the runoff results from the hydrologic cycle to estimate the sediment transport. This erosion model is comprised of the three basic processes of soil detachment, transport, and deposition. The Universal Soil Loss Equation (USLE) is employed in the detachment process. The USLE is used to predict the annual sediment erosion which was subjected to sheet and rill erosion. The various parameters involved in the USLE are rainfall factor (R), soil erodibility (K), slope length (L), slope degree factor (S), crop practice factor (C), and the conservation practice factor (P).

Pollutant Fate Cycle

The pollutant fate cycle uses the output obtained from the hydrologic and sediment washload cycles and stimulates the fate and transport of the specified pollutants. This model is based on the following mass balance equation.

$$O(t-1) + I(t) = T(t) + R(t) + M(t)$$
 (eq. 6.3)

Where

O (t-1) = the amount of pollutant originally in the soil compartment at time t-1(μ g/cm²), I (t) = the amount of pollutant entering the soil compartment during a time step (μ g/cm²), T (t) = the amount of pollutant transformed within the soil compartment during the time step (μ g/cm²),

R (t) = the amount of pollutant remaining in the soil compartment at time t (μ g/cm²), M (t) = the amount of pollutant migrating out of the soil compartment during the time step (μ g/cm²)

The fate of the pollutant consists of the movement of the pollutant, as well as the potential transformation reactions involving the pollutant. These transformations involve

the partitioning of the component across the three phases: soil air, soil moisture and soil solids. It also may include biodegradation through microbial activity, photodegradation, and hydrolysis. The concentration of the component in one phase is used to calculate the concentrations in the other two phases as equilibrium exists between all three phases. The concentration in the soil air is calculated via the modified Henry's law:

$$C_{sa} = cH/R (T + 273)$$
 (eq. 6.4)

Where

 C_{sa} = pollutant concentration in soil air (µg/ml); c = pollutant concentration in soil water (µg/ml); H = Henry's law constant (m³atm/mol); R = Universal gas constant; T = soil temperature (°C).

The concentration adsorbed to the soil is estimated using the Freundlich isotherm:

$$\mathbf{s} = \mathbf{K}_{\mathrm{d}} \mathbf{c}^{1/\mathrm{n}} \tag{eq. 6.5}$$

Where,

s = pollutant adsorbed concentration ($\mu g/g$); n = Freundlich exponent; K_d = pollutant partitioning coefficient ($\mu g/g$)/ ($\mu g/ml$); c = pollutant concentration in soil water ($\mu g/ml$) The total concentration of the pollutant in the soil is computed as:

$$C_o = f_a * C_{sa} + \theta * C + \rho_b S \qquad (eq. 6.6)$$

Where,

 C_o = overall (total) pollutant concentration (μ g/cm³);

 $f_a = f - \theta$ = the air-filled porosity (mL/mL); f = soil porosity (mL/mL),

 θ = soil water content (mL/mL); ρ_b = soil bulk density (g/cm³).

6.4 Fate of Pharmaceuticals and Personal Care Products in the Unsaturated Zone

The fate of PPCPs in the unsaturated soil profile was studied using the SESOIL software (Waterloo Hydrogeologic Inc). A full 2⁶ factorial design was used to determine the factors and their interactions effecting the pollutant movement in the vadose zone. Pollutant concentrations, rainfall, vadose zone thickness, intrinsic permeability, organic

content and pH, were chosen as the possible factors and their effects were evaluated. The high and low values of the factors, except for the pollutant concentrations, used in this project, were identical to those used in a similar work (Mikula, et al. 2005) that investigated the potential movement of a representative metal, major cation and major ion in the vadose zone.

Factor	High	Low
Concentration of Nystatin (µg/L)	0.74	0.002
Concentration of Dexamethasone (µg/L)	0.74	0.002
Concentration of Methoprene (µg/L)	0.74	0.002
Concentration of Prednisone (µg/L)	0.74	0.002
Concentration of Metronidazole (µg/L)	0.74	0.002
Concentration of Clindamycin (µg/L)	0.74	0.002
Concentration of Ketconazole (µg/L)	0.74	0.002
Concentration of Carbamazepine (µg/L)	0.083	0.002
Concentration of Caffeine (µg/L)	0.24	0.004
Concentration of Ibuprofen (µg/L)	0.6	0.003
Concentration of Diclofanac (µg/L)	0.18	0.007
Concentration of Acetaminophen (µg/L)	0.03	0.012
Concentration of Triclosan (µg/L)	0.74	0.03
Concentration of Ciprofloxacin (µg/L)	0.5	0.027
Concentration of Metoprolol (µg/L)	0.12	0.02
Concentration of Salicylic acid (µg/L)	0.22	0.013
Rainfall Location and Depth (cm)	West Palm Beach	Phoenix
	154	6.7
Vadose zone thickness (cm)	1200	300
Intrinsic permeability (cm ²)	1.00E-07	1.00E-10
Organic content (%)	3	0.5
рН	7.2-8.0	4.3-5.0

Table 6.1 High and low values of controlling factors (Mikula et al 2005)

The simulation run time was chosen to be 10 years and the rainfall and soil types were chosen from the SESOIL database. Besides the controlling factors being examined, other factors (soil and pollutant chemical parameters) which were needed to predict pollutant movement are shown for each simulation in Appendix C. A total of 64 runs were conducted for each pollutant and the effects of different factors on the pollutant movement were evaluated by generating normal probability plots as shown in Appendix C. As an example, the results of the pollutant migration analyses for nystatin are shown in Figure 6.1.

Figure 6.1 Estimated main effects and effect interactions on nystatin migration in vadose zone

It can be seen from Figure 6.1 that rainfall and intrinsic permeability, plus their interaction, were the significant factors affecting the migration of nystatin in the vadose zone. Similar results were observed for all the studied compounds, as shown in Appendix C.

The results generated by the SESOIL showed that most of the studied PPCPs moved along with the infiltrating stormwater and did not sorb to the soils. Higher rainfall

amounts, therefore, naturally allowed them to migrate deeply into the vadose zone. The effect of intrinsic permeability was also identified as being significant, since the combination of increased rainfall and increased permeability encourages rapid transport of the water, plus any water-soluble pollutants, in the vadose zone and eventually to the groundwater..

The retardation factors for the PPCPs are calculated to predict the movement of these compounds with respect to water movement. The retardation factors were calculated as the ratio of the saturated hydraulic conductivity of the soils to the pollutant migration rates. The minimum and maximum migration rates of the pollutants along with their retardation factors were shown in Table 6.2

	Max. Sat. Hydraulic (Conductivity	Min. Sat. Hydraulic Conductivity		
	0.634 m/h	r	0.000462 m/hr		
Compound	Max. Migration Rate (m/hr)	Retardation Factor	Min. Migration Rate (m/hr)	Retardation Factor	
Nystatin	3.05E-04	3279	7.54E-06	61	
Dexamethasone	3.39E-04	2953	8.33E-06	55	
Methoprene	8.98E-05	11142	2.23E-06	208	
Prednisone	5.87E-04	1704	1.46E-05	32	
Metronidazole	6.42E-04	1558	1.59E-05	29	
Clindamycin	3.66E-04	2733	9.08E-06	51	
ketoconazole	4.35E-04	2299	1.08E-05	43	
Carbamazepine	4.07E-04	2455	1.01E-05	46	
Caffeine	7.18E-04	1393	1.78E-05	26	
Ibuprofen	1.52E-04	6585	3.77E-06	123	
Diclofenac	2.76E-04	3622	6.85E-06	67	
Acetaminophen	7.46E-04	1341	1.85E-05	25	
Triclosan	1.10E-04	9054	2.74E-06	169	
Ciprofloxacin	1.31E-04	7624	3.26E-06	142	
Metoprolol	6.14E-04	1628	1.52E-05	30	
Salicylic acid	3.11E-04	3219	7.71E-06	60	

Table 6.2 Retardation factors for the PPCPs in saturated zone

It can be seen from Table 6.2 that the retardation factors of pollutants in the saturated zone were in the range of 25 to more than 11000, indicating potentially very slow movement rates in the saturated zone.

The disposal of pesticide contaminated stormwater to the subsurface should receive special attention. Pitt, et al. (1995) identified pesticides as having moderate to high groundwater contamination potentials due to their mobility through the vadose zone in areas having sandy soils, with little soil attenuation and the difficulty of treatment before discharge.

Several studies have investigated pesticide movement through soil and it was found out that the mobility depends on several significant factors including soil texture, pesticide persistence, total organic carbon content, depth of the water table (Shirmohammadi etal 1989), solubility, and adsorption rates (Bucheli etal 2007). Usually, pesticides with low water solubility and high K_{ow}, especially in organic rich soils, are less mobile. Biological degradation can be an effective mechanism for the decomposition of some pesticides retained in the soil (Takemetsu etal 1985), although most are resistant to degradation.

CHAPTER VII

CONCLUSIONS

Emerging contaminants, due to their health effects and potential to interfere with normal biochemical processes in the human body, their very low concentrations, and their general lack of regulation at these low environmental concentrations, are of great concern. Their fate and movement in the environment needs to be studied in a thorough manner and treatment technologies may need to be developed, or existing ones enhanced, to remove them before they enter the receiving waters and eventually the drinking water supply. These compounds are also a challenge because they require special analytical methods to detect and quantify these contaminants in environmental samples. Costly analytical methods are needed, such as HPLC-ESI-MS-MS and GC-MS and GC-ECD, to achieve good recoveries. The literature highlighted the concerns associated with inefficient sample extraction and concentration.

The fate analyses of the emerging contaminants showed their associations were mostly with the water phase, with fewer associated with the sediment phases. This was not surprising since many pharmaceuticals are designed to be transported in the bloodstream, which is mostly water. Stronger associations with the sediment phase may be associated with whether a compound is designed to travel freely in the bloodstream or whether it requires lipids/fats for sorption. Compounds that partition to the solid phase may be treatable through sedimentation. However, sedimentation will not be effective if the compounds partition preferentially to very small solids (< 5 – 10 μ m) since the critical particle size used in wet weather flow sedimentation basin design may be larger than these sizes. The preferential partitioning into the water phase indicates that common physical treatment technologies used for many wet weather flow may not be as effective. This is supported by the literature that shows that removals are poor in the clarifier/sedimentation basins at wastewater treatment plants. Media filtration may be required in order to have the chemical reactions required to remove these compounds from stormwater. As the literature has shown, media filtration can remove a wide variety of pollutants, with varying degrees of effectiveness. The effectiveness is associated with providing sufficient contact time for pollutant removal. The calculated retardation factors for groundwater movement indicate that, while media filters may not provide permanent retention of these pollutants, it may be effective for many compounds for several years. Media filtration as a unit operation is associated with stormwater filters for biofiltration practices (for ion exchange and sorption), in-line filtration devices. This research shows that suitable selection of media is necessary. Other advanced treatment technologies that typically are not employed in wet-weather flow treatment, such as oxidation and microfiltration, may be cost-effective for these compounds, particularly if the regulations change to require large removals of these compounds from stormwater.

SESOIL was shown to be a suitable model for predicting the migration depths of emerging contaminants in sub-surface environment. SESOIL noted that the rainfall and the intrinsic permeability of the soil were the primary factors affecting the pollutant migration. The SESOIL output was used to calculate subsurface retardation factors for these emerging contaminants. The modeling activity presented herein is limited because the site data used were only for two typical soils and can not represent all possible

51

conditions. The model simulation also requires several simplifications to the processes known to be occurring in the field. In addition, for several compounds, the amount of information available in the literature was small and the modeling coefficients could only be estimated within 1 - 2 orders of magnitude.

Potential future research could effectively focus on properly estimating the chemical properties of these emerging contaminants. In addition, analyzing real time samples to estimate the fate and persistence of these compounds in the environment effectively is needed.

REFERENCES

Arora, Kapil; Mickelson, Steven K.; Baker, James L. "Effectiveness of vegetated buffer strips in reducing pesticide transport in simulated runoff" *Transactions of the American Society of Agricultural Engineers*, v 46, n 3, p 635-644, 2003.

Blanchoud, H; Moreau-Guigon, E.; Farrugia, F.; Chevreuil, M.; Mouchel, "J.M.Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed" *Science of the Total Environment*, v 375, n 1-3,p 168-179, 2007.

- Box, G.E.P., Hunter, W.G. and Hunter, J.S. *Statistics for Experimenters*. John Wiley and Sons. New York. 1978
- Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A.; Mitra, Siddhartha " Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada " *Science of the Total Environment*, v 311, n 1-3, p 135-149, 2003.
- Bucheli, Thomas D.; Muller, Stephan R.; Voegelin, Andreas; Schwarzenbach, Rene P."Bituminous roof sealing membranes as major sources of the herbicide (R,S)mecoprop in roof runoff waters: potential contamination of groundwater and surface waters" *Environmental Science and Technology*, v 32, n 22, p 3465-3471, 1998.
- Bucheli, Thomas D.; Muller, Stephan R.; Heberle, Siegrun; Schwarzenbach, Rene P."Occurrence and behavior of pesticides in rainwater, roof runoff, and artificial stormwater infiltration" *Environmental Science and Technology*, v 32, n 22, p 3457-3464, 1998.
- Bundy, Michael M; Doucette, William J.; McNeill, Laurie; Ericson, Jon F. " Removal of pharmaceuticals and related compounds by a bench-scale drinking water treatment system" *Journal of Water Supply: Research and Technology - AQUA*, v 56, n 2, p 105-115, 2007.
- Carballa, Marta; Omil, Francisco; Ternes, Thomas; Lema, Juan M. " Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge" *Water Research*, v 41, n 10, p 2139-2150, 2007.

- Carballa, Marta; Omil, Francisco; Lema, Juan M.; Llompart, Maria; Garcia-Jares, Carmen; Rodriguez, Isaac; Gomez, Mariano; Ternes, Thomas " Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant" *Water Research*, v 38, n 12, p 2918-2926, 2004.
- Castiglioni, Sara; Bagnati, Renzo; Calamari, Davide; Fanelli, Roberto; Zuccato, Ettore "A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters" *Journal of Chromatography* A, v 1092, n 2,p 206-215, 2005.
- Castiglioni, Sara; Bagnati, Renzo; Fanelli, Roberto; Pomati, Francesco; Calamari, Davide; Zuccato, Ettore "Removal of pharmaceuticals in sewage treatment plants in Italy" *Environmental Science and Technology*, v 40, n 1, p 357-363, 2006.
- Charizopoulos, Emmanouil (Aristotle Univ); Papadopoulou-Mourkidou, Euphemia "Occurrence of pesticides in rain of the Axios River Basin, Greece" *Environmental Science and Technology*, v 33, n 14,p 2363-2368,1999.
- Clara, M; Strenn, B.; Gans, O.; Kreuzinger, N "The elimination of selected pharmaceuticals in wastewater treatment - Lab scale experiments with different sludge retention times." *Progress in Water Resources*, v 8, *Water Resources Management III*, p 227-236, 2003.
- Gibson, Richard; Becerril-Bravo, Elias; Silva-Castro, Vanessa; Jimenez, Blanca "Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry" *Journal of Chromatography* A, v 1169, n 1-2, p 31-39, 2007.
- Jacobsen, Suhr Carsten; Sorensen R. Sebastian; Juhler K. Rene "Emerging Contaminants in Danish Groundwater" Geological Survey of Denmark and Greenland, p 1-43, 2005
- Kosjek, Tina; Heath, Ester; Krbavcic, Ales "Determination of non-steroidal antiinflammatory drug (NSAIDs) residues in water samples" *Environment International*, v 31, n 5, p 679-685, 2005.
- Koutsouba, V.; Heberer, Th.; Fuhrmann, B.; Schmidt-Baumler, K.; Tsipi, D.; Hiskia, A. "Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry" *Chemosphere*, v 51, n 2, p 69-75, 2003.

- Lee, Hing-Biu; Sarafin, Kurtis; Peart, Thomas E.; Svoboda, M. Lewina "Acidic pharmaceuticals in sewage - Methodology, stability test, occurrence, and removal from Ontario samples" *Water Quality Research Journal of Canada*, v 38, n 4, p 667-682, 2003.
- Lee, Hing-Biu; Peart, Thomas E.; Svoboda, M. Lewina "Determination of endocrinedisrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry" *Journal of Chromatography A*, v 1094, n 1-2, p 122-129, 2005.
- Lin, Wan-Ching; Chen, Hsin-Chang; Ding, Wang-Hsien "Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume online derivatization with gas chromatography-mass spectrometry" *Journal of Chromatography* A, v 1065, n 2, p 279-285, 2005.
- Linda; Nguyen, Bick; Kleywegt, Sonya; Yang, Paul; Solomon, Keith; Hao, Chunyan; Lissemore "Determination of pharmaceuticals in environmental waters by liquid chromatography/electrospray ionization/tandem mass spectrometry", *Analytical and Bioanalytical Chemistry*, v 384, n 2, p 505-513, 2006.
- Lindqvist, Niina; Tuhkanen, Tuula; Kronberg, Leif "Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters" *Water Research*, v 39, n 11, p 2219-2228, 2005.
- Lishman, Lori; Smyth, Shirley Anne; Sarafin, Kurtis; Kleywegt, Sonya; Toito, John; Peart, Thomas; Lee, Bill; Servos, Mark; Beland, Michel; Seto, Peter "Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada" *Science of the Total Environment*, v 367, n 2-3, p 544-558, 2006.
- Lishman, Lori; Smyth, Shirley Anne; Sarafin, Kurtis; Kleywegt, Sonya; Toito, John; Peart, Thomas; Lee, Bill; Servos, Mark; Beland, Michel; Seto, Peter "Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada" *Science of the Total Environment*, v 367, n 2-3, p 544-558, 2006.
- Lyman, W.J., Reehl, W.F., and Rosenblatt, D.H. *Handbook of Chemical Property Estimation Methods*. McGraw-Hill, Newyork. 1982.
- Mackay, D., Shiu, W.Y., Ma, K.C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Volume II, Lewis Publishers. 1992.
- Majewska-Nowak, K.; Kabsch-Korbutowicz, M.; Dodz, M. "Removal of pesticides from natural waters" *Environmental Protection Engineering*, v 27, n 2, p 55-69, 2001.

Mikula, B. MEPC. *Modeling Zinc and Sodium Chloride Migration in Vadose Zone Soils Beneath Stormwater Infilrtation Devices* (published thesis). Department of Environmental Pollution Control, The Pennsylvania State University. 2005.

- Pedrouzo, Marta; Reverte, Sandra; Borrull, Francesc; Pocurull, Eva; Marce, Rosa Maria "Pharmaceutical determination in surface and wastewaters using highperformance liquid chromatography-(electrospray)-mass spectrometry" *Journal of Separation Science*, v 30, n 3, p 297-303, 2007.
- Petrovic, Mira; Gonzalez, Susana; Barcelo, Damia "Analysis and removal of emerging contaminants in wastewater and drinking water" *Trends in Analytical Chemistry*, v 22, n 10, p 685-696, 2003.
- Petrovic, Mira; Radjenovic, Jelena; Barcelo, Damia "Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor" *Analytical and Bioanalytical Chemistry*, v 387, n 4, p 1365-1377, 2007.
- Pitt, Robert; Clark, Shirley; Field, Richard "Groundwater contamination potential from stormwater infiltration practices" *Urban Water*, v 1, n 3, p 217-236, 1999.
- Reddersen, Kirsten; Heberer, Thomas "Multi-compound methods for the detection of pharmaceutical residues in various waters applying solid phase extraction (SPE) and gas chromatography with mass spectrometric (GC-MS) detection" *Journal of Separation Science*, v 26, n 15-16, p 1443-1450, 2003
- Sacher, F.; Lange, F.T.; Brauch, H.-J.; Blankenhorn, I."Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany" *Journal of Chromatography* A, v 938, n 1-2, p 199-210, 2001.
- Schiff, Kenneth; Sutula, Martha "Organophosphorus pesticides in storm-water runoff from Southern California (USA)" *Environmental Toxicology and Chemistry*, v 23, n 8, p 1815-1821, 2004.
- Snyder, Shane A.; Adham, Samer; Redding, Adam M.; Cannon, Fred S.; DeCarolis, James; Oppenheimer, Joan; Wert, Eric C.; Yoon, Yeomin "Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals" *Desalination*, v 202, n 1-3, p 156-181, 2007.
- Sudo, M; Kunimatsu, T. "Characteristics of pesticides runoff from golf links" *Water Science and Technology*, v 25, n 11, p 85-92, 1992.
- Ternes, T; Bonerz, M.; Schmidt, T."Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry" *Journal of Chromatography* A, v 938, n 1-2, p 175-185, 2001.

- Thomas, Paul M; Foster, Gregory D."Determination of nonsteroidal anti-inflammatory drugs, caffeine, and triclosan in wastewater by gas chromatography-mass spectrometry" *Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering*, v 39, n 8, p 1969-1978, 2004.
- Thomas, Paul M.; Foster, Gregory D. "Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process" *Environmental Toxicology and Chemistry*, v 24, n 1, p 25-30, 2005.
- Togola, Anne; Budzinski, Helene "Analytical development for analysis of pharmaceuticals in water samples by SPE and GC-MS" *Analytical and Bioanalytical Chemistry*, v 388, n 3, p 627-635, 2007,
- Vanderford, Brett J.; Pearson, Rebecca A.; Rexing, David J.; Snyder, Shane A."Analysis of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in Water Using Liquid Chromatography/Tandem Mass Spectrometry" *Analytical Chemistry*, v 75, n 22, p 6265-6274, 2003.
- Vieno, Niina M.; Tuhkanen, Tuula; Kronberg, Leif "Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection" *Journal of Chromatography* A, v 1134, n 1-2, p 101-111, 2006.
- Vieno, N.; Tuhkanen, T.; Kronberg, L."Elimination of pharmaceuticals in sewage treatment plants in Finland" *Water Research*, v 41, n 5, p 1001-1012, 2007.
- Vieno, Niina M.; Harkki, Heli; Tuhkanen, Tuula; Kronberg, Leif "Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant" *Environmental Science and Technology*, v 41, n 14, p 5077-5084, 2007.
- Yoon, Yeomin; Westerhoff, Paul; Snyder, Shane A.; Wert, Eric C.; Yoon, Jaekyung "Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes" *Desalination*, v 202, n 1-3, p 16-23, 2007.
- Zhang, Z.L.; Zhou, J.L. "Simultaneous determination of various pharmaceutical compounds in water by solid-phase extraction-liquid chromatography-tandem mass spectrometry" *Journal of Chromatography* A, v 1154, n 1-2, p 205-213, 2007.

APPENDIX A

PROPERTIES AND FATE MODELING OF PPCPs

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc. Of	Organic fraction			Suspended
Nystatin (A)	S.S.(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	5.0E+07	4.0E+05	4.2E+03
+	+	-	5.0E+07	4.0E+05	1.1E+03
+	-	+	5.0E+07	4.0E+05	8.4E+01
+	-	-	5.0E+07	4.0E+05	2.1E+01
-	+	+	1.3E+05	1.1E+03	2.8E+00
-	+	-	1.3E+05	1.1E+03	2.8E+00
-	-	+	1.3E+05	1.1E+03	2.3E-01
-	-	-	1.3E+05	1.1E+03	5.7E-02

Table A.1 Model Predicted Portioning of Nystatin with 2³ Factorial Design Variables

Table A.2 Calculated Effects of Factors and their Interactions on the Associations of Nystatin with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
A	2.0E+08	1.6E+06	5.4E+03	
В	-3.2E+03	-2.6E+01	5.2E+03	
С	-2.0E+03	-1.6E+01	3.2E+03	
AB	-3.2E+03	-2.6E+01	5.2E+03	
AC	-2.0E+03	-1.6E+01	3.2E+03	
BC	-1.9E+03	-1.6E+01	3.1E+03	
ABC	-1.9E+03	-1.6E+01	3.1E+03	

Figure A.1 Probability plot of effects of partitioning of Nystatin with water

Figure A.2 Probability plot of effects of partitioning of Nystatin with sediment

Figure A.3 Probability plot of effects of partitioning of Nystatin with suspended sediment

			Moles of	Analyte Pai	titioned	
Factor Value	Factor Value			Into		
Conc of	Conc of	Organic fraction			Suspended	
Dexamethasone (A)	S.S. (B)	of S.S (C)	Water	Sediment	Sediment	
+	+	+	1.9E+08	2.1E+06	2.2E+04	
+	+	-	1.9E+08	2.1E+06	5.6E+03	
+	-	+	1.9E+08	2.1E+06	4.5E+02	
+	-	-	1.9E+08	2.1E+06	1.1E+02	
-	+	+	5.0E+05	5.8E+03	6.0E+01	
-	+	-	5.0E+05	5.8E+03	1.5E+01	
-	-	+	5.0E+05	5.8E+03	1.2E+00	
-	-	-	5.0E+05	5.8E+03	3.0E-01	

Table A.3 Model Predicted Portioning of Dexamethasone with 2³ Factorial Design Variables

Table A.4 Calculated Effects of Factors and their Interactions on the Associations of Dexamethasone with Different Media

Eastons /Internations	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
Α	7.4E+08	8.6E+06	2.8E+04	
В	-2.7E+04	-3.1E+02	2.7E+04	
С	-1.7E+04	-1.9E+02	1.7E+04	
AB	-2.7E+04	-3.1E+02	2.7E+04	
AC	-1.7E+04	-1.9E+02	1.7E+04	
BC	-1.6E+04	-1.9E+02	1.6E+04	
ABC	-1.6E+04	-1.9E+02	1.6E+04	

Figure A.4Probability plot of effects of partitioning of Dexamethasone with water

Figure A.5Probability plot of effects of partitioning of Dexamethasone with sediment

Figure A.6Probability plot of effects of partitioning of Dexamethasone with suspended sediment

Table A.5 Model Predicted Portioning of Methoprene with 2³ Factorial Design Variables

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc of	Organic fraction			Suspended
Methoprene(A)	S.S.(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	1.0E+08	1.2E+08	1.2E+06
+	+	-	1.1E+08	1.2E+08	3.0E+05
+	-	+	1.1E+08	1.2E+08	2.4E+04
+	-	-	1.1E+08	1.2E+08	6.1E+03
-	+	+	2.8E+05	3.1E+05	3.3E+03
-	+	-	2.8E+05	3.1E+05	8.2E+02
-	-	+	2.8E+05	3.1E+05	6.6E+01
-	-	-	2.8E+05	3.1E+05	1.6E+01

Table A.6 Calculated Effects of Factors and their Interactions on the Associations of Methoprene with Different Media

Fastars/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	4.2E+08	4.6E+08	1.5E+06	
В	-6.6E+05	-7.2E+05	1.5E+06	
С	-4.1E+05	-4.5E+05	9.2E+05	
AB	-6.5E+05	-7.2E+05	1.5E+06	
AC	-4.1E+05	-4.5E+05	9.2E+05	
BC	-3.9E+05	-4.3E+05	8.9E+05	
ABC	-3.9E+05	-4.3E+05	8.8E+05	

Figure A.7Probability plot of effects of partitioning of Methoprene with water

Figure A.8Probability plot of effects of partitioning of Methoprene with sediment

Figure A.9Probability plot of effects of partitioning of Methoprene with suspended sediment

Factor Value			Moles of Analyte Partitioned Into			
Conc of Prednisone(A)	Conc of S.S.(B)	Organic fraction of S.S.(C)	Water	Sediment	Suspended Sediment	
+	+	+	2.0E+08	1.5E+06	1.5E+04	
+	+	-	2.0E+08	1.5E+06	3.8E+03	
+	-	+	2.0E+08	1.5E+06	3.1E+02	
+	-	-	2.0E+08	1.5E+06	7.7E+01	
-	+	+	5.5E+05	4.0E+03	4.2E+01	
-	+	-	5.5E+05	4.0E+03	1.0E+01	
-	-	+	5.5E+05	4.0E+03	8.3E-01	
-	-	-	5.5E+05	4.0E+03	2.1E-01	

Table A.7 Model Predicted Portioning of Prednisone with 2³ Factorial Design Variables

Table A.8 Calculated Effects of Factors and their Interactions on the Associations of Prednisone with Different Media

Fastors/Internations	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	8.2E+08	5.9E+06	2.0E+04	
В	-1.9E+04	-1.3E+02	1.9E+04	
С	-1.2E+04	-8.4E+01	1.2E+04	
AB	-1.9E+04	-1.3E+02	1.9E+04	
AC	-1.2E+04	-8.4E+01	1.2E+04	
BC	-1.1E+04	-8.1E+01	1.1E+04	
ABC	-1.1E+04	-8.1E+01	1.1E+04	

Figure A.10Probability plot of effects of partitioning of Prednisone with water

Figure A.11Probability plot of effects of partitioning of Prednisone with sediment

Figure A.12Probability plot of effects of partitioning of Prednisone with suspended sediment

Table A.9 Model Predicted Portioning of Metronidazole with 2³ Factorial Design Variables

Factor Value			Moles of Analyte Partitioned Into		
Conc of Metronidazole(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	4.3E+08	4.8E+05	5.0E+03
+	+	-	4.3E+08	4.8E+05	1.2E+03
+	-	+	4.3E+08	4.8E+05	9.9E+01
+	-	-	4.3E+08	4.8E+05	2.5E+01
-	+	+	1.2E+06	1.3E+03	1.3E+01
-	+	-	1.2E+06	1.3E+03	3.4E+00
-	-	+	1.2E+06	1.3E+03	2.7E-01
-	-	-	1.2E+06	1.3E+03	6.7E-02

Table A.10 Calculated Effects of Factors and their Interactions on the Associations of Metronidazole with Different Media

Fastars/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	1.7E+09	1.9E+06	6.3E+03	
В	-6.1E+03	-6.7E+00	6.1E+03	
С	-3.8E+03	-4.2E+00	3.8E+03	
AB	-6.1E+03	-6.7E+00	6.1E+03	
AC	-3.8E+03	-4.2E+00	3.8E+03	
BC	-3.7E+03	-4.0E+00	3.7E+03	
ABC	-3.6E+03	-4.0E+00	3.6E+03	

Figure A.13Probability plot of effects of partitioning of Metronidazole with water

Figure A.14Probability plot of effects of partitioning of Metronidazole with sediment

Figure A.15Probability plot of effects of partitioning of Metronidazole with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Clindomycin(A)	Conc of	Organic fraction of	Wator	Sadimant	Suspended Sediment
Ciniualitycin(A)	3.3(D)	3.3(C)	water	Seument	Seument
+	+	+	1.7E+08	3.0E+06	3.1E+04
+	+	-	1.7E+08	3.0E+06	7.7E+03
+	-	+	1.7E+08	3.0E+06	6.2E+02
+	-	-	1.7E+08	3.0E+06	1.5E+02
-	+	+	4.6E+05	8.0E+03	8.3E+01
-	+	-	4.6E+05	8.0E+03	2.1E+01
-	-	+	4.6E+05	8.0E+03	1.7E+00
-	-	-	4.6E+05	8.0E+03	4.2E-01

Table A.11 Model Predicted Portioning of Clindamycin with 2³ Factorial Design Variables

Table A.12 Calculated Effects of Factors and their Interactions on the Associations of Clindamycin with Different Media

Fastors/Interactions	Effect			
Factors/interactions	Water	Sediment	Suspended Sediment	
А	6.8E+08	1.2E+07	3.9E+04	
В	-3.7E+04	-6.4E+02	3.8E+04	
С	-2.3E+04	-4.0E+02	2.4E+04	
AB	-3.7E+04	-6.4E+02	3.8E+04	
AC	-2.3E+04	-4.0E+02	2.4E+04	
BC	-2.2E+04	-3.9E+02	2.3E+04	
ABC	-2.2E+04	-3.8E+02	2.3E+04	

Figure A.16Probability plot of effects of partitioning of Clindamycin with water

Figure A.17Probability plot of effects of partitioning of Clindamycin with sediment

Figure A.18Probability plot of effects of partitioning of Clindamycin with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of	Conc of	Organic fraction			Suspended
Ketoconazole(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	9.7E+07	4.2E+07	4.3E+05
+	+	-	9.7E+07	4.2E+07	1.1E+05
+	-	+	9.7E+07	4.2E+07	8.7E+03
+	-	-	9.7E+07	4.2E+07	2.2E+03
-	+	+	2.6E+05	1.1E+05	1.2E+03
-	+	-	2.6E+05	1.1E+05	2.9E+02
-	-	+	2.6E+05	1.1E+05	2.4E+01
-	-	-	2.6E+05	1.1E+05	5.9E+00

Table A.13 Model Predicted Portioning of Ketoconazole with 2³ Factorial Design Variables

Table A.14 Calculated Effects of Factors and their Interactions on the Associations of Ketoconazole with Different Media

Factors/Interactions	Effect			
	Water	Sediment	Suspended Sediment	
А	3.9E+08	1.7E+08	5.5E+05	
В	-3.7E+05	-1.6E+05	5.3E+05	
С	-2.3E+05	-1.0E+05	3.3E+05	
AB	-3.7E+05	-1.6E+05	5.3E+05	
AC	-2.3E+05	-1.0E+05	3.3E+05	
BC	-2.2E+05	-9.6E+04	3.2E+05	
ABC	-2.2E+05	-9.6E+04	3.2E+05	

Figure A.19Probability plot of effects of partitioning of Ketoconazole with water

Figure A.20Probability plot of effects of partitioning of Ketoconazole with sediment

Figure A.21Probability plot of effects of partitioning of Ketoconazole with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Carbamazepine(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.4E+07	8.4E+05	8.7E+03
+	+	-	3.4E+07	8.4E+05	2.2E+03
+	-	+	3.4E+07	8.4E+05	1.7E+02
+	-	-	3.4E+07	8.4E+05	4.4E+01
-	+	+	8.3E+05	2.0E+04	2.1E+02
-	+	-	8.3E+05	2.0E+04	5.3E+01
-	-	+	8.3E+05	2.0E+04	4.2E+00
-	-	-	8.3E+05	2.0E+04	1.1E+00

Table A.15 Model Predicted Portioning of Carbamazepine with 2³ Factorial Design Variables

Table A.16 Calculated Effects of Factors and their Interactions on the Associations of Carbamazepine with Different Media

Factors/Interactions	Effect			
r actors/interactions	Water	Sediment	Suspended Sediment	
A	1.3E+08	3.3E+06	1.1E+04	
В	-1.1E+04	-2.6E+02	1.1E+04	
С	-6.7E+03	-1.6E+02	6.8E+03	
AB	-1.0E+04	-2.5E+02	1.0E+04	
AC	-6.4E+03	-1.6E+02	6.5E+03	
вс	-6.4E+03	-1.6E+02	6.6E+03	
ABC	-6.1E+03	-1.5E+02	6.3E+03	

Figure A.22Probability plot of effects of partitioning of Carbamazepine with water

Figure A.23Probability plot of effects of partitioning of Carbamazepine with sediment

Figure A.24Probability plot of effects of partitioning of Carbamazepine with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Caffeine (A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.2E+08	1.3E+05	1.4E+03
+	+	-	1.2E+08	1.3E+05	3.4E+02
+	-	+	1.2E+08	1.3E+05	2.7E+01
+	-	-	1.2E+08	1.3E+05	6.8E+00
-	+	+	2.1E+06	2.2E+03	2.3E+01
-	+	-	2.1E+06	2.2E+03	5.7E+00
-	-	+	2.1E+06	2.2E+03	4.5E-01
-	-	-	2.1E+06	2.2E+03	1.1E-01

Table A.17 Model Predicted Portioning of Caffeine with 2³ Factorial Design Variables

Table A.18 Calculated Effects of Factors and their Interactions on the Associations of Caffeine with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
A	4.9E+08	5.1E+05	1.7E+03	
В	-1.7E+03	-1.8E+00	1.7E+03	
С	-1.1E+03	-1.1E+00	1.1E+03	
AB	-1.6E+03	-1.7E+00	1.6E+03	
AC	-1.0E+03	-1.1E+00	1.0E+03	
BC	-1.0E+03	-1.1E+00	1.0E+03	
ABC	-9.8E+02	-1.0E+00	9.8E+02	

Figure A.25Probability plot of effects of partitioning of Caffeine with water

Figure A.26Probability plot of effects of partitioning of Caffeine with sediment

Figure A.27Probability plot of effects of partitioning of Caffeine with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Ibuprofen(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	2.5E+08	4.1E+07	4.2E+05
+	+	-	2.5E+08	4.1E+07	1.1E+05
+	-	+	2.5E+08	4.1E+07	8.5E+03
+	-	-	2.5E+08	4.1E+07	2.1E+03
-	+	+	1.2E+06	2.0E+05	2.1E+03
-	+	-	1.2E+06	2.0E+05	5.3E+02
-	-	+	1.2E+06	2.0E+05	4.2E+01
-	-	-	1.2E+06	2.0E+05	1.1E+01

Table A.19 Model Predicted Portioning of Ibuprofen with 2³ Factorial Design Variables

Table A.20 Calculated Effects of Factors and their Interactions on the Associations of Ibuprofen with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
A	9.9E+08	1.6E+08	5.4E+05	
В	-4.5E+05	-7.3E+04	5.2E+05	
С	-2.8E+05	-4.5E+04	3.3E+05	
AB	-4.4E+05	-7.2E+04	5.2E+05	
AC	-2.8E+05	-4.5E+04	3.2E+05	
BC	-2.7E+05	-4.4E+04	3.1E+05	
ABC	-2.7E+05	-4.3E+04	3.1E+05	

Figure A.28Probability plot of effects of partitioning of Ibuprofen with water

Figure A.29Probability plot of effects of partitioning of Ibuprofen with sediment

Figure A.30Probability plot of effects of partitioning of Ibuprofen with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Diclofenac(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	5.8E+07	2.3E+06	2.4E+04
+	+	-	5.8E+07	2.3E+06	6.1E+03
+	-	+	5.8E+07	2.3E+06	4.8E+02
+	-	-	5.8E+07	2.3E+06	1.2E+02
-	+	+	2.3E+06	9.0E+04	9.4E+02
-	+	-	2.3E+06	9.0E+04	2.4E+02
-	-	+	2.3E+06	9.0E+04	1.9E+01
_	-	-	2.3E+06	9.0E+04	4.7E+00

Table A.21 Model Predicted Portioning of Diclofenac with 2³ Factorial Design Variables

Table A.22 Calculated Effects of Factors and their Interactions on the Associations of Diclofenac with Different Media

Eastons/Internations	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	2.2E+08	8.9E+06	3.0E+04	
В	-3.0E+04	-1.2E+03	3.1E+04	
С	-1.8E+04	-7.4E+02	1.9E+04	
AB	-2.7E+04	-1.1E+03	2.9E+04	
AC	-1.7E+04	-6.8E+02	1.8E+04	
BC	-1.8E+04	-7.1E+02	1.8E+04	
ABC	-1.6E+04	-6.5E+02	1.7E+04	

Figure A.31Probability plot of effects of partitioning of Diclofenac with water

Figure A.32Probability plot of effects of partitioning of Diclofenac with sediment

Figure A.33Probability plot of effects of partitioning of Diclofenac with suspended sediment
Factor Value	Moles of Analyte Partitioned Into				
Conc of Acetaminophen(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	2.0E+07	4.0E+04	4.2E+02
+	+	-	2.0E+07	4.0E+04	1.0E+02
+	-	+	2.0E+07	4.0E+04	8.3E+00
+	-	-	2.0E+07	4.0E+04	2.1E+00
-	+	+	7.9E+06	1.6E+04	1.7E+02
-	+	-	7.9E+06	1.6E+04	4.2E+01
-	-	+	7.9E+06	1.6E+04	3.3E+00
-	-	-	7.9E+06	1.6E+04	8.3E-01

Table A.23 Model Predicted Portioning of Acetaminophen with 2³ Factorial Design Variables

Table A.24 Calculated Effects of Factors and their Interactions on the Associations of Acetaminophen with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	4.8E+07	9.6E+04	3.2E+02	
В	-7.1E+02	-1.4E+00	7.1E+02	
С	-4.4E+02	-9.0E-01	4.5E+02	
AB	-3.1E+02	-6.2E-01	3.1E+02	
AC	-1.9E+02	-3.8E-01	1.9E+02	
BC	-4.3E+02	-8.6E-01	4.3E+02	
ABC	-1.8E+02	-3.7E-01	1.8E+02	

Figure A.34Probability plot of effects of partitioning of Acetaminophen with water

Figure A.35Probability plot of effects of partitioning of Acetaminophen with sediment

Figure A.36Probability plot of effects of partitioning of Acetaminophen with suspended sediment

Factor Value			Moles of A	Analyte Part	itioned Into
Conc of Triclosan(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.8E+08	7.8E+07	8.1E+05
+	+	-	1.8E+08	7.8E+07	2.0E+05
+	-	+	1.8E+08	7.8E+07	1.6E+04
+	-	-	1.8E+08	7.8E+07	4.1E+03
-	+	+	7.1E+06	3.2E+06	3.3E+04
-	+	-	7.2E+06	3.2E+06	8.2E+03
-	-	+	7.2E+06	3.2E+06	6.6E+02
-	-	-	7.2E+06	3.2E+06	1.6E+02

Table A.25 Model Predicted Portioning of Triclosan with 2³ Factorial Design Variables

Table A.26 Calculated Effects of Factors and their Interactions on the Associations of Triclosan with Different Media

Factors/Interactions	Effect			
Factors/Interactions	Water	Sediment	Suspended Sediment	
А	6.8E+08	3.0E+08	9.9E+05	
В	-7.1E+05	-3.1E+05	1.0E+06	
С	-4.4E+05	-2.0E+05	6.4E+05	
AB	-6.6E+05	-2.9E+05	9.5E+05	
AC	-4.1E+05	-1.8E+05	5.9E+05	
BC	-4.3E+05	-1.9E+05	6.2E+05	
ABC	-3.9E+05	-1.7E+05	5.7E+05	

Figure A.37Probability plot of effects of partitioning of Triclosan with water

Figure A.38Probability plot of effects of partitioning of Triclosan with sediment

Figure A.39Probability plot of effects of partitioning of Triclosan with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Ciprofloxacin(A)	Conc of S.S.(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.8E+07	1.1E+08	1.2E+06
+	+	-	3.8E+07	1.1E+08	2.9E+05
+	-	+	3.8E+07	1.1E+08	2.3E+04
+	-	-	3.8E+07	1.1E+08	5.9E+03
-	+	+	2.1E+06	6.0E+06	6.3E+04
-	+	-	2.1E+06	6.1E+06	1.6E+04
-	-	+	2.1E+06	6.1E+06	1.3E+03
-	-	-	2.1E+06	6.1E+06	3.2E+02

Table A.27 Model Predicted Portioning of Ciprofloxacin with 2³ Factorial Design Variables

Table A.28 Calculated Effects of Factors and their Interactions on the Associations of Ciprofloxacin with Different Media

Factors/Interactions	Effect				
Factors/Interactions	Water	Sediment	Suspended Sediment		
A	1.5E+08	4.2E+08	1.4E+06		
В	-3.8E+05	-1.1E+06	1.5E+06		
С	-2.4E+05	-7.0E+05	9.4E+05		
AB	-3.4E+05	-1.0E+06	1.3E+06		
AC	-2.1E+05	-6.3E+05	8.4E+05		
BC	-2.3E+05	-6.7E+05	9.0E+05		
ABC	-2.1E+05	-6.0E+05	8.1E+05		

Figure A.40Probability plot of effects of partitioning of Ciprofloxacin with water

Figure A.41Probability plot of effects of partitioning of Ciprofloxacin with sediment

Figure A.42Probability plot of effects of partitioning of Ciprofloxacin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Metoprolol(A)	Conc of S.S.(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	4.5E+07	1.3E+05	1.4E+03
+	+	-	4.5E+07	1.3E+05	3.5E+02
+	-	+	4.5E+07	1.3E+05	2.8E+01
+	-	-	4.5E+07	1.3E+05	6.9E+00
-	+	+	7.5E+06	2.2E+04	2.3E+02
-	+	-	7.5E+06	2.2E+04	5.8E+01
-	-	+	7.5E+06	2.2E+04	4.6E+00
-	-	-	7.5E+06	2.2E+04	1.2E+00

Table A.29 Model Predicted Portioning of Metoprolol with 2³ Factorial Design Variables

Table A.30 Calculated Effects of Factors and their Interactions on the Associations of Metoprolol with Different Media

Factors/Interactions	Effect			
	Water	Sediment	Suspended Sediment	
А	1.5E+08	4.4E+05	1.5E+03	
В	-2.0E+03	-5.9E+00	2.0E+03	
С	-1.2E+03	-3.7E+00	1.2E+03	
AB	-1.4E+03	-4.2E+00	1.4E+03	
AC	-8.8E+02	-2.6E+00	8.8E+02	
BC	-1.2E+03	-3.5E+00	1.2E+03	
ABC	-8.5E+02	-2.5E+00	8.5E+02	

Figure A.43Probability plot of effects of partitioning of Metoprolol with water

Figure A.44Probability plot of effects of partitioning of Metoprolol with sediment

Figure A.45Probability plot of effects of partitioning of Metoprolol with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc of	Organic fraction			Suspended
Salicylic acid(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	3.8E+07	1.2E+08	1.2E+06
+	+	-	3.9E+07	1.2E+08	3.1E+05
+	-	+	3.9E+07	1.2E+08	2.5E+04
+	-	-	3.9E+07	1.2E+08	6.3E+03
-	+	+	2.3E+06	7.1E+06	7.4E+04
-	+	-	2.3E+06	7.1E+06	1.9E+04
-	-	+	2.3E+06	7.1E+06	1.5E+03
-	-	-	2.3E+06	7.1E+06	3.7E+02

Table A.31 Model Predicted Portioning of Salicylic acid with 2³ Factorial Design Variables

Table A.32 Calculated Effects of Factors and their Interactions on the Associations of Salicylic acid with Different Media

Factors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
Α	1.4E+08	4.5E+08	1.5E+06		
В	-3.9E+05	-1.2E+06	1.6E+06		
С	-2.4E+05	-7.6E+05	1.0E+06		
AB	-3.5E+05	-1.1E+06	1.4E+06		
AC	-2.2E+05	-6.8E+05	9.0E+05		
BC	-2.3E+05	-7.3E+05	9.7E+05		
ABC	-2.1E+05	-6.5E+05	8.6E+05		

Figure A.46Probability plot of effects of partitioning of Salicylic acid with water

Figure A.47Probability plot of effects of partitioning of Salicylic acid with sediment

Figure A.48Probability plot of effects of partitioning of Salicylic acid with suspended sediment

Factor Value		Moles of Analyte Partitioned Into			
Conc of Dioxin(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	4.0E+07	4.6E+10	4.8E+08
+	+	-	4.0E+07	4.6E+10	1.2E+08
+	-	+	4.0E+07	4.6E+10	9.7E+06
+	-	-	4.0E+07	4.6E+10	2.4E+06
-	+	+	2.7E+02	3.1E+05	3.2E+03
-	+	-	2.7E+02	3.1E+05	8.1E+02
-	-	+	2.7E+02	3.1E+05	6.5E+01
-	-	-	2.7E+02	3.1E+05	1.6E+01

Table A.33 Model Predicted Portioning of Dioxin with 2³ Factorial Design Variables

Table A.34 Calculated Effects of Factors and their Interactions on the Associations of Dioxin with Different Media

Factors/Interactions	Effect			
Factor s/ Inter actions	Water	Sediment	Suspended Sediment	
А	1.6E+08	1.9E+11	6.1E+08	
В	-5.1E+05	-5.9E+08	5.9E+08	
С	-3.2E+05	-3.7E+08	3.7E+08	
AB	-5.1E+05	-5.9E+08	5.9E+08	
AC	-3.2E+05	-3.7E+08	3.7E+08	
BC	-3.0E+05	-3.5E+08	3.5E+08	
ABC	-3.0E+05	-3.5E+08	3.5E+08	

Figure A.49Probability plot of effects of partitioning of Dioxin with water

Figure A.50Probability plot of effects of partitioning of Dioxin with sediment

Figure A.51Probability plot of effects of partitioning of Dioxin with suspended sediment

APPENDIX B

PROPERTIES AND FATE MODELING OF PESTICIDES

Factor Value		Moles of Analyte Partitioned Into			
Conc of Aldrin(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	8.6E+08	9.5E+08	9.9E+06
+	+	-	8.7E+08	9.5E+08	2.5E+06
+	-	+	8.7E+08	9.5E+08	2.0E+05
+	-	-	8.7E+08	9.5E+08	5.0E+04
-	+	+	8.6E+06	9.5E+06	9.9E+04
-	+	-	8.7E+06	9.5E+06	2.5E+04
-	-	+	8.7E+06	9.5E+06	2.0E+03
-	-	-	8.7E+06	9.5E+06	5.0E+02

Table B.1 Model Predicted Portioning of Aldrin with 2³ Factorial Design Variables

Table B.2 Calculated Effects of Factors and their Interactions on the Associations of Aldrin with Different Media

Factors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
А	3.4E+09	3.8E+09	1.3E+07		
В	-3.9E+06	-4.3E+06	1.2E+07		
С	-2.4E+06	-2.7E+06	7.6E+06		
AB	-3.8E+06	-4.2E+06	1.2E+07		
AC	-2.4E+06	-2.6E+06	7.5E+06		
BC	-2.3E+06	-2.6E+06	7.3E+06		
ABC	-2.3E+06	-2.5E+06	7.2E+06		

Figure B.1 Probability plot of effects of partitioning of Aldrin with water

Figure B.2 Probability plot of effects of partitioning of Aldrin with sediment

Figure B.3 Probability plot of effects of partitioning of Aldrin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc of	Organic fraction		~	Suspended
Chloroneb(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	1.5E+09	9.3E+07	9.7E+05
+	+	-	1.5E+09	9.3E+07	2.4E+05
+	-	+	1.5E+09	9.3E+07	1.9E+04
+	-	-	1.5E+09	9.3E+07	4.8E+03
-	+	+	1.5E+07	9.3E+05	9.7E+03
-	+	-	1.5E+07	9.3E+05	2.4E+03
-	-	+	1.5E+07	9.3E+05	1.9E+02
-	-	-	1.5E+07	9.3E+05	4.8E+01

Table B.3 Model Predicted Portioning of Chloroneb with 2³ Factorial Design Variables

Table B.4 Calculated Effects of Factors and their Interactions on the Associations of Chloroneb with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
A	6.1E+09	3.7E+08	1.2E+06	
В	-3.8E+05	-2.3E+04	1.2E+06	
С	-2.4E+05	-1.4E+04	7.5E+05	
AB	-3.7E+05	-2.3E+04	1.2E+06	
AC	-2.3E+05	-1.4E+04	7.3E+05	
BC	-2.3E+05	-1.4E+04	7.2E+05	
ABC	-2.2E+05	-1.4E+04	7.0E+05	

Figure B.4 Probability plot of effects of partitioning of Chloroneb with water

Figure B.5 Probability plot of effects of partitioning of Chloroneb with sediment

Figure B.6 Probability plot of effects of partitioning of Chloroneb with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Chlorothalonil(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.4E+09	3.0E+08	3.1E+06
+	+	-	3.4E+09	3.0E+08	7.8E+05
+	-	+	3.4E+09	3.0E+08	6.2E+04
+	-	-	3.4E+09	3.0E+08	1.6E+04
-	+	+	3.4E+07	3.0E+06	3.1E+04
-	+	-	3.4E+07	3.0E+06	7.8E+03
-	-	+	3.4E+07	3.0E+06	6.2E+02
-	-	-	3.4E+07	3.0E+06	1.6E+02

Table B.5 Model Predicted Portioning of Chlorothalonil with 2³ Factorial Design Variables

Table B.6 Calculated Effects of Factors and their Interactions on the Associations of Chlorothalonil with Different Media

Factors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
А	1.4E+10	1.2E+09	3.9E+06		
В	-3.5E+06	-3.0E+05	3.8E+06		
С	-2.2E+06	-1.9E+05	2.4E+06		
AB	-3.4E+06	-3.0E+05	3.8E+06		
AC	-2.1E+06	-1.9E+05	2.3E+06		
BC	-2.1E+06	-1.8E+05	2.3E+06		
ABC	-2.1E+06	-1.8E+05	2.3E+06		

Figure B.7 Probability plot of effects of partitioning of Chlorothalonil with water

Figure B.8 Probability plot of effects of partitioning of Chlorothalonil with sediment

Figure B.9 Probability plot of effects of partitioning of Chlorothalonil with suspended sediment

Factor Value		Moles of Analyte Partitioned Into			
Conc of DDD(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	8.6E+07	3.0E+09	3.1E+07
+	+	-	8.6E+07	3.0E+09	7.8E+06
+	-	+	8.7E+07	3.0E+09	6.3E+05
+	-	-	8.7E+07	3.0E+09	1.6E+05
-	+	+	8.6E+05	3.0E+07	3.1E+05
-	+	-	8.6E+05	3.0E+07	7.8E+04
-	-	+	8.7E+05	3.0E+07	6.3E+03
-	-	-	8.7E+05	3.0E+07	1.6E+03

Table B.7 Model Predicted Portioning of DDD with 2³ Factorial Design Variables

Table B.8 Calculated Effects of Factors and their Interactions on the Associations of DDD with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	3.4E+08	1.2E+10	3.9E+07	
В	-1.1E+06	-3.7E+07	3.8E+07	
С	-6.6E+05	-2.3E+07	2.4E+07	
AB	-1.0E+06	-3.6E+07	3.8E+07	
AC	-6.5E+05	-2.3E+07	2.3E+07	
BC	-6.4E+05	-2.2E+07	2.3E+07	
ABC	-6.3E+05	-2.2E+07	2.3E+07	

Figure B.10 Probability plot of effects of partitioning of DDD with water

Figure B.11 Probability plot of effects of partitioning of DDD with sediment

Figure B.12 Probability plot of effects of partitioning of DDD with suspended sediment

Factor Value		Moles of Analyte Partitioned Into			
Conc of DDE(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	6.6E+08	1.6E+09	1.7E+07
+	+	-	6.6E+08	1.6E+09	4.2E+06
+	-	+	6.7E+08	1.6E+09	3.3E+05
+	-	-	6.7E+08	1.6E+09	8.3E+04
-	+	+	6.6E+06	1.6E+07	1.7E+05
-	+	-	6.6E+06	1.6E+07	4.2E+04
-	-	+	6.7E+06	1.6E+07	3.3E+03
-	-	-	6.7E+06	1.6E+07	8.3E+02

Table B.9 Model Predicted Portioning of DDE with 2³ Factorial Design Variables

Table B.10 Calculated Effects of Factors and their Interactions on the Associations of DDE with Different Media

Factors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
А	2.6E+09	6.3E+09	2.1E+07		
В	-4.4E+06	-1.0E+07	2.1E+07		
С	-2.7E+06	-6.5E+06	1.3E+07		
AB	-4.3E+06	-1.0E+07	2.0E+07		
AC	-2.7E+06	-6.4E+06	1.3E+07		
BC	-2.6E+06	-6.3E+06	1.2E+07		
ABC	-2.6E+06	-6.2E+06	1.2E+07		

Figure B.13 Probability plot of effects of partitioning of DDE with water

Figure B.14 Probability plot of effects of partitioning of DDE with sediment

Figure B.15 Probability plot of effects of partitioning of DDE with suspended sediment

Factor Value		Moles of Analyte Partitioned Into			
Conc of DDT(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	2.1E+08	2.5E+09	2.6E+07
+	+	-	2.1E+08	2.5E+09	6.4E+06
+	-	+	2.2E+08	2.5E+09	5.2E+05
+	-	-	2.2E+08	2.5E+09	1.3E+05
-	+	+	2.1E+06	2.5E+07	2.6E+05
-	+	-	2.1E+06	2.5E+07	6.4E+04
-	-	+	2.2E+06	2.5E+07	5.2E+03
-	-	-	2.2E+06	2.5E+07	1.3E+03

Table B.11 Model Predicted Portioning of DDT with 2³ Factorial Design Variables

Table B.12 Calculated Effects of Factors and their Interactions on the Associations of DDT with Different Media

Factors/Interactions	Effect				
Factors/Interactions	Water	Sediment	Suspended Sediment		
A	8.5E+08	9.8E+09	3.2E+07		
В	-2.4E+06	-2.8E+07	3.2E+07		
С	-1.5E+06	-1.7E+07	2.0E+07		
AB	-2.4E+06	-2.7E+07	3.1E+07		
AC	-1.5E+06	-1.7E+07	1.9E+07		
BC	-1.4E+06	-1.7E+07	1.9E+07		
ABC	-1.4E+06	-1.6E+07	1.9E+07		

Figure B.16 Probability plot of effects of partitioning of DDT with water

Figure B.17 Probability plot of effects of partitioning of DDT with sediment

Figure B.18 Probability plot of effects of partitioning of DDT with suspended sediment

Factor Value		Moles of Analyte Partitioned Into			
Conc of Dieldrin(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.6E+09	6.7E+08	7.0E+06
+	+	-	1.6E+09	6.7E+08	1.8E+06
+	-	+	1.6E+09	6.7E+08	1.4E+05
+	-	-	1.6E+09	6.7E+08	3.5E+04
-	+	+	1.6E+07	6.7E+06	7.0E+04
-	+	-	1.6E+07	6.7E+06	1.8E+04
-	-	+	1.6E+07	6.7E+06	1.4E+03
-	-	-	1.6E+07	6.7E+06	3.5E+02

Table B.13 Model Predicted Portioning of Dieldrin with 2³ Factorial Design Variables

Table B.14 Calculated Effects of Factors and their Interactions on the Associations of Dieldrin with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	6.4E+09	2.7E+09	8.8E+06	
В	-5.3E+06	-2.2E+06	8.7E+06	
С	-3.3E+06	-1.4E+06	5.4E+06	
AB	-5.2E+06	-2.2E+06	8.5E+06	
AC	-3.3E+06	-1.4E+06	5.3E+06	
BC	-3.2E+06	-1.3E+06	5.2E+06	
ABC	-3.1E+06	-1.3E+06	5.1E+06	

Figure B.19 Probability plot of effects of partitioning of Dieldrin with water

Figure B.20 Probability plot of effects of partitioning of Dieldrin with sediment

Figure B.21 Probability plot of effects of partitioning of Dieldrin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc of	Organic fraction			Suspended
Endosulfan(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	9.9E+08	1.4E+08	1.4E+06
+	+	-	9.9E+08	1.4E+08	3.6E+05
+	-	+	9.9E+08	1.4E+08	2.8E+04
+	-	-	9.9E+08	1.4E+08	7.1E+03
-	+	+	9.9E+06	1.4E+06	1.4E+04
-	+	-	9.9E+06	1.4E+06	3.6E+03
-	-	+	9.9E+06	1.4E+06	2.8E+02
-	-	-	9.9E+06	1.4E+06	7.1E+01

Table B.15 Model Predicted Portioning of Endosulfan with 2³ Factorial Design Variables

Table B.16 Calculated Effects of Factors and their Interactions on the Associations of Endosulfan with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	3.9E+09	5.4E+08	1.8E+06	
В	-7.1E+05	-9.8E+04	1.8E+06	
С	-4.4E+05	-6.1E+04	1.1E+06	
AB	-6.9E+05	-9.6E+04	1.7E+06	
AC	-4.3E+05	-6.0E+04	1.1E+06	
BC	-4.2E+05	-5.9E+04	1.1E+06	
ABC	-4.2E+05	-5.8E+04	1.0E+06	

Figure B.22 Probability plot of effects of partitioning of Endosulfan with water

Figure B.23 Probability plot of effects of partitioning of Endosulfan with sediment

Figure B.24 Probability plot of effects of partitioning of Endosulfan with suspended sediment

Table B.17 Model Predicted Portioning of Endrin with 2³ Factorial Design Variables

Factor Value			Moles of Analyte Partitioned Into		
Conc of Endrin(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.6E+09	7.8E+08	8.1E+06
+	+	-	1.6E+09	7.8E+08	2.0E+06
+	-	+	1.6E+09	7.8E+08	1.6E+05
+	-	-	1.6E+09	7.8E+08	4.1E+04
-	+	+	1.6E+07	7.8E+06	8.1E+04
-	+	-	1.6E+07	7.8E+06	2.0E+04
-	-	+	1.6E+07	7.8E+06	1.6E+03
-	-	-	1.6E+07	7.8E+06	4.1E+02

Table B.18 Calculated Effects of Factors and their Interactions on the Associations of Endrin with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	6.4E+09	3.1E+09	1.0E+07	
В	-6.2E+06	-3.0E+06	1.0E+07	
С	-3.9E+06	-1.9E+06	6.2E+06	
AB	-6.1E+06	-2.9E+06	9.8E+06	
AC	-3.8E+06	-1.8E+06	6.1E+06	
BC	-3.7E+06	-1.8E+06	6.0E+06	
ABC	-3.6E+06	-1.7E+06	5.9E+06	

Figure B.25 Probability plot of effects of partitioning of Endrin with water

Figure B.26 Probability plot of effects of partitioning of Endrin with sediment

Figure B.27 Probability plot of effects of partitioning of Endrin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc of	Organic fraction			Suspended
Etridiazole(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	2.4E+09	1.2E+08	1.2E+06
+	+	-	2.4E+09	1.2E+08	3.0E+05
+	-	+	2.4E+09	1.2E+08	2.4E+04
+	-	-	2.4E+09	1.2E+08	6.1E+03
-	+	+	2.4E+07	1.2E+06	1.2E+04
-	+	-	2.4E+07	1.2E+06	3.0E+03
-	-	+	2.4E+07	1.2E+06	2.4E+02
-	-	-	2.4E+07	1.2E+06	6.1E+01

Table B.19 Model Predicted Portioning of Etridiazole with 2³ Factorial Design Variables

Table B.20 Calculated Effects of Factors and their Interactions on the Associations of Etridiazole with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	9.6E+09	4.6E+08	1.5E+06	
В	-9.1E+05	-4.3E+04	1.5E+06	
С	-5.7E+05	-2.7E+04	9.4E+05	
AB	-8.9E+05	-4.3E+04	1.5E+06	
AC	-5.5E+05	-2.7E+04	9.2E+05	
BC	-5.4E+05	-2.6E+04	9.0E+05	
ABC	-5.3E+05	-2.6E+04	8.8E+05	

Figure B.28 Probability plot of effects of partitioning of Etridiazole with water

Figure B.29 Probability plot of effects of partitioning of Etridiazole with sediment

Figure B.30 Probability plot of effects of partitioning of Etridiazole with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of	Conc of	Organic fraction $of S S(C)$	Watar	Sadimant	Suspended
ΠСΠ-α(Α)	3.3(D)	01 5.5 (C)	water	Seament	Seament
+	+	+	2.8E+09	2.8E+08	2.9E+06
+	+	-	2.8E+09	2.8E+08	7.3E+05
+	-	+	2.8E+09	2.8E+08	5.8E+04
+	-	-	2.8E+09	2.8E+08	1.5E+04
-	+	+	2.8E+07	2.8E+06	2.9E+04
-	+	-	2.8E+07	2.8E+06	7.3E+03
-	-	+	2.8E+07	2.8E+06	5.8E+02
-	-	-	2.8E+07	2.8E+06	1.5E+02

Table B.21 Model Predicted Portioning of HCH- α with 2³ Factorial Design Variables

Table B.22 Calculated Effects of Factors and their Interactions on the Associations of HCH- $\!\alpha$ with Different Media

Factors/Interactions	Effect				
Factors/Interactions	Water	Sediment	Suspended Sediment		
А	1.1E+10	1.1E+09	3.7E+06		
В	-2.9E+06	-2.9E+05	3.6E+06		
С	-1.8E+06	-1.8E+05	2.2E+06		
AB	-2.8E+06	-2.9E+05	3.5E+06		
AC	-1.8E+06	-1.8E+05	2.2E+06		
BC	-1.7E+06	-1.7E+05	2.2E+06		
ABC	-1.7E+06	-1.7E+05	2.1E+06		

Figure B.31 Probability plot of effects of partitioning of HCH- α with water

Figure B.32 Probability plot of effects of partitioning of HCH- α with sediment

Factor Value		Moles of Analyte Partitioned Into			
Conc of HCH-β(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	2.3E+09	1.1E+09	1.1E+07
+	+	-	2.3E+09	1.1E+09	2.8E+06
+	-	+	2.3E+09	1.1E+09	2.2E+05
+	-	-	2.3E+09	1.1E+09	5.6E+04
-	+	+	2.3E+07	1.1E+07	1.1E+05
-	+	-	2.3E+07	1.1E+07	2.8E+04
-	-	+	2.3E+07	1.1E+07	2.2E+03
-	-	-	2.3E+07	1.1E+07	5.6E+02

Table B.24 Calculated Effects of Factors and their Interactions on the Associations of HCH- β with Different Media

Factors/Interactions	Effect				
	Water	Sediment	Suspended Sediment		
А	9.3E+09	4.2E+09	1.4E+07		
В	-9.4E+06	-4.3E+06	1.4E+07		
С	-5.9E+06	-2.7E+06	8.6E+06		
AB	-9.2E+06	-4.2E+06	1.4E+07		
AC	-5.8E+06	-2.6E+06	8.4E+06		
BC	-5.6E+06	-2.6E+06	8.3E+06		
ABC	-5.5E+06	-2.5E+06	8.1E+06		

Figure B.34 Probability plot of effects of partitioning of HCH- β with water

Figure B.35 Probability plot of effects of partitioning of HCH- β with sediment

Figure B.36 Probability plot of effects of partitioning of HCH- β with suspended sediment
Factor Value		Moles of Analyte Partitioned Into			
Conc of HCH-δ(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.3E+09	1.0E+08	1.1E+06
+	+	-	3.3E+09	1.0E+08	2.7E+05
+	-	+	3.3E+09	1.0E+08	2.2E+04
+	-	-	3.3E+09	1.0E+08	5.5E+03
-	+	+	3.3E+07	1.0E+06	1.1E+04
-	+	-	3.3E+07	1.0E+06	2.7E+03
-	-	+	3.3E+07	1.0E+06	2.2E+02
-	-	-	3.3E+07	1.0E+06	5.5E+01

Table B.25 Model Predicted Portioning of HCH- δ with 2³ Factorial Design Variables

Table B.26 Calculated Effects of Factors and their Interactions on the Associations of HCH- δ with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	1.3E+10	4.1E+08	1.4E+06	
В	-1.3E+06	-4.1E+04	1.4E+06	
С	-8.1E+05	-2.6E+04	8.4E+05	
AB	-1.3E+06	-4.0E+04	1.3E+06	
AC	-7.9E+05	-2.5E+04	8.3E+05	
BC	-7.8E+05	-2.5E+04	8.1E+05	
ABC	-7.6E+05	-2.4E+04	7.9E+05	

Figure B.37 Probability plot of effects of partitioning of HCH- δ with water

Figure B.38 Probability plot of effects of partitioning of HCH- δ with sediment

Figure B.39 Probability plot of effects of partitioning of HCH- δ with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of HCH-γ(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.0E+09	1.5E+08	1.6E+06
+	+	-	3.0E+09	1.5E+08	4.0E+05
+	-	+	3.0E+09	1.5E+08	3.2E+04
+	-	-	3.0E+09	1.5E+08	8.0E+03
-	+	+	3.0E+07	1.5E+06	1.6E+04
-	+	-	3.0E+07	1.5E+06	4.0E+03
-	-	+	3.0E+07	1.5E+06	3.2E+02
-	-	-	3.0E+07	1.5E+06	8.0E+01

Table B.27 Model Predicted Portioning of HCH-y with 2³ Factorial Design Variables

Table B.28 Calculated Effects of Factors and their Interactions on the Associations of HCH- $\!\gamma$ with Different Media

Eastars/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
A	1.2E+10	6.1E+08	2.0E+06		
В	-1.7E+06	-8.8E+04	2.0E+06		
С	-1.1E+06	-5.5E+04	1.2E+06		
AB	-1.7E+06	-8.6E+04	1.9E+06		
AC	-1.0E+06	-5.4E+04	1.2E+06		
BC	-1.0E+06	-5.2E+04	1.2E+06		
ABC	-1.0E+06	-5.1E+04	1.2E+06		

Figure B.40 Probability plot of effects of partitioning of HCH- γ with water

Figure B.41 Probability plot of effects of partitioning of HCH- γ with sediment

Figure B.42 Probability plot of effects of partitioning of HCH- γ with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Heptachlor(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.3E+08	3.8E+08	3.9E+06
+	+	-	3.3E+08	3.8E+08	9.8E+05
+	-	+	3.3E+08	3.8E+08	7.9E+04
+	-	-	3.3E+08	3.8E+08	2.0E+04
-	+	+	3.3E+06	3.8E+06	3.9E+04
-	+	-	3.3E+06	3.8E+06	9.8E+03
-	-	+	3.3E+06	3.8E+06	7.9E+02
-	-	-	3.3E+06	3.8E+06	2.0E+02

Table B.29 Model Predicted Portioning of Heptachlor with 2³ Factorial Design Variables

Table B.30 Calculated Effects of Factors and their Interactions on the Associations of Heptachlor with Different Media

Factors/Interactions	Effect				
	Water	Sediment	Suspended Sediment		
А	1.3E+09	1.5E+09	5.0E+06		
В	-5.9E+05	-6.9E+05	4.9E+06		
С	-3.7E+05	-4.3E+05	3.0E+06		
AB	-5.8E+05	-6.7E+05	4.8E+06		
AC	-3.6E+05	-4.2E+05	3.0E+06		
BC	-3.6E+05	-4.1E+05	2.9E+06		
ABC	-3.5E+05	-4.0E+05	2.9E+06		

Figure B.43 Probability plot of effects of partitioning of Heptachlor with water

Figure B.44 Probability plot of effects of partitioning of Heptachlor with sediment

Figure B.45 Probability plot of effects of partitioning of Heptachlor with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Heptachlor epoxide(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.3E+09	4.7E+08	4.9E+06
+	+	-	1.3E+09	4.7E+08	1.2E+06
+	-	+	1.3E+09	4.7E+08	9.8E+04
+	-	-	1.3E+09	4.7E+08	2.5E+04
-	+	+	1.3E+07	4.7E+06	4.9E+04
-	+	-	1.3E+07	4.7E+06	1.2E+04
-	-	+	1.3E+07	4.7E+06	9.8E+02
-	-	-	1.3E+07	4.7E+06	2.5E+02

Table B.31 Model Predicted Portioning of Heptachlor epoxide with 2³ Factorial Design Variables

_

Table B.32 Calculated Effects of Factors and their Interactions on the Associations of Heptachlor epoxide with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
A	5.0E+09	1.9E+09	6.2E+06	
В	-3.0E+06	-1.1E+06	6.1E+06	
С	-1.9E+06	-6.9E+05	3.8E+06	
AB	-2.9E+06	-1.1E+06	5.9E+06	
AC	-1.8E+06	-6.8E+05	3.7E+06	
BC	-1.8E+06	-6.7E+05	3.6E+06	
ABC	-1.7E+06	-6.5E+05	3.6E+06	

Figure B.46 Probability plot of effects of partitioning of Heptachlor epoxide with water

Figure B.47 Probability plot of effects of partitioning of Heptachlor epoxide with sediment

Figure B.48 Probability plot of effects of partitioning of Heptachlor epoxide with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Methoxychlor(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	5.9E+08	2.3E+09	2.4E+07
+	+	-	6.0E+08	2.3E+09	6.0E+06
+	-	+	6.0E+08	2.3E+09	4.8E+05
+	-	-	6.0E+08	2.3E+09	1.2E+05
-	+	+	5.9E+06	2.3E+07	2.4E+05
-	+	-	6.0E+06	2.3E+07	6.0E+04
-	-	+	6.0E+06	2.3E+07	4.8E+03
-	-	-	6.0E+06	2.3E+07	1.2E+03

Table B.33 Model Predicted Portioning of Methoxychlor with 2³ Factorial Design Variables

Table B.34 Calculated Effects of Factors and their Interactions on the Associations of Methoxychlor with Different Media

Factors/Interactions	Effect			
ractors/interactions	Water	Sediment	Suspended Sediment	
А	2.4E+09	9.0E+09	3.0E+07	
В	-6.0E+06	-2.3E+07	2.9E+07	
С	-3.8E+06	-1.4E+07	1.8E+07	
AB	-5.9E+06	-2.3E+07	2.9E+07	
AC	-3.7E+06	-1.4E+07	1.8E+07	
BC	-3.6E+06	-1.4E+07	1.8E+07	
ABC	-3.5E+06	-1.4E+07	1.7E+07	

Figure B.49 Probability plot of effects of partitioning of Methoxychlor with water

Figure B.50 Probability plot of effects of partitioning of Methoxychlor with sediment

Figure B.51 Probability plot of effects of partitioning of Methoxychlor with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Permethrin(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.1E+09	1.2E+09	1.2E+07
+	+	-	1.1E+09	1.2E+09	3.1E+06
+	-	+	1.1E+09	1.2E+09	2.5E+05
+	-	-	1.1E+09	1.2E+09	6.2E+04
-	+	+	1.1E+07	1.2E+07	1.2E+05
-	+	-	1.1E+07	1.2E+07	3.1E+04
-	-	+	1.1E+07	1.2E+07	2.5E+03
-	-	-	1.1E+07	1.2E+07	6.2E+02

Table B.35 Model Predicted Portioning of Permethrin with 2³ Factorial Design Variables

Table B.36 Calculated Effects of Factors and their Interactions on the Associations of Permethrin with Different Media

Factors/Interactions	Effect				
Factors/Interactions	Water	Sediment	Suspended Sediment		
А	4.3E+09	4.7E+09	1.6E+07		
В	-4.9E+06	-5.3E+06	1.5E+07		
С	-3.0E+06	-3.3E+06	9.6E+06		
AB	-4.8E+06	-5.2E+06	1.5E+07		
AC	-3.0E+06	-3.3E+06	9.4E+06		
BC	-2.9E+06	-3.2E+06	9.2E+06		
ABC	-2.9E+06	-3.1E+06	9.0E+06		

Figure B.52 Probability plot of effects of partitioning of Permethrin with water

Figure B.53 Probability plot of effects of partitioning of Permethrin with sediment

Figure B.54 Probability plot of effects of partitioning of Permethrin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Propachlor(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.8E+09	1.1E+08	1.2E+06
+	+	-	1.8E+09	1.1E+08	2.9E+05
+	-	+	1.8E+09	1.1E+08	2.3E+04
+	-	-	1.8E+09	1.1E+08	5.8E+03
-	+	+	1.8E+07	1.1E+06	1.2E+04
-	+	-	1.8E+07	1.1E+06	2.9E+03
-	-	+	1.8E+07	1.1E+06	2.3E+02
-	-	-	1.8E+07	1.1E+06	5.8E+01

Table B.37 Model Predicted Portioning of Propachlor with 2³ Factorial Design Variables

Table B.38 Calculated Effects of Factors and their Interactions on the Associations of Propachlor with Different Media

Factors/Interactions	Effect				
Factors/interactions	Water	Sediment	Suspended Sediment		
А	7.3E+09	4.4E+08	1.5E+06		
В	-4.6E+05	-2.8E+04	1.4E+06		
С	-2.9E+05	-1.7E+04	9.0E+05		
AB	-4.5E+05	-2.7E+04	1.4E+06		
AC	-2.8E+05	-1.7E+04	8.8E+05		
BC	-2.7E+05	-1.7E+04	8.6E+05		
ABC	-2.7E+05	-1.6E+04	8.4E+05		

Figure B.55 Probability plot of effects of partitioning of Propachlor with water

Figure B.56 Probability plot of effects of partitioning of Propachlor with sediment

Figure B.57 Probability plot of effects of partitioning of Propachlor with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Trifluralin(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	3.1E+09	2.7E+08	2.8E+06
+	+	-	3.1E+09	2.7E+08	7.0E+05
+	-	+	3.1E+09	2.7E+08	5.6E+04
+	-	-	3.1E+09	2.7E+08	1.4E+04
-	+	+	3.1E+07	2.7E+06	2.8E+04
-	+	-	3.1E+07	2.7E+06	7.0E+03
-	-	+	3.1E+07	2.7E+06	5.6E+02
-	-	-	3.1E+07	2.7E+06	1.4E+02

Table B.39 Model Predicted Portioning of Trifluralin with 2³ Factorial Design Variables

Table B.40 Calculated Effects of Factors and their Interactions on the Associations of Trifluralin with Different Media

Factors/Interactions	Effect				
	Water	Sediment	Suspended Sediment		
А	1.2E+10	1.1E+09	3.5E+06		
В	-3.2E+06	-2.7E+05	3.5E+06		
С	-2.0E+06	-1.7E+05	2.2E+06		
AB	-3.1E+06	-2.7E+05	3.4E+06		
AC	-1.9E+06	-1.7E+05	2.1E+06		
BC	-1.9E+06	-1.6E+05	2.1E+06		
ABC	-1.9E+06	-1.6E+05	2.0E+06		

Figure B.58 Probability plot of effects of partitioning of Trifluralin with water

Figure B.59 Probability plot of effects of partitioning of Trifluralin with sediment

Figure B.60 Probability plot of effects of partitioning of Trifluralin with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Aroclor	Conc of	Organic fraction			Suspended
1016(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	1.3E+09	5.4E+08	5.6E+06
+	+	-	1.3E+09	5.4E+08	1.4E+06
+	-	+	1.3E+09	5.4E+08	1.1E+05
+	-	-	1.3E+09	5.4E+08	2.8E+04
-	+	+	1.3E+07	5.4E+06	5.6E+04
-	+	-	1.3E+07	5.4E+06	1.4E+04
-	-	+	1.3E+07	5.4E+06	1.1E+03
-	-	-	1.3E+07	5.4E+06	2.8E+02

Table B.41 Model Predicted Portioning of Aroclor 1016 with 2³ Factorial Design Variables

Table B.42 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1016 with Different Media

Eastons/Internations	Effect				
Factors/Interactions	Water	Sediment	Suspended Sediment		
А	5.1E+09	2.1E+09	7.1E+06		
В	-4.3E+06	-1.8E+06	6.9E+06		
С	-2.7E+06	-1.1E+06	4.3E+06		
AB	-4.2E+06	-1.7E+06	6.8E+06		
AC	-2.6E+06	-1.1E+06	4.2E+06		
BC	-2.5E+06	-1.1E+06	4.2E+06		
ABC	-2.5E+06	-1.0E+06	4.1E+06		

Figure B.61 Probability plot of effects of partitioning of Aroclor 1016 with water

Figure B.62 Probability plot of effects of partitioning of Aroclor 1016 with sediment

Figure B.63 Probability plot of effects of partitioning of Aroclor 1016 with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Aroclor 1221(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.4E+09	6.1E+08	6.3E+06
+	+	-	1.4E+09	6.1E+08	1.6E+06
+	-	+	1.4E+09	6.1E+08	1.3E+05
+	-	-	1.4E+09	6.1E+08	3.2E+04
-	+	+	1.4E+07	6.1E+06	6.3E+04
-	+	-	1.4E+07	6.1E+06	1.6E+04
-	-	+	1.4E+07	6.1E+06	1.3E+03
-	-	-	1.4E+07	6.1E+06	3.2E+02

Table B.43 Model Predicted Portioning of Aroclor 1221 with 2³ Factorial Design Variables

Table B.44 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1221 with Different Media

Factors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
А	5.7E+09	2.4E+09	8.0E+06		
В	-4.8E+06	-2.0E+06	7.8E+06		
С	-3.0E+06	-1.3E+06	4.9E+06		
AB	-4.7E+06	-2.0E+06	7.6E+06		
AC	-2.9E+06	-1.2E+06	4.8E+06		
BC	-2.9E+06	-1.2E+06	4.7E+06		
ABC	-2.8E+06	-1.2E+06	4.6E+06		

Figure B.64 Probability plot of effects of partitioning of Aroclor 1221 with water

Figure B.65 Probability plot of effects of partitioning of Aroclor 1221 with sediment

Figure B.66 Probability plot of effects of partitioning of Aroclor 1221 with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Aroclor 1232(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.9E+09	8.1E+08	8.4E+06
+	+	-	1.9E+09	8.1E+08	2.1E+06
+	-	+	1.9E+09	8.1E+08	1.7E+05
+	-	-	1.9E+09	8.1E+08	4.2E+04
-	+	+	1.9E+07	8.1E+06	8.4E+04
-	+	-	1.9E+07	8.1E+06	2.1E+04
-	-	+	1.9E+07	8.1E+06	1.7E+03
-	-	-	1.9E+07	8.1E+06	4.2E+02

Table B.45 Model Predicted Portioning of Aroclor 1232 with 2³ Factorial Design Variables

Table B.46 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1232 with Different Media

Factors/Interactions	Effect				
	Water	Sediment	Suspended Sediment		
А	7.6E+09	3.2E+09	1.1E+07		
В	-6.4E+06	-2.7E+06	1.0E+07		
С	-4.0E+06	-1.7E+06	6.5E+06		
AB	-6.3E+06	-2.6E+06	1.0E+07		
AC	-3.9E+06	-1.6E+06	6.4E+06		
BC	-3.8E+06	-1.6E+06	6.2E+06		
ABC	-3.7E+06	-1.6E+06	6.1E+06		

Figure B.67 Probability plot of effects of partitioning of Aroclor 1232 with water

Figure B.68 Probability plot of effects of partitioning of Aroclor 1232 with sediment

Figure B.69 Probability plot of effects of partitioning of Aroclor 1232 with suspended sediment

Factor Value			Moles of Analyte Partitioned Into		
Conc of Aroclor 1242(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	1.2E+09	5.0E+08	5.3E+06
+	+	-	1.2E+09	5.1E+08	1.3E+06
+	-	+	1.2E+09	5.1E+08	1.1E+05
+	-	-	1.2E+09	5.1E+08	2.6E+04
-	+	+	1.2E+07	5.0E+06	5.3E+04
-	+	-	1.2E+07	5.1E+06	1.3E+04
-	-	+	1.2E+07	5.1E+06	1.1E+03
-	-	-	1.2E+07	5.1E+06	2.6E+02

Table B.47 Model Predicted Portioning of Aroclor 1242 with 2³ Factorial Design Variables

Table B.48 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1242 with Different Media

Eastars/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
А	4.8E+09	2.0E+09	6.6E+06		
В	-4.0E+06	-1.7E+06	6.5E+06		
С	-2.5E+06	-1.0E+06	4.1E+06		
AB	-3.9E+06	-1.6E+06	6.4E+06		
AC	-2.4E+06	-1.0E+06	4.0E+06		
BC	-2.4E+06	-1.0E+06	3.9E+06		
ABC	-2.3E+06	-9.8E+05	3.8E+06		

Figure B.70 Probability plot of effects of partitioning of Aroclor 1242 with water

Figure B.71 Probability plot of effects of partitioning of Aroclor 1242 with sediment

Figure B.72 Probability plot of effects of partitioning of Aroclor 1242 with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Aroclor	Conc of	Organic fraction			Suspended
1248(A)	S.S(B)	of S.S(C)	Water	Sediment	Sediment
+	+	+	1.4E+09	5.9E+08	6.2E+06
+	+	-	1.4E+09	5.9E+08	1.5E+06
+	-	+	1.4E+09	5.9E+08	1.2E+05
+	-	-	1.4E+09	5.9E+08	3.1E+04
-	+	+	1.4E+07	5.9E+06	6.2E+04
-	+	-	1.4E+07	5.9E+06	1.5E+04
-	-	+	1.4E+07	5.9E+06	1.2E+03
-	-	-	1.4E+07	5.9E+06	3.1E+02

Table B.49 Model Predicted Portioning of Aroclor 1248 with 2³ Factorial Design Variables

Table B.50 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1248 with Different Media

Eastors/Internations	Effect					
ractors/interactions	Water	Sediment	Suspended Sediment			
А	5.6E+09	2.3E+09	7.8E+06			
В	-4.7E+06	-2.0E+06	7.6E+06			
С	-2.9E+06	-1.2E+06	4.8E+06			
AB	-4.6E+06	-1.9E+06	7.5E+06			
AC	-2.9E+06	-1.2E+06	4.7E+06			
BC	-2.8E+06	-1.2E+06	4.6E+06			
ABC	-2.7E+06	-1.2E+06	4.5E+06			

Figure B.73 Probability plot of effects of partitioning of Aroclor 1248 with water

Figure B.74 Probability plot of effects of partitioning of Aroclor 1248 with sediment

Figure B.75 Probability plot of effects of partitioning of Aroclor 1248 with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Aroclor 1254(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	2.4E+09	1.0E+09	1.1E+07
+	+	-	2.4E+09	1.0E+09	2.6E+06
+	-	+	2.4E+09	1.0E+09	2.1E+05
+	-	-	2.4E+09	1.0E+09	5.3E+04
-	+	+	2.4E+07	1.0E+07	1.1E+05
-	+	-	2.4E+07	1.0E+07	2.6E+04
-	-	+	2.4E+07	1.0E+07	2.1E+03
-	-	-	2.4E+07	1.0E+07	5.3E+02

Table B.51 Model Predicted Portioning of Aroclor 1254 with 2³ Factorial Design Variables

Table B.52 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1254 with Different Media

Eastors/Internations	Effect					
ractors/interactions	Water	Sediment	Suspended Sediment			
А	9.6E+09	4.0E+09	1.3E+07			
В	-8.0E+06	-3.3E+06	1.3E+07			
С	-5.0E+06	-2.1E+06	8.1E+06			
AB	-7.8E+06	-3.3E+06	1.3E+07			
AC	-4.9E+06	-2.0E+06	8.0E+06			
BC	-4.8E+06	-2.0E+06	7.8E+06			
ABC	-4.7E+06	-2.0E+06	7.6E+06			

Figure B.76 Probability plot of effects of partitioning of Aroclor 1254 with water

Figure B.77 Probability plot of effects of partitioning of Aroclor 1254 with sediment

Figure B.78 Probability plot of effects of partitioning of Aroclor 1254 with suspended sediment

Factor Value	Moles of Analyte Partitioned Into				
Conc of Aroclor 1260(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment
+	+	+	2.1E+09	8.7E+08	9.1E+06
+	+	-	2.1E+09	8.8E+08	2.3E+06
+	-	+	2.1E+09	8.8E+08	1.8E+05
+	-	-	2.1E+09	8.8E+08	4.6E+04
-	+	+	2.1E+07	8.7E+06	9.1E+04
-	+	-	2.1E+07	8.8E+06	2.3E+04
-	-	+	2.1E+07	8.8E+06	1.8E+03
-	-	-	2.1E+07	8.8E+06	4.6E+02

Table B.53 Model Predicted Portioning of Aroclor 1260 with 2³ Factorial Design Variables

Table B.54 Calculated Effects of Factors and their Interactions on the Associations of Aroclor 1260 with Different Media

Factors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
А	8.3E+09	3.5E+09	1.2E+07		
В	-6.9E+06	-2.9E+06	1.1E+07		
С	-4.3E+06	-1.8E+06	7.0E+06		
AB	-6.8E+06	-2.8E+06	1.1E+07		
AC	-4.2E+06	-1.8E+06	6.9E+06		
BC	-4.1E+06	-1.7E+06	6.8E+06		
ABC	-4.1E+06	-1.7E+06	6.6E+06		

Figure B.79 Probability plot of effects of partitioning of Aroclor 1260 with water

Figure B.80 Probability plot of effects of partitioning of Aroclor 1260 with sediment

Figure B.81 Probability plot of effects of partitioning of Aroclor 1260 with suspended sediment

Table B.55 Model Predicted Portioning of Toxaphene with 2³ Factorial Design Variables

Factor Value			Moles of Analyte Partitioned Into			
Conc of Toxaphene(A)	Conc of S.S(B)	Organic fraction of S.S(C)	Water	Sediment	Suspended Sediment	
+	+	+	4.0E+09	1.3E+08	1.3E+06	
+	+	-	4.0E+09	1.3E+08	3.3E+05	
+	-	+	4.0E+09	1.3E+08	2.6E+04	
+	-	-	4.0E+09	1.3E+08	6.5E+03	
-	+	+	4.0E+07	1.3E+06	1.3E+04	
-	+	-	4.0E+07	1.3E+06	3.3E+03	
-	-	+	4.0E+07	1.3E+06	2.6E+02	
-	-	-	4.0E+07	1.3E+06	6.5E+01	

Table B.56 Calculated Effects of Factors and their Interactions on the Associations of Toxaphene with Different Media

Factors/Interactions	Effect					
ractors/interactions	Water	Sediment	Suspended Sediment			
А	1.6E+10	5.0E+08	1.7E+06			
В	-1.6E+06	-4.9E+04	1.6E+06			
С	-9.7E+05	-3.1E+04	1.0E+06			
AB	-1.5E+06	-4.8E+04	1.6E+06			
AC	-9.5E+05	-3.0E+04	9.9E+05			
BC	-9.3E+05	-3.0E+04	9.7E+05			
ABC	-9.2E+05	-2.9E+04	9.5E+05			

Figure B.82 Probability plot of effects of partitioning of Toxaphene with water

Figure B.83 Probability plot of effects of partitioning of Toxaphene with sediment

Figure B.84 Probability plot of effects of partitioning of Toxaphene with suspended sediment

Factor Value			Moles of Analyte Partitioned Into			
Conc of Chlordane(A)	Conc of Chlordane(A)Conc of S.S(B)Organic fr of S.S(C)		Water	Sediment	Suspended Sediment	
+	+	+	4.7E+08	1.8E+09	1.9E+07	
+	+	-	4.8E+08	1.8E+09	4.8E+06	
+	-	+	4.8E+08	1.8E+09	3.8E+05	
+	-	-	4.8E+08	1.8E+09	9.5E+04	
-	+	+	4.7E+06	1.8E+07	1.9E+05	
-	+	-	4.8E+06	1.8E+07	4.8E+04	
-	-	+	4.8E+06	1.8E+07	3.8E+03	
-	-	-	4.8E+06	1.8E+07	9.5E+02	

Table B.57 Model Predicted Portioning of Chlordane with 2³ Factorial Design Variables

Table B.58 Calculated Effects of Factors and their Interactions on the Associations of Chlordane with Different Media

Fastors/Interactions	Effect				
ractors/interactions	Water	Sediment	Suspended Sediment		
A	1.9E+09	7.2E+09	2.4E+07		
В	-4.8E+06	-1.9E+07	2.3E+07		
С	-3.0E+06	-1.2E+07	1.5E+07		
AB	-4.7E+06	-1.8E+07	2.3E+07		
AC	-3.0E+06	-1.1E+07	1.4E+07		
BC	-2.9E+06	-1.1E+07	1.4E+07		
ABC	-2.8E+06	-1.1E+07	1.4E+07		

Figure B.85 Probability plot of effects of partitioning of Chlordane with water

Figure B.86 Probability plot of effects of partitioning of Chlordane with sediment

Figure B.87 Probability plot of effects of partitioning of Chlordane with suspended sediment

APPENDIX C

VADOSE ZONE MODELING OF PPCPs

		Molecularwt.
Compound	Solubility (mg/L)	(g/mole)
Nystatin	360	926.09
Dexamethasone	89	392.46
Methoprene	1.4	310.48
Prednisone	312	358.43
Metronidazole	11000	171.15
Clindamycin	30.61	424.99
ketoconazole	0.29	531.44
Carbamazepine	18	236.27
Caffeine	21600	194.19
Ibuprofen	21	206.28
Diclofenac	2.37	296.15
Acetaminophen	14000	151.16
Triclosan	10	289.55
Ciprofloxacin	30000	331.35
Metoprolol	1000	267.36
Salicylic acid	2240	138.12

Table C.1 Properties of PPCPs included in the study

Î.			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.2 SESOIL input values for Nystatin
T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

Î.			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%			· · ·	meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.3 SESOIL input values for Dexamethasone

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.4 SESOIL input values for Methoprene

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadaga Zana	Intringio	Organia			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	рH	Soil Type	Description	CEC	Kd
	ug/L	cm	cm	cm ²	%				meg/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.5 SESOIL input values for Prednisone

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

Table C.6 SESOIL	input valı	ues for Meti	onidazole
------------------	------------	--------------	-----------

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	рН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

Î.			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.7 SESOIL input values for Clindamycin

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

Î.			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.8 SESOIL input values for Ketoconazole

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

Î.			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.083	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.083	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.083	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.083	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.083	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.083	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.083	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.083	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.083	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.083	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.083	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.083	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.083	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.083	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.083	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.083	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.083	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.083	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.083	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.083	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.083	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.083	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.083	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.083	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.083	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.083	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.083	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.083	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.083	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.083	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.083	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.083	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.002	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.002	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.002	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.002	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.002	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.9 SESOIL input values for Carbamazepine

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.002	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.002	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.002	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.002	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.002	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.002	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.002	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.002	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.002	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.002	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.002	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.002	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.002	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.002	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.002	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.002	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.002	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.002	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.002	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.002	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.002	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.002	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.002	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.002	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.002	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.002	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.002	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadosa Zona	Intrinsio	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%			· · ·	meq/100g	
1	0.24	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.24	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.24	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.24	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.24	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.24	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.24	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.24	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.24	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.24	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.24	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.24	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.24	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.24	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.24	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.24	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.24	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.24	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.24	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.24	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.24	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.24	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.24	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.24	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.24	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.24	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.24	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.24	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.24	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.24	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.24	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.24	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.004	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.004	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.004	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.004	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.004	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.10 SESOIL input values for Caffeine

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.004	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.004	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.004	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.004	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.004	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.004	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.004	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.004	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.004	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.004	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.004	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.004	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.004	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.004	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.004	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.004	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.004	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.004	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.004	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.004	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.004	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.004	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.004	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.004	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.004	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.004	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.004	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%			^	meq/100g	
1	0.6	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.6	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.6	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.6	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.6	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.6	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.6	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.6	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.6	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.6	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.6	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.6	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.6	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.6	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.6	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.6	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.6	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.6	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.6	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.6	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.6	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.6	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.6	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.6	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.6	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.6	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.6	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.6	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.6	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.6	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.6	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.6	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.003	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.003	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.003	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.003	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.003	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.11 SESOIL input values for Ibuprofen

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.003	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.003	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.003	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.003	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.003	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.003	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.003	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.003	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.003	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.003	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.003	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.003	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.003	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.003	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.003	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.003	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.003	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.003	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.003	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.003	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.003	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.003	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.003	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.003	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.003	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.003	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.003	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.18	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.18	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.18	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.18	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.18	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.18	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.18	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.18	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.18	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.18	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.18	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.18	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.18	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.18	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.18	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.18	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.18	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.18	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.18	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.18	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.18	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.18	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.18	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.18	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.18	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.18	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.18	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.18	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.18	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.18	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.18	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.18	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.007	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.007	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.007	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.007	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.007	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.12 SESOIL input values for Diclofenac

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.007	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.007	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.007	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.007	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.007	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.007	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.007	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.007	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.007	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.007	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.007	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.007	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.007	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.007	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.007	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.007	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.007	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.007	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.007	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.007	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.007	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.007	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.007	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.007	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.007	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.007	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.007	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%			· · ·	meq/100g	
1	0.03	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.03	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.03	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.03	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.03	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.03	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.03	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.03	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.03	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.03	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.03	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.03	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.03	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.03	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.03	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.03	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.03	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.03	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.03	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.03	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.03	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.03	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.03	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.03	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.03	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.03	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.03	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.03	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.03	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.03	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.03	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.03	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.012	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.012	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.012	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.012	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.012	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.13 SESOIL input values for Acetaminophen

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.012	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.012	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.012	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.012	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.012	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.012	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.012	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.012	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.012	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.012	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.012	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.012	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.012	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.012	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.012	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.012	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.012	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.012	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.012	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.012	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.012	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.012	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.012	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.012	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.012	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.012	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.012	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

1			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.74	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.74	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.74	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.74	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.74	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.74	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.74	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.74	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.74	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.74	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.74	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.74	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.74	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.74	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.74	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.74	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.74	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.74	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.74	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.74	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.74	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.74	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.74	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.74	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.74	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.74	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.74	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.74	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.74	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.74	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.74	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.74	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.003	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.003	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.003	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.003	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.003	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.14 SESOIL input values for Triclosan

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.003	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.003	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.003	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.003	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.003	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.003	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.003	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.003	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.003	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.003	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.003	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.003	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.003	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.003	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.003	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.003	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.003	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.003	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.003	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.003	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.003	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.003	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.003	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.003	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.003	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.003	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.003	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.5	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.5	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.5	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.5	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.5	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.5	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.5	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.5	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.5	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.5	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.5	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.5	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.5	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.5	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.5	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.5	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.5	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.5	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.5	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.5	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.5	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.5	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.5	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.5	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.5	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.5	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.5	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.5	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.5	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.5	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.5	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.5	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.027	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.027	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.027	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.027	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.027	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.15 SESOIL input values for Ciprofloxacin

			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.027	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.027	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.027	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.027	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.027	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.027	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.027	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.027	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.027	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.027	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.027	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.027	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.027	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.027	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.027	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.027	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.027	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.027	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.027	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.027	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.027	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.027	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.027	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.027	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.027	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.027	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.027	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadasa Zana	Intrincio	Organia			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	рH	Soil Type	Description	CEC	Kd
	ug/L	cm	cm	cm ²	%				meg/100g	
1	0.12	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.12	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.12	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.12	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.12	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.12	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.12	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.12	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.12	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.12	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.12	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.12	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.12	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.12	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.12	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.12	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.12	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.12	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.12	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.12	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.12	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.12	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.12	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.12	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.12	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.12	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.12	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.12	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.12	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.12	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.12	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.12	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.02	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.02	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.02	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.02	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.02	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.16 SESOIL input values for Metoprolol

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.02	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.02	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.02	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.02	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.02	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.02	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.02	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.02	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.02	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.02	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.02	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.02	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.02	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.02	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.02	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.02	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.02	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.02	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.02	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.02	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.02	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.02	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.02	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.02	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.02	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.02	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.02	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

			Vadosa Zona	Intrinsio	Organia			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
1	0.22	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
2	0.22	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
3	0.22	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
4	0.22	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
5	0.22	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500
6	0.22	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
7	0.22	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
8	0.22	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
9	0.22	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
10	0.22	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
11	0.22	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
12	0.22	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
13	0.22	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
14	0.22	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
15	0.22	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
16	0.22	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
17	0.22	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
18	0.22	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
19	0.22	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
20	0.22	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
21	0.22	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
22	0.22	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
23	0.22	153.6	300	1E-10	3	5	Charles	slt Im	9	500
24	0.22	6.708	300	1E-10	3	5	Charles	slt Im	9	500
25	0.22	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
26	0.22	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
27	0.22	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
28	0.22	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
29	0.22	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
30	0.22	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
31	0.22	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
32	0.22	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
33	0.013	153.6	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
34	0.013	6.708	1200	1E-07	3	7.2	Julesburg	sand Im	10	80
35	0.013	153.6	300	1E-07	3	7.2	Julesburg	sand Im	10	80
36	0.013	6.708	300	1E-07	3	7.2	Julesburg	sand Im	10	80
37	0.013	153.6	1200	1E-10	3	8	Lewisville	silty cly	23	1500

Table C.17 SESOIL input values for Salicylic acid

T			Vadose Zone	Intrinsic	Organic			Soil		
Run	Conc	Rainfall	Thickness	permeability	Content	pН	Soil Type	Description	CEC	Kd
	μg/L	cm	cm	cm ²	%				meq/100g	
38	0.013	6.708	1200	1E-10	3	8	Lewisville	silty cly	23	1500
39	0.013	153.6	300	1E-10	3	8	Lewisville	silty cly	23	1500
40	0.013	6.708	300	1E-10	3	8	Lewisville	silty cly	23	1500
41	0.013	153.6	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
42	0.013	6.708	1200	1E-07	0.5	7.5	Pompano	fn sand	5	30
43	0.013	153.6	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
44	0.013	6.708	300	1E-07	0.5	7.5	Pompano	fn sand	5	30
45	0.013	153.6	1200	1E-10	0.5	7.5	Climara	clay	38	2000
46	0.013	6.708	1200	1E-10	0.5	7.5	Climara	clay	38	2000
47	0.013	153.6	300	1E-10	0.5	7.5	Climara	clay	38	2000
48	0.013	6.708	300	1E-10	0.5	7.5	Climara	clay	38	2000
49	0.013	153.6	1200	1E-07	3	5	Hazelton	ch loam	4	150
50	0.013	6.708	1200	1E-07	3	5	Hazelton	ch loam	4	150
51	0.013	153.6	300	1E-07	3	5	Hazelton	ch loam	4	150
52	0.013	6.708	300	1E-07	3	5	Hazelton	ch loam	4	150
53	0.013	153.6	1200	1E-10	3	5	Charles	slt Im	9	500
54	0.013	6.708	1200	1E-10	3	5	Charles	slt Im	9	500
55	0.013	153.6	300	1E-10	3	5	Charles	slt Im	9	500
56	0.013	6.708	300	1E-10	3	5	Charles	slt Im	9	500
57	0.013	153.6	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
58	0.013	6.708	1200	1E-07	0.5	4.3	Lakewood	sand	3	20
59	0.013	153.6	300	1E-07	0.5	4.3	Lakewood	sand	3	20
60	0.013	6.708	300	1E-07	0.5	4.3	Lakewood	sand	3	20
61	0.013	153.6	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
62	0.013	6.708	1200	1E-10	0.5	5	Waynesboro	cly Im	10	800
63	0.013	153.6	300	1E-10	0.5	5	Waynesboro	cly Im	10	800
64	0.013	6.708	300	1E-10	0.5	5	Waynesboro	cly Im	10	800

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc $(\mu g/g)$	depth (m)
1	+	+	+	+	+	+	2.03E-04	6.38E-07	2.64
2	+	-	+	+	+	+	1.09E-03	3.41E-06	2.64
3	+	+	-	+	+	+	3.31E-03	1.04E-05	26.40
4	+	-	-	+	+	+	8.84E-03	2.77E-05	2.63
5	+	+	+	-	+	+	2.75E-03	8.63E-06	2.77
6	+	-	+	-	+	+	3.19E-03	1.00E-05	0.66
7	+	+	-	-	+	+	3.15E-03	9.89E-06	2.64
8	+	-	-	-	+	+	4.81E-03	1.51E-05	0.66
9	+	+	+	+	-	+	3.06E-03	9.60E-06	26.71
10	+	-	+	+	-	+	9.51E-05	2.98E-07	2.66
11	+	+	-	+	-	+	5.73E-03	1.80E-05	26.59
12	+	-	-	+	-	+	8.47E-03	2.66E-05	2.62
13	+	+	+	-	-	+	3.02E-04	9.46E-07	2.70
14	+	-	+	-	-	+	3.65E-03	1.14E-05	6.81
15	+	+	-	-	-	+	9.54E-03	2.99E-05	2.64
16	+	-	-	-	-	+	1.23E-03	3.85E-06	6.81
17	+	+	+	+	+	-	3.22E-03	1.01E-05	26.67
18	+	-	+	+	+	-	1.08E-03	3.40E-06	2.60
19	+	+	-	+	+	-	6.13E-03	1.92E-05	26.62
20	+	-	-	+	+	-	8.84E-03	2.77E-05	2.64
21	+	+	+	-	+	-	8.61E-04	2.70E-06	2.60
22	+	-	+	-	+	-	3.26E-03	1.02E-05	0.66
23	+	+	-	-	+	-	7.72E-04	2.42E-06	2.64
24	+	-	-	-	+	-	6.79E-03	2.13E-05	0.66
25	+	+	+	+	-	-	3.06E-03	9.60E-06	26.61
26	+	-	+	+	-	-	9.51E-05	2.98E-07	2.67
27	+	+	-	+	-	-	5.73E-03	1.80E-05	26.62
28	+	-	-	+	-	-	8.47E-03	2.66E-05	2.64
29	+	+	+	-	-	-	1.03E-03	3.24E-06	2.64
30	+	-	+	-	-	-	2.93E-05	9.21E-08	0.66
31	+	+	-	-	-	-	5.75E-03	1.81E-05	2.64
32	+	-	-	-	-	-	6.86E-03	2.15E-05	6.81
33	-	+	+	+	+	+	4.40E-07	7.12E-08	26.61
34	-	-	+	+	+	+	2.35E-06	3.80E-07	2.65
35	-	+	-	+	+	+	7.15E-06	1.16E-06	26.69
36	-	-	-	+	+	+	1.91E-05	3.10E-06	2.65
37	-	+	+	-	+	+	5.95E-06	9.63E-07	2.64
38	-	-	+	-	+	+	6.90E-06	1.12E-06	0.66
39	-	+	-	-	+	+	6.81E-06	1.10E-06	2.64
40	-	_	-	-	+	+	1.04E-05	1.68E-06	0.66
41	-	+	+	+	-	+	6.23E-06	1.01E-06	26.62

Table C.18 SESOIL out put values for Nystatin (10 yrs of simulation)

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc ($\mu g/g$)	depth (m)
42	-	-	+	+	-	+	2.06E-07	3.33E-08	2.66
43	-	+	-	+	-	+	1.24E-05	2.00E-06	26.61
44	-	-	-	+	-	+	1.83E-05	2.96E-06	2.66
45	-	+	+	-	-	+	6.52E-07	1.06E-07	2.64
46	-	-	+	-	-	+	7.89E-06	1.28E-06	6.80
47	-	+	-	-	-	+	2.06E-05	3.34E-06	2.64
48	-	-	-	-	-	+	2.65E-06	4.29E-07	6.81
49	-	+	+	+	+	-	6.95E-06	1.13E-06	26.61
50	-	-	+	+	+	-	2.35E-06	3.80E-07	2.64
51	-	+	-	+	+	-	1.33E-05	2.15E-06	26.21
52	-	-	-	+	+	-	1.91E-05	3.10E-06	2.64
53	-	+	+	-	+	-	1.86E-06	3.01E-07	2.64
54	-	-	+	-	+	-	7.04E-06	1.14E-06	0.66
55	-	+	-	-	+	-	1.67E-06	2.70E-07	2.64
56	-	-	-	-	+	-	1.47E-05	2.38E-06	0.66
57	-	+	+	+	-	-	6.62E-06	1.07E-06	26.60
58	-	-	+	+	-	-	2.06E-07	3.33E-08	2.66
59	-	+	-	+	-	-	1.24E-05	2.00E-06	26.61
60	-	-	-	+	-	-	1.83E-05	2.96E-06	2.61
61	-	+	+	-	-	-	2.23E-06	3.62E-07	2.64
62	-	-	+	-	-	-	6.34E-08	1.03E-08	6.80
63	-	+	-	-	-	-	1.24E-05	2.01E-06	2.64
64	-	_	-	-	-	-	1.48E-05	2.40E-06	6.81

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	1.56E-04	9.25E-07	2.95
2	+	-	+	+	+	+	8.36E-04	4.94E-06	2.94
3	+	+	-	+	+	+	2.55E-03	1.51E-05	29.40
4	+	-	-	+	+	+	6.80E-03	4.02E-05	2.94
5	+	+	+	-	+	+	2.12E-03	1.25E-05	2.97
6	+	-	+	-	+	+	2.45E-03	1.45E-05	0.74
7	+	+	-	-	+	+	2.42E-03	1.43E-05	2.94
8	+	-	-	-	+	+	3.70E-03	2.19E-05	0.74
9	+	+	+	+	-	+	2.35E-03	1.39E-05	29.63
10	+	-	+	+	-	+	7.31E-05	4.33E-07	2.96
11	+	+	-	+	-	+	4.41E-03	2.61E-05	29.64
12	+	-	-	+	-	+	6.51E-03	3.85E-05	2.94
13	+	+	+	-	-	+	2.32E-04	1.37E-06	2.94
14	+	-	+	-	-	+	2.81E-03	1.66E-05	7.58
15	+	+	-	-	-	+	7.34E-03	4.34E-05	2.95
16	+	-	-	-	-	+	9.43E-04	5.58E-06	7.58
17	+	+	+	+	+	-	2.47E-03	1.46E-05	29.65
18	+	-	+	+	+	-	8.33E-04	4.92E-06	2.94
19	+	+	-	+	+	-	4.72E-03	2.79E-05	29.41
20	+	-	-	+	+	-	6.80E-03	4.02E-05	2.94
21	+	+	+	-	+	-	6.62E-04	3.91E-06	2.94
22	+	-	+	-	+	-	2.51E-03	1.48E-05	0.73
23	+	+	-	-	+	-	5.94E-04	3.51E-06	2.94
24	+	-	-	-	+	-	5.22E-03	3.09E-05	0.74
25	+	+	+	+	-	-	2.35E-03	1.39E-05	29.63
26	+	-	+	+	_	-	7.31E-05	4.33E-07	2.97
27	+	+	-	+	-	-	4.41E-03	2.61E-05	29.63
28	+	-	-	+	-	-	6.51E-03	3.85E-05	2.94
29	+	+	+	-	-	-	7.95E-04	4.70E-06	2.94
30	+	-	+	-	-	-	2.26E-05	1.33E-07	0.74
31	+	+	-	-	-	-	4.43E-03	2.62E-05	2.94
32	+	-	-	-	-	-	5.28E-03	3.12E-05	7.58
33	-	+	+	+	+	+	3.89E-07	8.05E-08	29.63
34	-	-	+	+	+	+	2.08E-06	4.30E-07	2.94
35	-	+	-	+	+	+	6.33E-06	1.31E-06	29.50
36	-	-	-	+	+	+	1.69E-05	3.50E-06	2.94
37	-	+	+	-	+	+	5.26E-06	1.09E-06	2.94
38	-	-	+	-	+	+	6.10E-06	1.26E-06	0.73
39	-	+	-	-	+	+	6.03E-06	1.25E-06	2.94
40	-	-	-	-	+	+	9.21E-06	1.90E-06	0.73
41	-	+	+	+	-	+	5.52E-06	1.14E-06	29.64
42	-	-	+	+	-	+	1.82E-07	3.76E-08	2.96

Table C.19 SESOIL out put values for Dexamethasone (10 yrs of simulation)

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc (µg/g)	depth (m)
43	-	+	-	+	-	+	1.10E-05	2.27E-06	29.63
44	-	-	-	+	-	+	1.62E-05	3.35E-06	2.94
45	-	+	+	-	-	+	5.77E-07	1.19E-07	2.94
46	-	-	+	-	-	+	6.98E-06	1.44E-06	7.58
47	-	+	-	-	-	+	1.83E-05	3.78E-06	2.94
48	-	-	-	-	-	+	2.35E-06	4.85E-07	7.58
49	-	+	+	+	+	-	6.15E-06	1.27E-06	29.66
50	-	-	+	+	+	-	2.08E-06	4.30E-07	2.94
51	-	+	-	+	+	-	1.17E-05	2.43E-06	29.40
52	-	-	-	+	+	-	1.69E-05	3.50E-06	2.94
53	-	+	+	-	+	-	1.65E-06	3.40E-07	2.94
54	-	-	+	-	+	-	6.23E-06	1.29E-06	0.74
55	-	+	-	-	+	-	1.48E-06	3.05E-07	2.94
56	-	-	-	-	+	-	1.30E-05	2.68E-06	0.74
57	-	+	+	+	-	-	5.86E-06	1.21E-06	29.63
58	-	-	+	+	-	-	1.82E-07	3.76E-08	2.96
59	-	+	-	+	-	-	1.10E-05	2.27E-06	29.64
60	-	-	-	+	-	-	1.62E-05	3.35E-06	2.94
61	-	+	+	-	-	-	1.98E-06	4.09E-07	2.94
62	-	-	+	-	-	-	5.61E-08	1.16E-08	7.58
63	-	+	-	-	-	-	1.10E-05	2.28E-06	2.94
64	-	-	-	-	-	-	1.31E-05	2.71E-06	7.58

							Conc. at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	4.07E-05	5.10E-06	0.78
2	+	-	+	+	+	+	2.17E-04	2.73E-05	0.78
3	+	+	-	+	+	+	6.62E-04	8.31E-05	7.80
4	+	-	-	+	+	+	1.77E-03	2.22E-04	0.78
5	+	+	+	-	+	+	5.50E-04	6.91E-05	0.79
6	+	-	+	-	+	+	6.38E-04	8.00E-05	0.20
7	+	+	-	-	+	+	6.30E-04	7.91E-05	0.78
8	+	-	-	-	+	+	9.61E-04	1.21E-04	0.20
9	+	+	+	+	-	+	6.12E-04	7.68E-05	7.86
10	+	-	+	+	-	+	1.90E-05	2.39E-06	0.79
11	+	+	-	+	-	+	1.15E-03	1.44E-04	7.86
12	+	-	-	+	-	+	1.69E-03	2.12E-04	0.78
13	+	+	+	-	-	+	6.03E-05	7.57E-06	0.78
14	+	-	+	-	-	+	7.29E-04	9.15E-05	2.02
15	+	+	-	-	-	+	1.91E-03	2.40E-04	0.78
16	+	-	-	-	-	+	2.45E-04	3.08E-05	2.01
17	+	+	+	+	+	_	6.43E-04	8.07E-05	7.86
18	+	-	+	+	+	_	2.16E-04	2.72E-05	0.78
19	+	+	-	+	+	_	1.23E-03	1.54E-04	7.80
20	+	-	-	+	+	-	1.77E-03	2.22E-04	0.78
21	+	+	+	-	+	_	1.72E-04	2.16E-05	0.78
22	+	-	+	-	+	_	6.52E-04	8.18E-05	0.20
23	+	+	-	-	+	_	1.54E-04	1.94E-05	0.78
24	+	-	-	-	+	_	1.36E-03	1.70E-04	0.20
25	+	+	+	+	-	_	6.12E-04	7.68E-05	7.86
26	+	-	+	+	-	-	1.90E-05	2.39E-06	0.79
27	+	+	-	+	-	-	1.15E-03	1.44E-04	7.86
28	+	-	-	+	-	_	1.69E-03	2.12E-04	0.78
29	+	+	+	-	-	_	2.07E-04	2.59E-05	0.78
30	+	-	+	-	-	_	5.87E-06	7.37E-07	0.20
31	+	+	-	-	-	_	1.15E-03	1.44E-04	0.78
32	+	-	-	-	-	_	1.37E-03	1.72E-04	2.01
33	_	+	+	+	+	+	7.33E-08	7.12E-07	7.86
34	-	-	+	+	+	+	3.92E-07	3.80E-06	0.78
35	-	+	-	+	+	+	1.19E-06	1.16E-05	7.80
36	-	-	-	+	+	+	3.19E-06	3.10E-05	0.78
37	-	+	+	-	+	+	9.91E-07	9.63E-06	0.78
38	-	-	+	-	+	+	1.15E-06	1.12E-05	0.20
39	-	+	-	-	+	+	1.14E-06	1.10E-05	0.78

Table C.20 SESOIL out put values for Methoprene (10 yrs of simulation)
							Conc at		Maximum
D	C	D C 11	Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Kun	Concentration	Kainfall	Inickness	Permeability	Content	рн	(μg/L)	$Conc (\mu g/g)$	depth (m)
40	-	-	-	-	+	+	1.73E-06	1.68E-05	0.20
41	-	+	+	+	-	+	1.04E-06	1.01E-05	7.86
42	-	-	+	+	-	+	3.43E-08	3.33E-07	0.79
43	-	+	-	+	-	+	2.06E-06	2.00E-05	7.86
44	-	-	-	+	-	+	3.05E-06	2.96E-05	0.78
45	-	+	+	-	-	+	1.09E-07	1.06E-06	0.78
46	-	-	+	-	-	+	1.31E-06	1.28E-05	2.01
47	-	+	-	-	_	+	3.44E-06	3.34E-05	0.78
48	-	_	-	-	-	+	4.42E-07	4.29E-06	2.01
49	-	+	+	+	+	-	1.16E-06	1.13E-05	7.86
50	-	-	+	+	+	-	3.92E-07	3.80E-06	0.78
51	-	+	-	+	+	-	2.21E-06	2.15E-05	7.80
52	-	-	-	+	+	-	3.19E-06	3.10E-05	0.78
53	-	+	+	-	+	-	3.10E-07	3.01E-06	0.78
54	-	-	+	-	+	-	1.17E-06	1.14E-05	0.20
55	-	+	-	-	+	-	2.78E-07	2.70E-06	0.78
56	-	-	-	-	+	-	2.45E-06	2.38E-05	0.20
57	-	+	+	+	-	-	1.10E-06	1.07E-05	7.86
58	-	-	+	+	-	-	3.43E-08	3.33E-07	0.79
59	-	+	-	+	-	-	2.06E-06	2.00E-05	7.86
60	-	-	-	+	-	-	3.05E-06	2.96E-05	0.78
61	-	+	+	-	-	-	3.72E-07	3.62E-06	0.78
62	-	-	+	-	-	-	1.06E-08	1.03E-07	2.01
63	_	+	-	-	_	-	2.07E-06	2.01E-05	0.78
64	_	-	-	-	_	-	2.47E-06	2.40E-05	2.01

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	2.44E-04	7.33E-07	5.11
2	+	-	+	+	+	+	1.30E-03	3.92E-06	5.11
3	+	+	-	+	+	+	3.97E-03	1.19E-05	51.01
4	+	_	-	+	+	+	1.06E-02	3.19E-05	5.10
5	+	+	+	-	+	+	3.30E-03	9.92E-06	5.14
6	+	-	+	-	+	+	3.83E-03	1.15E-05	1.28
7	+	+	-	-	+	+	3.78E-03	1.14E-05	5.10
8	+	-	-	-	+	+	5.77E-03	1.73E-05	1.28
9	+	+	+	+	-	+	3.67E-03	1.10E-05	51.40
10	+	-	+	+	-	+	1.14E-04	3.43E-07	5.14
11	+	+	-	+	-	+	6.87E-03	2.07E-05	51.40
12	+	_	-	+	-	+	1.02E-02	3.05E-05	5.10
13	+	+	+	-	-	+	3.62E-04	1.09E-06	5.10
14	+	-	+	-	-	+	4.38E-03	1.32E-05	13.15
15	+	+	-	-	-	+	1.15E-02	3.44E-05	5.10
16	+	-	-	-	-	+	1.47E-03	4.42E-06	13.15
17	+	+	+	+	+	_	3.86E-03	1.16E-05	51.40
18	+	_	+	+	+	_	1.30E-03	3.90E-06	5.10
19	+	+	-	+	+	_	7.36E-03	2.21E-05	51.01
20	+	_	-	+	+	_	1.06E-02	3.19E-05	5.10
21	+	+	+	-	+	_	1.03E-03	3.10E-06	5.10
22	+	_	+	-	+	_	3.91E-03	1.17E-05	1.28
23	+	+	-	-	+	-	9.26E-04	2.78E-06	5.10
24	+	_	-	-	+	-	8.15E-03	2.45E-05	1.28
25	+	+	+	+	_	_	3.67E-03	1.10E-05	51.40
26	+	_	+	+	-	-	1.14E-04	3.43E-07	5.14
27	+	+	-	+	-	-	6.87E-03	2.07E-05	51.40
28	+	_	-	+	-	-	1.02E-02	3.05E-05	5.10
29	+	+	+	_	_	_	1.24E-03	3.72E-06	5.10
30	+	_	+	-	-	-	3.52E-05	1.06E-07	1.28
31	+	+	_	_	_	_	6.90E-03	2.07E-05	5.10
32	+	_	_	_	_	_	8.24E-03	2.48E-05	13.15
33	_	+	+	+	+	+	7.04E-07	7.42E-08	51.40
34	-	_	+	+	+	+	3.76E-06	3.96E-07	5.11
35	_	+	_	+	+	+	1 14E-05	1 21F-06	51.01
36	-	-	-	+	+	+	3.06E-05	3.22E-06	5.10
37	-	+	+	_	+	+	9.52E-06	1.00E-06	5.10
38	-	_	+	-	+	+	1 10E-05	1 16E-06	1 28
39	-	+	-	-	+	+	1.09E-05	1.15E-06	5.10

Table C.21 SESOIL out put values for Prednisone (10 yrs of simulation)

D		D : 011	Vadose zone	Intrinsic	Organic		Conc at groundwater	Adsorbed	Maximum pollutant
Kun	Concentration	Kainfall	Inickness	Permeability	Content	рН	(μg/L) 4 οοΓ οΓ	$Conc (\mu g/g)$	depth (m)
40	-	-	-	-	+	+	1.66E-05	1.75E-06	1.28
41	-	+	+	+	-	+	9.97E-06	1.05E-06	51.40
42	-	-	+	+	-	+	3.29E-07	3.47E-08	5.14
43	-	+	-	+	-	+	1.98E-05	2.09E-06	51.40
44	-	-	-	+	-	+	2.93E-05	3.09E-06	5.10
45	-	+	+	-	-	+	1.04E-06	1.10E-07	5.10
46	-	-	+	-	-	+	1.26E-05	1.33E-06	13.15
47	-	+	-	-	-	+	3.30E-05	3.48E-06	5.10
48	-	-	-	-	-	+	4.24E-06	4.47E-07	13.15
49	-	+	+	+	+	_	1.11E-05	1.17E-06	51.40
50	-	-	+	+	+	_	3.76E-06	3.96E-07	5.10
51	-	+	-	+	+	_	2.12E-05	2.24E-06	51.01
52	-	_	-	+	+	-	3.06E-05	3.22E-06	5.10
53	-	+	+	-	+	-	2.98E-06	3.14E-07	5.10
54	-	-	+	-	+	-	1.13E-05	1.19E-06	1.28
55	-	+	-	-	+	-	2.67E-06	2.81E-07	5.10
56	-	-	-	-	+	-	2.35E-05	2.47E-06	1.28
57	-	+	+	+	-	-	1.06E-05	1.12E-06	51.40
58	-	-	+	+	-	_	3.29E-07	3.47E-08	5.14
59	-	+	-	+	-	_	1.98E-05	2.09E-06	51.40
60	-	-	-	+	-	-	2.93E-05	3.09E-06	5.10
61	-	+	+	-	-	-	3.57E-06	3.77E-07	5.10
62	-	-	+	-	-	-	1.01E-07	1.07E-08	13.15
63	-	+	-	_	-	-	1.99E-05	2.10E-06	5.10
64	-	-	-	-	-	-	2.37E-05	2.50E-06	13.15

							Concest		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	8.13E-04	6.19E-08	5.59
2	+	-	+	+	+	+	4.35E-03	3.31E-07	5.59
3	+	+	-	+	+	+	1.32E-02	1.01E-06	55.81
4	+	-	-	+	+	+	3.54E-02	2.69E-06	5.58
5	+	+	+	-	+	+	1.10E-02	8.38E-07	5.62
6	+	-	+	-	+	+	1.28E-02	9.71E-07	1.40
7	+	+	-	-	+	+	1.26E-02	9.60E-07	5.58
8	+	-	-	-	+	+	1.92E-02	1.46E-06	1.40
9	+	+	+	+	-	+	1.22E-02	9.32E-07	56.24
10	+	-	+	+	-	+	3.80E-04	2.90E-08	5.62
11	+	+	-	+	-	+	2.29E-02	1.74E-06	56.24
12	+	-	-	+	-	+	3.39E-02	2.58E-06	5.58
13	+	+	+	-	-	+	1.21E-03	9.19E-08	5.58
14	+	-	+	-	-	+	1.46E-02	1.11E-06	14.39
15	+	+	-	-	-	+	3.82E-02	2.91E-06	5.58
16	+	-	-	-	-	+	4.90E-03	3.73E-07	14.39
17	+	+	+	+	+	-	1.29E-02	9.79E-07	56.24
18	+	-	+	+	+	-	4.33E-03	3.30E-07	5.58
19	+	+	-	+	+	_	2.45E-02	1.87E-06	55.81
20	+	-	-	+	+	-	3.54E-02	2.69E-06	5.58
21	+	+	+	-	+	-	3.44E-03	2.62E-07	5.58
22	+	-	+	-	+	-	1.30E-02	9.92E-07	1.40
23	+	+	-	-	+	-	3.09E-03	2.35E-07	5.58
24	+	-	-	-	+	-	2.72E-02	2.07E-06	1.40
25	+	+	+	+	-	_	1.22E-02	9.32E-07	56.24
26	+	-	+	+	-	-	3.80E-04	2.90E-08	5.62
27	+	+	-	+	-	-	2.29E-02	1.74E-06	56.24
28	+	-	-	+	-	_	3.39E-02	2.58E-06	5.58
29	+	+	+	-	-	_	4.13E-03	3.15E-07	5.58
30	+	-	+	-	-	_	1.17E-04	8.94E-09	1.40
31	+	+	-	-	-	_	2.30E-02	1.75E-06	5.58
32	+	-	-	-	-	_	2.75E-02	2.09E-06	14.39
33	_	+	+	+	+	+	2.64E-06	6.14E-09	56.24
34	_	_	+	+	+	+	1.41E-05	3.28E-08	5.59
35	-	+	-	+	+	+	4.29E-05	9.98E-08	55.81
36	-	-	-	+	+	+	1.15E-04	2.67E-07	5.58
37	-	+	+	-	+	+	3.57E-05	8.30E-08	5.58
38	1	1	+	-	+	+	4.14E-05	9.62E-08	1.40
39	-	+	-	-	+	+	4.09E-05	9.51E-08	5.58

Table C.22 SESOIL out put values for Metronidazole (10 yrs of simulation)

			Vadose zone	Intrinsic	Organic		Conc at groundwater	Adsorbed	Maximum pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc (µg/g)	depth (m)
40	-	-	-	-	+	+	6.24E-05	1.45E-07	1.40
41	-	+	+	+	-	+	3.74E-05	8.70E-08	56.24
42	-	-	+	+	-	+	1.23E-06	2.87E-09	5.62
43	-	+	-	+	-	+	7.43E-05	1.73E-07	56.24
44	-	-	-	+	-	+	1.10E-04	2.55E-07	5.58
45	-	+	+	-	-	+	3.91E-06	9.10E-09	5.58
46	-	-	+	-	-	+	4.73E-05	1.10E-07	14.39
47	-	+	-	-	-	+	1.24E-04	2.88E-07	5.58
48	-	-	-	-	-	+	1.59E-05	3.70E-08	14.39
49	-	+	+	+	+	-	4.17E-05	9.70E-08	56.24
50	-	-	+	+	+	-	1.41E-05	3.28E-08	5.58
51	-	+	-	+	+	-	7.96E-05	1.85E-07	55.81
52	-	-	-	+	+	-	1.15E-04	2.67E-07	5.58
53	-	+	+	-	+	-	1.12E-05	2.60E-08	5.58
54	-	-	+	-	+	-	4.23E-05	9.83E-08	1.40
55	-	+	-	-	+	-	1.00E-05	2.33E-08	5.58
56	-	-	-	-	+	-	8.80E-05	2.05E-07	1.40
57	-	+	+	+	-	-	3.97E-05	9.24E-08	56.24
58	-	-	+	+	-	-	1.23E-06	2.87E-09	5.62
59	-	+	-	+	-	-	7.43E-05	1.73E-07	56.24
60	-	-	-	+	-	-	1.10E-04	2.55E-07	5.58
61	-	+	+	-	-	-	1.34E-05	3.12E-08	5.58
62	-	-	+	-	-	-	3.81E-07	8.85E-10	14.39
63	-	+	-	-	-	-	7.47E-05	1.74E-07	5.58
64	-	-	-	-	-	-	8.90E-05	2.07E-07	14.39

RunConcentrationNaloseZonzembritisicOrganicFrom workerAdsorbed								Conc at		Maximum
Run Concentration Rainfall Thickness Permeability Content plf (μ_{B}/L) Conce(μ_{S}/L) depth (m) 1 + + + + + 1.27E-04 1.40E-06 3.18 3 + - + + + 2.28E-05 31.81 4 + - + + + 5.55E-03 6.10E-05 3.18 5 + + + + + 1.99E-03 2.20E-05 0.80 7 + + - + + 1.99E-03 3.32E-05 0.80 7 + + - + + 1.99E-03 3.32E-05 0.80 7 + + + + + 1.99E-03 3.92E-05 3.05 10 + + + + - + 5.94E-05 6.56E-07 3.20 11 + + + - <td></td> <td></td> <td></td> <td>Vadose zone</td> <td>Intrinsic</td> <td>Organic</td> <td></td> <td>groundwater</td> <td>Adsorbed</td> <td>pollutant</td>				Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
1 + + + + + + + + + + 1.40E-066 3.18 2 + - + + + + 6.79E-04 7.50E-06 3.18 3 + + + + + + 2.20F-03 2.28E-05 3.181 4 + - + + + 1.72E-03 1.90E-05 3.20 6 + - + + 1.97E-03 2.18E-05 3.88 7 + + - + + 1.97E-03 2.18E-05 3.205 0.80 9 + + + + + 1.97E-03 2.18E-05 3.205 3.205 10 + - + + + 1.99E-04 3.95E-05 3.20 3.20 11 + + + + - + 3.58E-05 3.18 13 + + + - - + 5.29E-03 5.88E-05 3.18 <td>Run</td> <td>Concentration</td> <td>Rainfall</td> <td>Thickness</td> <td>Permeability</td> <td>Content</td> <td>pН</td> <td>(µg/L)</td> <td>Conc ($\mu g/g$)</td> <td>depth (m)</td>	Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc ($\mu g/g$)	depth (m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	+	+	+	+	+	+	1.27E-04	1.40E-06	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	+	-	+	+	+	+	6.79E-04	7.50E-06	3.18
4 + - + + + 5.53E-03 6.10E-05 3.18 5 + + + + 1.90E-03 2.20E-05 3.20 6 + - + + 1.99E-03 2.20E-05 3.80 7 + + - + + 1.97E-03 3.32E-05 0.80 9 + + + + 1.91E-03 2.11E-05 32.05 10 + - + + 5.94E-05 6.56E-07 3.20 11 + + + + + 5.94E-05 6.56E-07 3.20 11 + + + + + 5.94E-05 6.56E-07 3.20 11 + + + + + 5.29E-03 5.84E-05 3.18 13 + + + - + 1.89E-04 2.08E-06 3.18 14 + - + + 1.89E-04 8.46E-06 8.20 15	3	+	+	-	+	+	+	2.07E-03	2.28E-05	31.81
5 + + + + + + + 1.99E-03 2.20E-05 0.80 7 + + - + + 1.99E-03 2.20E-05 0.80 7 + + - + + 1.97E-03 2.18E-05 3.18 8 + - - + + 1.97E-03 2.11E-05 32.05 9 + + + + + 1.99E-03 3.22E-05 3.20 10 + - + + 1.99E-03 3.26E-05 3.20 11 + + + - + 5.94E-03 3.84E-05 3.18 13 + + + - + 5.29E-03 5.84E-05 3.18 13 + + + - + 5.29E-03 5.84E-05 3.18 14 + + - - + 5.97E-03 6.59E-05 3.18 15 + + - - + <td< td=""><td>4</td><td>+</td><td>-</td><td>-</td><td>+</td><td>+</td><td>+</td><td>5.53E-03</td><td>6.10E-05</td><td>3.18</td></td<>	4	+	-	-	+	+	+	5.53E-03	6.10E-05	3.18
6 + - + + 1.99E-03 2.20E-05 0.80 7 + + - - + + 1.97E-03 2.18E-05 3.18 8 + - - + + 1.97E-03 2.11E-05 32.05 9 + + + + + 1.91E-03 2.11E-05 32.05 10 + + + + - + 5.94E-05 6.56E-07 3.205 11 + + + - + 5.29E-03 5.84E-05 3.18 13 + + + - + 1.89E-04 2.08E-06 3.18 14 + + + - + 1.89E-04 2.08E-06 8.20 15 + + + - - + 2.28E-03 2.22E-05 8.20 16 + - - - + 7.66E-04 8.46E-06 8.20 17 + + + +	5	+	+	+	-	+	+	1.72E-03	1.90E-05	3.20
7 + + + 1.97E-03 2.18E-05 3.18 8 + - + + 3.00E-03 3.32E-05 0.80 9 + + + + + 1.91E-03 3.11E-05 32.05 10 + + + + + 5.94E-03 3.95E-05 32.05 11 + + - + 5.94E-03 3.95E-05 32.05 12 + - + - + 5.29E-03 5.84E-05 3.18 13 + + + - + 1.89E-04 2.08E-06 3.18 14 + - + - + 1.89E-04 2.08E-06 3.18 14 + - + - + 5.97E-03 6.59E-05 3.18 16 + + - - + 7.66E-04 7.47E-06 3.18 19 + + + + - 3.38E-03 4.23E-05 3.18	6	+	-	+	-	+	+	1.99E-03	2.20E-05	0.80
8 + - + + 3.00E-03 3.32E-05 0.80 9 + + + + + 1.91E-03 2.11E-05 32.05 10 + - + + - + 5.94E-05 6.56E-07 3.20 11 + + - + - + 5.29E-03 5.84E-05 3.18 12 + - + + - + 5.29E-03 3.58E-03 3.20E-05 3.20 13 + + + - + + 5.29E-03 2.52E-05 8.20 15 + + - - + 1.89E-04 2.08E-06 8.20 16 + - - + + 5.97E-03 6.59E-05 3.18 16 + - - + + 2.01E-03 2.22E-05 32.05 18 + + + + 3.83E-03 4.01E-06 3.18 20 + - - <td>7</td> <td>+</td> <td>+</td> <td>-</td> <td>_</td> <td>+</td> <td>+</td> <td>1.97E-03</td> <td>2.18E-05</td> <td>3.18</td>	7	+	+	-	_	+	+	1.97E-03	2.18E-05	3.18
9 + + + + 1.91E-03 2.11E-05 32.05 10 + - + + - + 5.94E-05 6.56E-07 3.20 11 + + - + 3.58E-03 3.95E-05 32.05 12 + - + + 5.29E-03 5.84E-05 3.18 13 + + + - + 5.29E-03 5.84E-06 3.18 14 + - + - + 1.89E-04 2.08E-06 8.20 15 + + - - + 5.97E-03 6.59E-05 3.18 16 + - - + 7.66E-04 8.46E-06 8.20 17 + + + + 2.01E-03 2.22E-05 31.81 20 + - + + 3.83E-03 4.23E-05 31.81 20 + - + + 5.53E-03 6.10E-05 3.18 21 +	8	+	-	-	-	+	+	3.00E-03	3.32E-05	0.80
10+-+-+5.94E-05 $6.56E-07$ 3.20 11++-+-+ $3.58E-03$ $3.96E-05$ 32.05 12++ $5.29E-03$ $5.84E-05$ 3.18 13+++-+ $1.89E-04$ $2.08E-06$ 3.18 14+-++ $2.28E-03$ $2.52E-05$ 8.20 15+++ $5.97E-03$ $6.59E-05$ 3.18 16++ $7.66E-04$ $8.46E-06$ 8.20 17++++- $2.01E-03$ $2.22E-05$ 32.05 18+-+++- $6.76E-04$ $7.47E-06$ 3.18 19+++++- $6.76E-04$ $7.47E-06$ 3.18 20+-+++- $5.38E-03$ $6.10E-05$ 3.18 21+++++- $5.38E-04$ $5.94E-06$ 3.18 22+-+++- $5.38E-04$ $5.94E-06$ 3.18 22+-+++- $5.38E-03$ $6.10E-05$ 3.18 23+++-++ $5.38E-03$ $3.96E-05$ 3.205 26+-++ $1.91E-03$ $2.18E-05$ <td>9</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>-</td> <td>+</td> <td>1.91E-03</td> <td>2.11E-05</td> <td>32.05</td>	9	+	+	+	+	-	+	1.91E-03	2.11E-05	32.05
11++-+-+3.58E-033.95E-0532.0512+-++5.29E-035.84E-053.1813+++-+1.89E-042.08E-063.1814+-++2.28E-032.52E-058.2015+++5.97E-036.59E-053.1816++7.66E-048.46E-068.2017+++++2.01E-032.22E-0532.0518+-+++2.01E-032.22E-0531.819+++++3.83E-034.23E-0531.820+-+++5.53E-036.10E-053.1821+++++5.38E-045.94E-063.1822+-+++2.04E-032.25E-050.8023++-++5.38E-045.94E-053.1824+++-3.68E-033.95E-053.20526+-++1.91E-032.11E-0532.0526+-++3.68E-033.95E-053.2027+++3.68E-033.95E-053.205 <tr< td=""><td>10</td><td>+</td><td>-</td><td>+</td><td>+</td><td>-</td><td>+</td><td>5.94E-05</td><td>6.56E-07</td><td>3.20</td></tr<>	10	+	-	+	+	-	+	5.94E-05	6.56E-07	3.20
12+-+-+5.29E-035.84E-053.1813++++1.89E-042.08E-063.1814+-++2.28E-032.52E-058.2015+++5.97E-036.59E-053.1816++7.66E-048.46E-068.2017+++++-2.01E-032.22E-0532.0518+-+++-6.76E-047.47E-063.1819+-+++-6.76E-047.47E-063.1820+-+++-5.38E-036.10E-053.1821+++++-5.38E-045.94E-063.1822+-+++-2.04E-032.25E-050.8023+++-+4.82E-045.33E-063.1824+++-3.58E-033.95E-0532.0526+-++5.94E-056.56E-073.2027++++5.94E-056.56E-073.2028++5.94E-053.86-053.1829+++ <td>11</td> <td>+</td> <td>+</td> <td>-</td> <td>+</td> <td>-</td> <td>+</td> <td>3.58E-03</td> <td>3.95E-05</td> <td>32.05</td>	11	+	+	-	+	-	+	3.58E-03	3.95E-05	32.05
13++++1.89E-042.08E-063.1814+-++2.28E-032.52E-058.2015+++5.97E-036.59E-053.1816++7.66E-048.46E-068.2017+++++-2.01E-032.22E-0532.0518+-+++-6.76E-047.47E-063.1819+++++-6.76E-047.47E-063.1820+-+++-3.83E-034.23E-0531.8120+-+++-5.38E-045.94E-063.1821+++-+5.38E-045.94E-063.1822+-+-+-2.04E-032.25E-050.8023+++-4.82E-045.33E-063.1824++-4.24E-034.68E-050.8025++++1.94E-056.56E-073.2026+-++5.94E-056.56E-073.2027++5.29E-033.95E-053.20528+ </td <td>12</td> <td>+</td> <td>-</td> <td>-</td> <td>+</td> <td>-</td> <td>+</td> <td>5.29E-03</td> <td>5.84E-05</td> <td>3.18</td>	12	+	-	-	+	-	+	5.29E-03	5.84E-05	3.18
14+-++2.28E-032.52E-058.2015+++ $5.97E-03$ $6.59E-05$ 3.18 16++ $7.66E-04$ $8.46E-06$ 8.20 17+++++- $2.01E-03$ $2.22E-05$ 32.05 18+-+++- $6.76E-04$ $7.47E-06$ 3.18 19+++++- $6.76E-04$ $7.47E-06$ 3.18 20+-+++- $5.38E-03$ $4.23E-05$ 31.81 20+-+++- $5.38E-04$ $5.94E-06$ 3.18 21+++-+ $4.22E-05$ 0.80 3.18 22+-+-+ $2.04E-03$ $2.25E-05$ 0.80 23+++ $4.82E-04$ $5.33E-06$ 3.18 24+++- $5.94E-05$ $6.56E-07$ 3.20 25++++ $5.94E-05$ $6.56E-07$ 3.20 26+-++ $5.94E-05$ $5.26E-05$ 3.18 30++ $5.29E-05$ 3.205 31++ $6.46E-04$ $7.13E-05$	13	+	+	+	-	-	+	1.89E-04	2.08E-06	3.18
15+++ $5.97E-03$ $6.59E-05$ 3.18 16++ $7.66E-04$ $8.46E-06$ 8.20 17+++++- $2.01E-03$ $2.22E-05$ 32.05 18+-+++- $6.76E-04$ $7.47E-06$ 3.18 19++-++- $6.76E-04$ $7.47E-06$ 3.18 19++-++- $6.76E-04$ $7.47E-06$ 3.18 20+-+++- $5.33E-03$ $6.10E-05$ 3.18 21+++-+ $5.33E-04$ $5.94E-06$ 3.18 22+-+-+ $2.04E-03$ $2.25E-05$ 0.80 23+++ $4.82E-04$ $5.33E-06$ 3.18 24++ $4.82E-04$ $5.33E-06$ 3.18 24++ $4.24E-03$ $4.68E-05$ 0.80 25++++ $5.94E-05$ $6.56E-07$ 3.20 26+-++ $5.29E-03$ $5.84E-05$ 3.18 29+++ $5.29E-03$ $5.84E-05$ 3.18 30+-+ $3.60E-03$ $3.97E-05$ 3.1	14	+	-	+	-	-	+	2.28E-03	2.52E-05	8.20
16++7.66E-04 $8.46E-06$ 8.20 17+++++- $2.01E-03$ $2.22E-05$ 32.05 18+-+++- $6.76E-04$ $7.47E-06$ 3.18 19++-++- $3.83E-03$ $4.23E-05$ 31.81 20+++- $5.53E-03$ $6.10E-05$ 3.18 21+++-+- $5.38E-04$ $5.94E-06$ 3.18 22+-+-+- $2.04E-03$ $2.25E-05$ 0.80 23+++- $4.82E-04$ $5.33E-06$ 3.18 24++- $4.24E-03$ $4.68E-05$ 0.80 25++++ $1.91E-03$ $2.11E-05$ 32.05 26+-++ $3.58E-03$ $3.95E-05$ 32.05 28+-++ $5.29E-03$ $5.84E-05$ 3.18 29+++ $1.83E-05$ $2.03E-07$ 0.80 31++ $3.60E-03$ $3.97E-05$ 3.18 32+ $3.60E-03$ $3.97E-05$ 3.18 33-+++ $4.29E-03$ <	15	+	+	-	-	-	+	5.97E-03	6.59E-05	3.18
17+++++- $2.22E-05$ 32.05 18+-+++- $6.76E-04$ $7.47E-06$ 3.18 19+++++- $3.83E-03$ $4.23E-05$ 31.81 20+-+++- $5.53E-03$ $6.10E-05$ 3.18 20+-+++- $5.53E-03$ $6.10E-05$ 3.18 21++++-+- $5.38E-04$ $5.94E-06$ 3.18 22+-+-+- $2.04E-03$ $2.25E-05$ 0.80 23+++- $4.82E-04$ $5.33E-06$ 3.18 24+++- $4.82E-04$ $5.33E-06$ 3.18 25++++ $1.91E-03$ $2.11E-05$ 32.05 26+-++ $3.58E-03$ $3.95E-05$ 32.05 27++ $3.58E-03$ $3.95E-05$ 32.05 28++ $5.29E-03$ $5.84E-05$ 3.18 29+++ $3.60E-03$ $3.97E-05$ 3.18 31+ $3.60E-03$ $3.97E-05$ 3.18 32+<	16	+	-	-	-	-	+	7.66E-04	8.46E-06	8.20
18+-+++- $6.76E-04$ $7.47E-06$ 3.18 19++-++- $3.83E-03$ $4.23E-05$ 31.81 20+++- $5.53E-03$ $6.10E-05$ 3.18 21++++-+- $5.53E-03$ $6.10E-05$ 3.18 21++++-+- $5.38E-04$ $5.94E-06$ 3.18 22+-+-+- $2.04E-03$ $2.25E-05$ 0.80 23+++- $4.82E-04$ $5.33E-06$ 3.18 24++- $4.24E-03$ $4.68E-05$ 0.80 25++++ $1.91E-03$ $2.11E-05$ 32.05 26+-++ $3.58E-03$ $3.95E-05$ 32.05 27++++ $5.94E-05$ $6.56E-07$ 3.20 27+++ $5.29E-03$ $5.84E-05$ 3.18 29+++ $6.46E-04$ $7.13E-06$ 3.18 30+-+ $3.60E-03$ $3.97E-05$ 3.18 32+ $4.29E-03$ $4.74E-05$ 8.20 33-++	17	+	+	+	+	+	_	2.01E-03	2.22E-05	32.05
19+++++- $3.83E-03$ $4.23E-05$ 31.81 20+++- $5.53E-03$ $6.10E-05$ 3.18 21+++++- $5.38E-04$ $5.94E-06$ 3.18 21++++-+- $5.38E-04$ $5.94E-06$ 3.18 22+-+-+- $2.04E-03$ $2.25E-05$ 0.80 23+++- $4.82E-04$ $5.33E-06$ 3.18 24+++- $4.24E-03$ $4.68E-05$ 0.80 25++++ $1.91E-03$ $2.11E-05$ 32.05 26+-++ $5.94E-05$ $6.56E-07$ 3.20 27++++ $3.58E-03$ $3.95E-05$ 32.05 28+++ $5.29E-03$ $5.84E-05$ 3.18 29+++ $6.46E-04$ $7.13E-06$ 3.18 30+-+ $3.60E-03$ $3.97E-05$ 3.18 32+ $4.29E-03$ $4.74E-05$ 8.20 33-++++ $3.38E-07$ $1.26E-07$ 32.05 34 <td< td=""><td>18</td><td>+</td><td>-</td><td>+</td><td>+</td><td>+</td><td>_</td><td>6.76E-04</td><td>7.47E-06</td><td>3.18</td></td<>	18	+	-	+	+	+	_	6.76E-04	7.47E-06	3.18
20+++-5.53E-03 $6.10E-05$ 3.18 21+++-+- $5.38E-04$ $5.94E-06$ 3.18 22+-+-+- $2.04E-03$ $2.25E-05$ 0.80 23++-+- $4.82E-04$ $5.33E-06$ 3.18 24++- $4.24E-03$ $4.68E-05$ 0.80 25++++ $1.91E-03$ $2.11E-05$ 32.05 26+-++ $5.94E-05$ $6.56E-07$ 3.20 27++++ $3.58E-03$ $3.95E-05$ 32.05 28+-++ $5.29E-03$ $5.84E-05$ 3.18 29+++ $6.46E-04$ $7.13E-06$ 3.18 30+-+ $3.60E-03$ $3.97E-05$ 3.18 31++ $3.60E-03$ $3.97E-05$ 3.18 32+ $4.29E-03$ $4.74E-05$ 8.20 33-++++ $4.338E-07$ $1.26E-07$ 32.05 34++ $4.550E-06$ $2.05E-06$ 31.81 35-+++ $4.58E-06$ $2.05E-06$	19	+	+	-	+	+	_	3.83E-03	4.23E-05	31.81
21+++-+-5.38E-045.94E-063.1822+-+-+-2.04E-032.25E-050.8023+++-4.82E-045.33E-063.1824++-4.82E-045.33E-063.1824++-4.24E-034.68E-050.8025++++1.91E-032.11E-0532.0526+-++5.94E-056.56E-073.2027++++3.58E-033.95E-0532.0528++5.29E-035.84E-053.1829+++6.46E-047.13E-063.1830+-+1.83E-052.03E-070.8031++3.60E-033.97E-053.1832+4.29E-034.74E-058.2033-++++3.38E-071.26E-0732.0534+++1.81E-066.73E-073.1835-++++5.50E-062.05E-063.1836+++4.5	20	+	_	-	+	+	_	5.53E-03	6.10E-05	3.18
22+-+-+- $2.04E-03$ $2.25E-05$ 0.80 23 +++- $4.82E-04$ $5.33E-06$ 3.18 24 ++- $4.24E-03$ $4.68E-05$ 0.80 25 ++++ $1.91E-03$ $2.11E-05$ 32.05 26 +-++ $5.94E-05$ $6.56E-07$ 3.20 27 ++-+ $3.58E-03$ $3.95E-05$ 32.05 28 ++ $5.29E-03$ $5.84E-05$ 3.18 29 +++ $6.46E-04$ $7.13E-06$ 3.18 30 +-+ $1.83E-05$ $2.03E-07$ 0.80 31 ++ $4.29E-03$ $4.74E-05$ 8.20 33 -+++ $3.60E-03$ $3.97E-05$ 3.18 32 + $4.29E-03$ $4.74E-05$ 8.20 33 -++++ $3.38E-07$ $1.26E-07$ 32.05 34 +++ $4.58E-06$ 3.18 35 -+++ $4.58E-06$ $1.70E-06$ 3.18 36 +++ $4.58E-$	21	+	+	+	-	+	-	5.38E-04	5.94E-06	3.18
23 + + - + - 4.82E-04 5.33E-06 3.18 24 + - - + - 4.24E-03 4.68E-05 0.80 25 + + + + - - 1.91E-03 2.11E-05 32.05 26 + + + + - - 5.94E-05 6.56E-07 3.20 27 + + - + - - 3.58E-03 3.95E-05 32.05 28 + - + + - - 5.29E-03 5.84E-05 3.18 29 + + + - - - 6.46E-04 7.13E-06 3.18 30 + - + - - 1.83E-05 2.03E-07 0.80 31 + + + - - - 3.60E-03 3.97E-05 3.18 32 + - - - - 4.29E-03 4.74E-05 8.20 33	22	+	-	+	-	+	_	2.04E-03	2.25E-05	0.80
24 + - - + - 4.24E-03 4.68E-05 0.80 25 + + + + - 1.91E-03 2.11E-05 32.05 26 + - + + - - 1.91E-03 2.11E-05 32.05 26 + - + + - - 5.94E-05 6.56E-07 3.20 27 + + - + - - 3.58E-03 3.95E-05 32.05 28 + - - + - - 5.29E-03 5.84E-05 3.18 29 + + + - - - 6.46E-04 7.13E-06 3.18 30 + - + - - 1.83E-05 2.03E-07 0.80 31 + + - - - 3.60E-03 3.97E-05 3.18 32 + - - - - 4.29E-03 4.74E-05 8.20 33 -	23	+	+	-	-	+	_	4.82E-04	5.33E-06	3.18
25 + + + + - - 1.91E-03 2.11E-05 32.05 26 + - + + - - 5.94E-05 6.56E-07 3.20 27 + + - + - - 3.58E-03 3.95E-05 32.05 28 + - - + - - 5.29E-03 5.84E-05 3.18 29 + + + - - 6.46E-04 7.13E-06 3.18 30 + - + - - 1.83E-05 2.03E-07 0.80 31 + + - - - 1.83E-05 2.03E-07 0.80 32 + - - - - 3.60E-03 3.97E-05 3.18 32 + - - - - 4.29E-03 4.74E-05 8.20 33 - + + + + 3.38E-07 1.26E-07 32.05 34 - -	24	+	_	-	-	+	_	4.24E-03	4.68E-05	0.80
26 + - + + - - 5.94E-05 6.56E-07 3.20 27 + + - + - - 3.58E-03 3.95E-05 32.05 28 + - - + - - 3.58E-03 3.95E-05 32.05 28 + - - + - - 5.29E-03 5.84E-05 3.18 29 + + + - - 6.46E-04 7.13E-06 3.18 30 + - + - - 1.83E-05 2.03E-07 0.80 31 + + - - - 3.60E-03 3.97E-05 3.18 32 + - - - - 4.29E-03 4.74E-05 8.20 33 - + + + + 3.38E-07 1.26E-07 32.05 34 - - + + + 1.81E-06 6.73E-07 3.18 35 - +	25	+	+	+	+	-	-	1.91E-03	2.11E-05	32.05
27++-+3.58E-033.95E-0532.05 28 ++5.29E-035.84E-053.18 29 +++6.46E-047.13E-063.18 30 +-+1.83E-052.03E-070.80 31 ++1.83E-052.03E-070.80 31 ++3.60E-033.97E-053.18 32 +4.29E-034.74E-058.20 33 -++++3.38E-071.26E-0732.05 34 +++1.81E-066.73E-073.18 35 -++++5.50E-062.05E-0631.81 36 +++4.58E-061.70E-063.18 37 -++-++4.58E-061.70E-063.18 38 +++4.58E-061.98E-060.80	26	+	_	+	+	_	_	5.94E-05	6.56E-07	3.20
28++ $5.29E-03$ $5.84E-05$ 3.18 29 +++ $6.46E-04$ $7.13E-06$ 3.18 30 +-+ $6.46E-04$ $7.13E-06$ 3.18 30 +-+ $1.83E-05$ $2.03E-07$ 0.80 31 ++ $3.60E-03$ $3.97E-05$ 3.18 32 + $4.29E-03$ $4.74E-05$ 8.20 33 -++++ $3.38E-07$ $1.26E-07$ 32.05 34 +++ $4.81E-06$ $6.73E-07$ 3.18 35 -+++ $4.50E-06$ $2.05E-06$ 31.81 36 ++ $4.58E-06$ $1.70E-06$ 3.18 37 -++-++ $4.58E-06$ $1.70E-06$ 3.18 38 +++ $4.58E-06$ $1.98E-06$ 0.80	27	+	+	-	+	-	-	3.58E-03	3.95E-05	32.05
29+++6.46E-047.13E-063.18 30 +-+6.46E-047.13E-063.18 30 +-+1.83E-052.03E-070.80 31 ++3.60E-033.97E-053.18 32 +4.29E-034.74E-058.20 33 -++++3.38E-071.26E-0732.05 34 +++1.81E-066.73E-073.18 35 -+-++4.50E-062.05E-0631.81 36 ++4.58E-061.70E-063.18 37 -++-++4.58E-061.70E-063.18 38 +-++5.30E-061.98E-060.80	28	+	_	-	+	-	-	5.29E-03	5.84E-05	3.18
30 + - + - - 1.83E-05 $2.03E-07$ 0.80 31 + + - - - $3.60E-03$ $3.97E-05$ 3.18 32 + - - - $4.29E-03$ $4.74E-05$ 8.20 33 - + + + + $3.38E-07$ $1.26E-07$ 32.05 34 - + + + + $3.38E-07$ $1.26E-07$ 32.05 34 - - + + + $1.81E-06$ $6.73E-07$ 3.18 35 - + + + + $5.50E-06$ $2.05E-06$ 31.81 36 - - + + + $1.47E-05$ $5.48E-06$ 3.18 37 - + + + $4.58E-06$ $1.70E-06$ 3.18 38 - - + + $4.530E-06$ $1.98E-06$ 0.80	29	+	+	+	_	_	_	6.46E-04	7.13E-06	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	+	_	+	-	-	-	1.83E-05	2.03E-07	0.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	+	+	_	-	_	_	3 60E-03	3 97E-05	3 18
33 - + + + + 3.38E-07 1.26E-07 32.05 34 - - + + + + 1.81E-06 6.73E-07 3.18 35 - + + + + 5.50E-06 2.05E-06 31.81 36 - - + + + 1.47E-05 5.48E-06 3.18 37 - + + - + + 4.58E-06 1.70E-06 3.18 38 - - + - + + 5.30E-06 1.98E-06 0.80	32	+	-	-	-	-	_	4 29E-03	4 74E-05	8 20
34 - + + + + 1.81E-06 6.73E-07 3.18 35 - + + + + 5.50E-06 2.05E-06 31.81 36 - - + + + 1.47E-05 5.48E-06 3.18 37 - + + + 4.58E-06 1.70E-06 3.18 38 - - + + + 5.30E-06 1.98E-06 0.80	33	_	+	+	+	+	+	3 38E-07	1 26F-07	32 05
35 - + - + + + 5.000 000 00000000000000000000000000000	34	_	_	+	+	+	+	1.81E-06	6 73E-07	3 18
36 - - + + + 1.47E-05 5.48E-06 3.18 37 - + + + 4.58E-06 1.70E-06 3.18 38 - + + + 5.30E-06 1.98E-06 0.80	35	_	+		+	+	+	5.50E-06	2.05E-06	31.81
37 + + - + + 4.58E-06 1.70E-06 3.18 38 - + + + 5.30E-06 1.98E-06 0.80	36	_		_	+	+	+	1 47E-05	5.48F-06	3 18
38 - + + + 5.30E-06 1.98E-06 0.80	37		+	+	_	+	+	4 58E-06	1 70E-06	3 18
	38		Ľ	+		+	+	5 30E 06		0.80
	30		+	Ľ		+	+	5.24E 06		3 18

Table C.23 SESOIL out put values for Clindamycin (10 yrs of simulation)

							Conc at		Maximum
D		D · C 11	Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	рН	(μg/L)	Conc $(\mu g/g)$	depth (m)
40	-	-	-	-	+	+	8.00E-06	2.98E-06	0.80
41	-	+	+	+	-	+	4.79E-06	1.79E-06	32.05
42	-	-	+	+	-	+	1.58E-07	5.89E-08	3.20
43	-	+	-	+	-	+	9.52E-06	3.55E-06	32.05
44	-	-	-	+	-	+	1.41E-05	5.24E-06	3.18
45	-	+	+	-	-	+	5.01E-07	1.87E-07	3.18
46	-	-	+	-	-	+	6.07E-06	2.26E-06	8.20
47	-	+	-	_	_	+	1.59E-05	5.91E-06	3.18
48	-	-	-	-	-	+	2.04E-06	7.60E-07	8.20
49	-	+	+	+	+	-	5.35E-06	1.99E-06	32.05
50	-	-	+	+	+	-	1.81E-06	6.73E-07	3.18
51	-	+	-	+	+	-	1.02E-05	3.80E-06	31.81
52	-	-	-	+	+	-	1.47E-05	5.48E-06	3.18
53	-	+	+	-	+	-	1.43E-06	5.33E-07	3.18
54	-	-	+	-	+	-	5.42E-06	2.02E-06	0.80
55	-	+	-	-	+	-	1.28E-06	4.78E-07	3.18
56	-	-	-	-	+	-	1.13E-05	4.20E-06	0.80
57	-	+	+	+	-	-	5.09E-06	1.90E-06	32.05
58	-	-	+	+	-	-	1.58E-07	5.89E-08	3.20
59	-	+	-	+	-	-	9.52E-06	3.55E-06	32.05
60	-	-	-	+	-	-	1.41E-05	5.24E-06	3.18
61	-	+	+	-	-	-	1.72E-06	6.40E-07	3.18
62	-	-	+	-	-	-	4.88E-08	1.82E-08	8.20
63	-	+	-	-	_	-	9.57E-06	3.57E-06	3.18
64	_	-	-	-	_	-	1.14E-05	4.25E-06	8.20

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	9.68E-05	3.83E-06	3.78
2	+	-	+	+	+	+	5.18E-04	2.05E-05	3.78
3	+	+	-	+	+	+	1.58E-03	6.23E-05	37.81
4	+	-	-	+	+	+	4.21E-03	1.66E-04	3.78
5	+	+	+	-	+	+	1.31E-03	5.18E-05	3.81
6	+	-	+	-	+	+	1.52E-03	6.00E-05	0.95
7	+	+	-	-	+	+	1.50E-03	5.93E-05	3.78
8	+	_	-	-	+	+	2.29E-03	9.05E-05	0.95
9	+	+	+	+	-	+	1.46E-03	5.76E-05	38.10
10	+	_	+	+	-	+	4.53E-05	1.79E-06	3.81
11	+	+	-	+	-	+	2.73E-03	1.08E-04	38.10
12	+	_	-	+	-	+	4.03E-03	1.59E-04	3.78
13	+	+	+	-	-	+	1.44E-04	5.68E-06	3.78
14	+	-	+	-	-	+	1.74E-03	6.87E-05	9.75
15	+	+	-	-	-	+	4.55E-03	1.80E-04	3.78
16	+	-	-	-	-	+	5.84E-04	2.31E-05	9.75
17	+	+	+	+	+	-	1.53E-03	6.05E-05	38.10
18	+	-	+	+	+	-	5.15E-04	2.04E-05	3.78
19	+	+	-	+	+	-	2.92E-03	1.15E-04	37.81
20	+	-	-	+	+	-	4.21E-03	1.66E-04	3.78
21	+	+	+	-	+	-	4.10E-04	1.62E-05	3.78
22	+	-	+	-	+	-	1.55E-03	6.13E-05	0.95
23	+	+	-	-	+	-	3.67E-04	1.45E-05	3.78
24	+	-	-	-	+	-	3.23E-03	1.28E-04	0.95
25	+	+	+	+	-	-	1.46E-03	5.76E-05	38.10
26	+	-	+	+	-	-	4.53E-05	1.79E-06	3.81
27	+	+	-	+	-	-	2.73E-03	1.08E-04	38.10
28	+	_	-	+	-	-	4.03E-03	1.59E-04	3.78
29	+	+	+	-	-	-	4.92E-04	1.94E-05	3.78
30	+	-	+	-	-	-	1.40E-05	5.52E-07	0.95
31	+	+	-	-	-	-	2.74E-03	1.08E-04	3.78
32	+	_	-	-	-	-	3.27E-03	1.29E-04	9.75
33	-	+	+	+	+	+	1.37E-07	5.62E-07	38.10
34	-	-	+	+	+	+	7.34E-07	3.01E-06	3.78
35	_	+	-	+	+	+	2.24E-06	9.15E-06	37.81
36	-	-	-	+	+	+	5.97E-06	2.45E-05	3.78
37	-	+	+	-	+	+	1.86E-06	7.61E-06	3.78
38	-	-	+	-	+	+	2.15E-06	8.82E-06	0.95
39	-	+	-	-	+	+	2.13E-06	8.72E-06	3.78

Table C.24 SESOIL out put values for Ketoconazole (10 yrs of simulation)

							Conc at		Maximum
D	C	D C. 11	Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Kun	Concentration	Kainfall	Inickness	Permeability	Content	рн	(μg/L) ο οςς οο	$Conc (\mu g/g)$	depth (m)
40	-	-	-	-	+	+	3.25E-06	1.33E-05	0.95
41	-	+	+	+	-	+	1.95E-06	7.97E-06	38.10
42	-	-	+	+	-	+	6.42E-08	2.63E-07	3.81
43	-	+	-	+	-	+	3.87E-06	1.58E-05	38.10
44	-	-	-	+	-	+	5.72E-06	2.34E-05	3.78
45	-	+	+	-	-	+	2.04E-07	8.34E-07	3.78
46	-	-	+	-	-	+	2.46E-06	1.01E-05	9.75
47	-	+	-	-	-	+	6.45E-06	2.64E-05	3.78
48	-	-	-	-	-	+	8.28E-07	3.39E-06	9.75
49	-	+	+	+	+	-	2.17E-06	8.89E-06	38.10
50	-	-	+	+	+	-	7.34E-07	3.01E-06	3.78
51	-	+	-	+	+	-	4.15E-06	1.70E-05	37.81
52	-	-	-	+	+	-	5.97E-06	2.45E-05	3.78
53	-	+	+	-	+	-	5.81E-07	2.38E-06	3.78
54	-	-	+	-	+	-	2.20E-06	9.01E-06	0.95
55	-	+	-	-	+	-	5.22E-07	2.13E-06	3.78
56	-	-	-	-	+	-	4.58E-06	1.88E-05	0.95
57	-	+	+	+	-	-	2.07E-06	8.47E-06	38.10
58	-	-	+	+	-	-	6.42E-08	2.63E-07	3.81
59	-	+	-	+	-	-	3.87E-06	1.58E-05	38.10
60	-	-	-	+	-	-	5.72E-06	2.34E-05	3.78
61	-	+	+	-	-	-	6.98E-07	2.86E-06	3.78
62	-	-	+	-	-	-	1.98E-08	8.11E-08	9.75
63	-	+	-	_	-	-	3.89E-06	1.59E-05	3.78
64	-	_	-	_	-	-	4.64E-06	1.90E-05	9.75

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	1.79E-05	8.06E-07	3.54
2	+	-	+	+	+	+	9.56E-05	4.31E-06	3.54
3	+	+	-	+	+	+	2.91E-04	1.31E-05	35.41
4	+	-	-	+	+	+	7.78E-04	3.50E-05	3.54
5	+	+	+	-	+	+	2.42E-04	1.09E-05	3.57
6	+	-	+	-	+	+	2.81E-04	1.26E-05	0.89
7	+	+	-	-	+	+	2.77E-04	1.25E-05	3.54
8	+	-	-	-	+	+	4.23E-04	1.90E-05	0.89
9	+	+	+	+	-	+	2.69E-04	1.21E-05	35.68
10	+	-	+	+	-	+	8.36E-06	3.77E-07	3.57
11	+	+	-	+	-	+	5.04E-04	2.27E-05	35.68
12	+	-	-	+	-	+	7.45E-04	3.35E-05	3.54
13	+	+	+	-	-	+	2.65E-05	1.20E-06	3.54
14	+	-	+	-	-	+	3.21E-04	1.45E-05	9.13
15	+	+	-	-	-	+	8.40E-04	3.78E-05	3.54
16	+	-	-	-	-	+	1.08E-04	4.86E-06	9.13
17	+	+	+	+	+	-	2.83E-04	1.27E-05	35.68
18	+	-	+	+	+	-	9.52E-05	4.29E-06	3.54
19	+	+	-	+	+	-	5.40E-04	2.43E-05	35.41
20	+	-	-	+	+	-	7.78E-04	3.50E-05	3.54
21	+	+	+	-	+	-	7.57E-05	3.41E-06	3.54
22	+	_	+	-	+	-	2.87E-04	1.29E-05	0.89
23	+	+	-	-	+	-	6.79E-05	3.06E-06	3.54
24	+	-	-	-	+	-	5.97E-04	2.69E-05	0.89
25	+	+	+	+	-	-	2.69E-04	1.21E-05	35.68
26	+	-	+	+	-	-	8.36E-06	3.77E-07	3.57
27	+	+	-	+	-	-	5.04E-04	2.27E-05	35.68
28	+	_	-	+	-	-	7.45E-04	3.35E-05	3.54
29	+	+	+	-	-	-	9.09E-05	4.09E-06	3.54
30	+	_	+	-	-	-	2.58E-06	1.16E-07	0.89
31	+	+	-	-	-	-	5.06E-04	2.28E-05	3.54
32	+	_	-	-	-	-	6.04E-04	2.72E-05	9.13
33	-	+	+	+	+	+	3.58E-07	7.04E-07	35.68
34	_	-	+	+	+	+	1.91E-06	3.76E-06	3.54
35	-	+	-	+	+	+	5.81E-06	1.14E-05	35.41
36	-	-	-	+	+	+	1.55E-05	3.06E-05	3.54
37	-	+	+	-	+	+	4.84E-06	9.52E-06	3.54
38	-	-	+	-	+	+	5.61E-06	1.10E-05	0.89
39	-	+	-	-	+	+	5.54E-06	1.09E-05	3.54

Table C.25 SESOIL out put values for Carbamazepine (10 yrs of simulation)

							Conc at		Maximum
n		D · C 11	Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	рН	(μg/L)	Conc ($\mu g/g$)	depth (m)
40	-	-	-	-	+	+	8.46E-06	1.66E-05	0.89
41	-	+	+	+	-	+	5.07E-06	9.97E-06	35.68
42	-	-	+	+	-	+	1.67E-07	3.29E-07	3.57
43	-	+	-	+	-	+	1.01E-05	1.98E-05	35.68
44	-	-	-	+	-	+	1.49E-05	2.93E-05	3.54
45	-	+	+	-	-	+	5.30E-07	1.04E-06	3.54
46	-	-	+	-	-	+	6.41E-06	1.26E-05	9.13
47	-	+	-	-	-	+	1.68E-05	3.30E-05	3.54
48	-	-	-	-	-	+	2.16E-06	4.24E-06	9.13
49	-	+	+	+	+	-	5.65E-06	1.11E-05	35.68
50	-	-	+	+	+	-	1.91E-06	3.76E-06	3.54
51	-	+	-	+	+	-	1.08E-05	2.12E-05	35.41
52	-	-	-	+	+	-	1.55E-05	3.06E-05	3.54
53	-	+	+	-	+	-	1.51E-06	2.98E-06	3.54
54	-	-	+	-	+	-	5.73E-06	1.13E-05	0.89
55	-	+	-	-	+	-	1.36E-06	2.67E-06	3.54
56	-	-	-	-	+	-	1.19E-05	2.35E-05	0.89
57	-	+	+	+	-	-	5.38E-06	1.06E-05	35.68
58	-	-	+	+	-	-	1.67E-07	3.29E-07	3.57
59	-	+	-	+	-	-	1.01E-05	1.98E-05	35.68
60	-	-	-	+	-	_	1.49E-05	2.93E-05	3.54
61	-	+	+	-	-	-	1.82E-06	3.57E-06	3.54
62	-	-	+	-	-	-	5.16E-08	1.01E-07	9.13
63	-	+	-	_	-	-	1.01E-05	1.99E-05	3.54
64	-	-	-	-	-	-	1.21E-05	2.37E-05	9.13

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	7.54E-04	2.59E-07	6.25
2	+		+	+	+	+	4.03E-03	1.38E-06	6.25
3	+	+	-	+	+	+	1.23E-02	4.21E-06	62.41
4	+		-	+	+	+	3.28E-02	1.12E-05	6.24
5	+	+	+	-	+	+	1.02E-02	3.50E-06	6.29
6	+	<u>-</u>	+	-	+	+	1.18E-02	4.06E-06	1.56
7	+	+	-	-	+	+	1.17E-02	4.01E-06	6.24
8	+		-	-	+	+	1.78E-02	6.11E-06	1.57
9	+	+	+	+		+	1.13E-02	3.89E-06	62.89
10	+		+	+		+	3.52E-04	1.21E-07	6.29
11	+	+	-	+	-	+	2.12E-02	7.28E-06	62.89
12	+			+		+	3.14E-02	1.08E-05	6.24
13	+	+	+	-	-	+	1.12E-03	3.84E-07	6.24
14	+		+	-	-	+	1.35E-02	4.64E-06	16.09
15	+	+	-	-	-	+	3.54E-02	1.21E-05	6.24
16	+	-	-	-	 -	+	4.54E-03	1.56E-06	16.09
17	+	+	+	+	+	-	1.19E-02	4.09E-06	62.89
18	+	-	+	+	+	-	4.01E-03	1.38E-06	6.24
19	+	+		+	+	-	2.27E-02	7.80E-06	62.41
20	+	-	- -	+	+	-	3.28E-02	1.12E-05	6.24
21	+	+	+	-	+	-	3.19E-03	1.09E-06	6.24
22	+	-	+	-	+	-	1.21E-02	4.14E-06	1.56
23	+	+	- -	-	+	-	2.86E-03	9.82E-07	6.24
24	+	-		-	+	-	2.52E-02	8.63E-06	1.57
25	+	+	+	+	-	-	1.13E-02	3.89E-06	62.89
26	+	-	+	+	-	-	3.52E-04	1.21E-07	6.29
27	+	+		+	-	-	2.12E-02	7.28E-06	62.89
28	+	-	-	+	-	-	3.14E-02	1.08E-05	6.24
29	+	+	+	-	-	-	3.83E-03	1.31E-06	6.24
30	+	-	+	-	-	-	1.09E-04	3.73E-08	1.56
31	+	+		-	-	-	2.13E-02	7.32E-06	6.24
32	+	-	- -	-	-	-	2.54E-02	8.73E-06	16.09
33	-	+	+	+	+	+	1.07E-05	2.30E-09	62.79
34	-	-	+	+	+	+	5.73E-05	1.23E-08	6.25
35	-	+		+	+	+	1.74E-04	3.75E-08	62.41
36	 _	-		+	+	+	4.66E-04	1.00E-07	6.24
37	 _	+	+	-	+	+	1.45E-04	3.12E-08	6.24
38	-	-	+	-	+	+	1.68E-04	3.61E-08	1.56
39	-	+		-	+	+	1.66E-04	3.57E-08	6.24
40	-	-		-	+	+	2.54E-04	5.45E-08	1.57
41	-	+	+	+	-	+	1.52E-04	3.27E-08	62.89
42	t	l	+	+	<u> </u>	+	5.01E-06	1.08E-09	6.29
43	-	+	-	+	-	+	3.02E-04	6.49E-08	62.89

Table C.26 SESOIL out put values for Caffeine (10 yrs of simulation)

			Vadose zone	Intrinsic	Organic		Conc at groundwater	Adsorbed	Maximum pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc (µg/g)	depth (m)
44	-	-	-	+	-	+	4.46E-04	9.59E-08	6.24
45	-	+	+	-	-	+	1.59E-05	3.41E-09	6.24
46	-	-	+	-	-	+	1.92E-04	4.13E-08	16.09
47	-	+	-	-	-	+	5.03E-04	1.08E-07	6.24
48	-	-	-	-	-	+	6.47E-05	1.39E-08	16.09
49	-	+	+	+	+	-	1.70E-04	3.64E-08	62.63
50	-	-	+	+	+	-	5.73E-05	1.23E-08	6.24
51	-	+	-	+	+	-	3.24E-04	6.95E-08	62.41
52	-	-	-	+	+	-	4.66E-04	1.00E-07	6.24
53	-	+	+	-	+	-	4.54E-05	9.75E-09	6.24
54	-	-	+	-	+	-	1.72E-04	3.69E-08	1.56
55	-	+	-	-	+	-	4.07E-05	8.74E-09	6.24
56	-	-	-	-	+	-	3.58E-04	7.69E-08	1.57
57	-	+	+	+	-	-	1.61E-04	3.47E-08	62.89
58	-	-	+	+	-	-	5.01E-06	1.08E-09	6.29
59	-	+	-	+	-	-	3.02E-04	6.49E-08	62.89
60	-	-	-	+	-	-	4.46E-04	9.59E-08	6.24
61	-	+	+	-	-	-	5.45E-05	1.17E-08	6.24
62	-	-	+	-	-	-	1.55E-06	3.32E-10	16.09
63	-	+	-	-	-	-	3.03E-04	6.52E-08	6.24
64	-	-	-	-	-	-	3.62E-04	7.77E-08	16.09

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc ($\mu g/g$)	depth (m)
1	+	+	+	+	+	+	1.63E-03	6.47E-06	1.32
2	+	-	+	+	+	+	8.70E-03	3.46E-05	1.32
3	+	+	-	+	+	+	2.65E-02	1.05E-04	13.20
4	+	-	-	+	+	+	7.08E-02	2.81E-04	1.32
5	+	+	+	-	+	+	2.20E-02	8.75E-05	1.33
6	+	-	+	-	+	+	2.55E-02	1.01E-04	0.33
7	+	+	-	-	+	+	2.52E-02	1.00E-04	1.32
8	+	-	-	-	+	+	3.85E-02	1.53E-04	0.33
9	+	+	+	+	-	+	2.45E-02	9.73E-05	13.30
10	+	-	+	+	-	+	7.61E-04	3.02E-06	1.33
11	+	+	-	+	-	+	4.59E-02	1.82E-04	13.30
12	+	-	-	+	-	+	6.78E-02	2.69E-04	1.32
13	+	+	+	-	-	+	2.42E-03	9.59E-06	1.32
14	+	-	+	-	-	+	2.92E-02	1.16E-04	3.40
15	+	+	-	-	-	+	7.64E-02	3.03E-04	1.32
16	+	-	-	-	-	+	9.82E-03	3.90E-05	3.40
17	+	+	+	+	+	-	2.58E-02	1.02E-04	13.21
18	+	-	+	+	+	-	8.67E-03	3.44E-05	1.32
19	+	+	-	+	+	-	4.91E-02	1.95E-04	13.20
20	+	-	-	+	+	-	7.08E-02	2.81E-04	1.32
21	+	+	+	-	+	-	6.89E-03	2.74E-05	1.32
22	+	-	+	-	+	-	2.61E-02	1.04E-04	0.33
23	+	+	-	-	+	-	6.18E-03	2.45E-05	1.32
24	+	-	-	-	+	-	5.44E-02	2.16E-04	0.33
25	+	+	+	+	-	-	2.45E-02	9.73E-05	13.30
26	+	-	+	+	-	-	7.61E-04	3.02E-06	1.33
27	+	+	-	+	-	-	4.59E-02	1.82E-04	13.30
28	+	-	-	+	-	-	6.78E-02	2.69E-04	1.32
29	+	+	+	-	-	-	8.27E-03	3.28E-05	1.32
30	+	-	+	-	-	-	2.35E-04	9.33E-07	0.33
31	+	+	-	-	-	-	4.61E-02	1.83E-04	1.32
32	+	-	-	-	-	-	5.50E-02	2.18E-04	3.40
33	-	+	+	+	+	+	7.17E-06	1.20E-06	13.30
34	-	-	+	+	+	+	3.83E-05	6.40E-06	1.32
35	-	+	-	+	+	+	1.17E-04	1.95E-05	13.20
36	-	-	-	+	+	+	3.12E-04	5.21E-05	1.32
37	-	+	+	-	+	+	9.70E-05	1.62E-05	1.32
38	-	-	+	-	+	+	1.12E-04	1.88E-05	0.33
39	-	+	-	-	+	+	1.11E-04	1.86E-05	1.32
40	-	-	-	-	+	+	1.70E-04	2.84E-05	0.33
41	-	+	+	+	-	+	1.02E-04	1.70E-05	13.30
42	-	-	+	+	-	+	3.35E-06	5.60E-07	1.33
43	-	+	-	+	-	+	2.02E-04	3.37E-05	13.30

Table C.27 SESOIL out put values for Ibuprofen (10 yrs of simulation)

			Vadaga zana	Intrincia	Organia		Conc at	Adaarbad	Maximum
Run	Concentration	Rainfall	Vadose Zone	Permeability	Content	nH	$(\mu \sigma/L)$	Ausorbed $Conc (\mu g/g)$	denth (m)
44	-	-	-	+	-	+	2.98E-04	4.99E-05	1.32
45	-	+	+	-	-	+	1.06E-05	1.78E-06	1.32
46	-	-	+	-	-	+	1.29E-04	2.15E-05	3.40
47	-	+	-	-	-	+	3.36E-04	5.62E-05	1.32
48	-	-	-	-	-	+	4.32E-05	7.22E-06	3.40
49	-	+	+	+	+	-	1.13E-04	1.89E-05	13.19
50	-	-	+	+	+	-	3.83E-05	6.40E-06	1.32
51	-	+	-	+	+	-	2.16E-04	3.62E-05	13.20
52	-	-	-	+	+	-	3.12E-04	5.21E-05	1.32
53	-	+	+	-	+	-	3.03E-05	5.07E-06	1.32
54	-	-	+	-	+	-	1.15E-04	1.92E-05	0.33
55	-	+	-	-	+	-	2.72E-05	4.55E-06	1.32
56	-	-	-	-	+	-	2.39E-04	4.00E-05	0.33
57	-	+	+	+	-	-	1.08E-04	1.80E-05	13.30
58	-	-	+	+	-	-	3.35E-06	5.60E-07	1.33
59	-	+	-	+	-	-	2.02E-04	3.37E-05	13.30
60	-	-	-	+	-	-	2.98E-04	4.99E-05	1.32
61	-	+	+	-	-	-	3.64E-05	6.09E-06	1.32
62	-	-	+	-	-	-	1.03E-06	1.73E-07	3.40
63	-	+	-	-	-	-	2.03E-04	3.39E-05	1.32
64	-	-	-	-	-	-	2.42E-04	4.04E-05	3.40

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc ($\mu g/g$)	depth (m)
1	+	+	+	+	+	+	6.49E-04	2.56E-06	2.40
2	+	-	+	+	+	+	3.47E-03	1.37E-05	2.40
3	+	+	-	+	+	+	1.06E-02	4.17E-05	24.00
4	+	-	-	+	+	+	2.82E-02	1.11E-04	2.40
5	+	+	+	-	+	+	8.78E-03	3.47E-05	2.42
6	+	-	+	-	+	+	1.02E-02	4.02E-05	0.60
7	+	+	-	-	+	+	1.01E-02	3.97E-05	2.40
8	+	-	-	-	+	+	1.53E-02	6.06E-05	0.60
9	+	+	+	+	-	+	9.76E-03	3.86E-05	24.19
10	+	-	+	+	-	+	3.03E-04	1.20E-06	2.42
11	+	+	-	+	-	+	1.83E-02	7.22E-05	24.19
12	+	-	-	+	-	+	2.70E-02	1.07E-04	2.40
13	+	+	+	-	-	+	9.62E-04	3.80E-06	2.40
14	+	-	+	-	-	+	1.16E-02	4.60E-05	6.19
15	+	+	-	-	-	+	3.04E-02	1.20E-04	2.40
16	+	-	-	-	-	+	3.91E-03	1.54E-05	6.19
17	+	+	+	+	+	-	1.03E-02	4.05E-05	24.14
18	+	-	+	+	+	-	3.45E-03	1.36E-05	2.40
19	+	+	-	+	+	-	1.96E-02	7.73E-05	24.00
20	+	-	-	+	+	-	2.82E-02	1.11E-04	2.40
21	+	+	+	-	+	-	2.75E-03	1.08E-05	2.40
22	+	-	+	-	+	-	1.04E-02	4.11E-05	0.60
23	+	+	-	-	+	-	2.46E-03	9.72E-06	2.40
24	+	-	-	-	+	-	2.17E-02	8.55E-05	0.60
25	+	+	+	+	-	-	9.76E-03	3.86E-05	24.19
26	+	-	+	+	-	-	3.03E-04	1.20E-06	2.42
27	+	+	-	+	-	-	1.83E-02	7.22E-05	24.19
28	+	-	-	+	-	-	2.70E-02	1.07E-04	2.40
29	+	+	+	-	-	-	3.30E-03	1.30E-05	2.40
30	+	-	+	-	-	-	9.36E-05	3.70E-07	0.60
31	+	+	-	-	-	-	1.84E-02	7.25E-05	2.40
32	+	-	-	-	-	-	2.19E-02	8.65E-05	6.19
33	-	+	+	+	+	+	2.14E-05	3.64E-06	24.08
34	-	-	+	+	+	+	1.14E-04	1.95E-05	2.40
35	-	+	-	+	+	+	3.48E-04	5.92E-05	24.00
36	-	-	-	+	+	+	9.29E-04	1.58E-04	2.40
37	-	+	+	-	+	+	2.89E-04	4.93E-05	2.40
38	-	-	+	-	+	+	3.35E-04	5.71E-05	0.60
39	-	+	-	-	+	+	3.31E-04	5.64E-05	2.40
40	-	_	-	-	+	+	5.06E-04	8.62E-05	0.60
41	-	+	+	+	-	+	3.03F-04	5 16F-05	24 19
42	-	-	+	+	-	+	9.99E-06	1 70E-06	2 42
43	-	+	-	+	-	+	6.02E-04	1.03E-04	24.19

Table C.28 SESOIL out put values for Diclofenac (10 yrs of simulation)

			Vadose zone	Intrinsic	Organic		Conc at groundwater	Adsorbed	Maximum pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc $(\mu g/g)$	depth (m)
44	-	-	-	+	-	+	8.90E-04	1.52E-04	2.40
45	-	+	+	-	-	+	3.17E-05	5.40E-06	2.40
46	-	-	+	-	-	+	3.83E-04	6.53E-05	6.19
47	-	+	-	-	-	+	1.00E-03	1.71E-04	2.40
48	-	-	-	-	-	+	1.29E-04	2.20E-05	6.19
49	-	+	+	+	+	-	3.38E-04	5.76E-05	24.03
50	-	-	+	+	+	-	1.14E-04	1.95E-05	2.40
51	-	+	-	+	+	-	6.45E-04	1.10E-04	24.00
52	-	-	-	+	+	-	9.29E-04	1.58E-04	2.40
53	-	+	+	-	+	-	9.04E-05	1.54E-05	2.40
54	-	-	+	-	+	-	3.42E-04	5.83E-05	0.60
55	-	+	-	-	+	-	8.11E-05	1.38E-05	2.40
56	-	-	-	-	+	-	7.13E-04	1.22E-04	0.60
57	-	+	+	+	-	-	3.22E-04	5.48E-05	24.19
58	-	-	+	+	-	-	9.99E-06	1.70E-06	2.42
59	-	+	-	+	-	-	6.02E-04	1.03E-04	24.19
60	-	-	-	+	-	-	8.90E-04	1.52E-04	2.40
61	-	+	+	-	-	-	1.09E-04	1.85E-05	2.40
62	-	-	+	-	-	-	3.08E-06	5.25E-07	6.19
63	-	+	-	-	-	-	6.05E-04	1.03E-04	2.40
64	-	-	-	-	-	-	7.21E-04	1.23E-04	6.19

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc $(\mu g/g)$	depth (m)
1	+	+	+	+	+	+	9.42E-05	5.12E-07	6.49
2	+	-	+	+	+	+	5.04E-04	2.74E-06	6.49
3	+	+	-	+	+	+	1.53E-03	8.33E-06	64.81
4	+	-	-	+	+	+	4.10E-03	2.23E-05	6.48
5	+	+	+	-	+	+	1.27E-03	6.92E-06	6.53
6	+	-	+	-	+	+	1.48E-03	8.03E-06	1.62
7	+	+	-	-	+	+	1.46E-03	7.93E-06	6.48
8	+	-	-	-	+	+	2.23E-03	1.21E-05	1.63
9	+	+	+	+	-	+	1.42E-03	7.70E-06	65.31
10	+	-	+	+	-	+	4.41E-05	2.39E-07	6.53
11	+	+	-	+	-	+	2.65E-03	1.44E-05	65.31
12	+	-	-	+	-	+	3.92E-03	2.13E-05	6.48
13	+	+	+	-	-	+	1.40E-04	7.59E-07	6.48
14	+	-	+	-	-	+	1.69E-03	9.18E-06	16.71
15	+	+	-	-	-	+	4.42E-03	2.40E-05	6.48
16	+	-	-	-	-	+	5.68E-04	3.09E-06	16.71
17	+	+	+	+	+	-	1.49E-03	8.09E-06	65.31
18	+	-	+	+	+	-	5.01E-04	2.72E-06	6.48
19	+	+	-	+	+	-	2.84E-03	1.54E-05	64.81
20	+	-	-	+	+	-	4.10E-03	2.23E-05	6.48
21	+	+	+	-	+	-	3.99E-04	2.17E-06	6.48
22	+	-	+	-	+	-	1.51E-03	8.20E-06	1.62
23	+	+	-	-	+	-	3.58E-04	1.94E-06	6.48
24	+	-	-	-	+	-	3.14E-03	1.71E-05	1.63
25	+	+	+	+	-	-	1.42E-03	7.70E-06	65.31
26	+	-	+	+	-	-	4.41E-05	2.39E-07	6.53
27	+	+	-	+	-	-	2.65E-03	1.44E-05	65.31
28	+	-	-	+	-	-	3.92E-03	2.13E-05	6.48
29	+	+	+	-	-	-	4.79E-04	2.60E-06	6.48
30	+	-	+	-	-	-	1.36E-05	7.39E-08	1.62
31	+	+	-	-	-	-	2.67E-03	1.45E-05	6.48
32	+	-	-	-	-	-	3.18E-03	1.73E-05	16.71
33	-	+	+	+	+	+	3.26E-05	4.71E-07	65.31
34	-	_	+	+	+	+	1.74E-04	2.52E-06	6.49
35	-	+	-	+	+	+	5.30E-04	7.66E-06	64.81
36	-	-	-	+	+	+	1.42E-03	2.05E-05	6.48
37	-	+	+	-	+	+	4.41E-04	6.37E-06	6.48
38	-	-	+	-	+	+	5.11E-04	7.39E-06	1.62
39	-	+	-	-	+	+	5.05E-04	7.30E-06	6.48
40	-	_	-	-	+	+	7.71E-04	1.11E-05	1.63
41	-	+	+	+	-	+	4 62F-04	6 68F-06	65.31
42	_	_	+	+	-	+	1.52E-04	2 20F-07	6 53
43	-	+	-	+	-	+	9.17E-04	1.33E-05	65.31

Table C.29 SESOIL out put values for Acetaminophen (10 yrs of simulation)

Run	Concentration	Rainfall	Vadose zone Thickness	Intrinsic Permeability	Organic Content	pН	Conc at groundwater (µg/L)	Adsorbed Conc (µg/g)	Maximum pollutant depth (m)
44	-	-	-	+	-	+	1.36E-03	1.96E-05	6.48
45	-	+	+	-	-	+	4.83E-05	6.98E-07	6.48
46	-	-	+	-	-	+	5.84E-04	8.45E-06	16.71
47	-	+	-	-	-	+	1.53E-03	2.21E-05	6.48
48	-	-	-	-	-	+	1.96E-04	2.84E-06	16.71
49	-	+	+	+	+	-	5.15E-04	7.45E-06	65.31
50	-	-	+	+	+	-	1.74E-04	2.52E-06	6.48
51	-	+	-	+	+	-	9.83E-04	1.42E-05	64.81
52	-	-	-	+	+	-	1.42E-03	2.05E-05	6.48
53	-	+	+	-	+	-	1.38E-04	1.99E-06	6.48
54	-	-	+	-	+	-	5.22E-04	7.55E-06	1.62
55	-	+	-	-	+	-	1.24E-04	1.79E-06	6.48
56	-	-	-	-	+	-	1.09E-03	1.57E-05	1.63
57	-	+	+	+	-	-	4.90E-04	7.09E-06	65.31
58	-	-	+	+	-	-	1.52E-05	2.20E-07	6.53
59	-	+	-	+	-	-	9.17E-04	1.33E-05	65.31
60	-	-	-	+	-	-	1.36E-03	1.96E-05	6.48
61	-	+	+	-	-	-	1.65E-04	2.39E-06	6.48
62	-	-	+	-	-	-	4.70E-06	6.80E-08	16.71
63	-	+	-	-	-	-	9.22E-04	1.33E-05	6.48
64	-	-	-	-	-	-	1.10E-03	1.59E-05	16.71

							Cono		Marinaum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	$(\mu g/L)$	Conc (μ g/g)	depth (m)
1	+	+	+	+	+	+	2.03E-03	1.60E-05	0.96
2	+	-	+	+	+	+	1.09E-02	8.54E-05	0.96
3	+	+	-	+	+	+	3.31E-02	2.60E-04	9.60
4	+	-	-	+	+	+	8.84E-02	6.95E-04	0.96
5	+	+	+	-	+	+	2.75E-02	2.16E-04	0.97
6	+	-	+	-	+	+	3.19E-02	2.51E-04	0.24
7	+	+	-	-	+	+	3.15E-02	2.48E-04	0.96
8	+	-	-	-	+	+	4.81E-02	3.78E-04	0.24
9	+	+	+	+	-	+	3.06E-02	2.41E-04	9.68
10	+	-	+	+	-	+	9.51E-04	7.47E-06	0.97
11	+	+	-	+	-	+	5.73E-02	4.50E-04	9.68
12	+	-	-	+	-	+	8.47E-02	6.65E-04	0.96
13	+	+	+	-	-	+	3.02E-03	2.37E-05	0.96
14	+	-	+	-	-	+	3.65E-02	2.87E-04	2.48
15	+	+	-	-	-	+	9.54E-02	7.50E-04	0.96
16	+	-	-	-	-	+	1.23E-02	9.64E-05	2.48
17	+	+	+	+	+	-	3.22E-02	2.53E-04	9.68
18	+	-	+	+	+	-	1.08E-02	8.51E-05	0.95
19	+	+	-	+	+	-	6.13E-02	4.82E-04	9.60
20	+	-	-	+	+	-	8.84E-02	6.95E-04	0.96
21	+	+	+	-	+	-	8.61E-03	6.76E-05	0.94
22	+	-	+	-	+	-	3.26E-02	2.56E-04	0.24
23	+	+	-	-	+	-	7.72E-03	6.06E-05	0.96
24	+	-	-	-	+	-	6.79E-02	5.33E-04	0.24
25	+	+	+	+	-	-	3.06E-02	2.41E-04	9.69
26	+	-	+	+	-	-	9.51E-04	7.47E-06	0.97
27	+	+	-	+	-	-	5.73E-02	4.50E-04	9.68
28	+	-	-	+	-	-	8.47E-02	6.65E-04	0.96
29	+	+	+	-	-	-	1.03E-02	8.12E-05	0.96
30	+	-	+	-	-	-	2.93E-04	2.31E-06	0.24
31	+	+	-	-	-	-	5.75E-02	4.52E-04	0.96
32	+	-	-	-	-	-	6.86E-02	5.40E-04	2.48
33	-	+	+	+	+	+	9.04E-05	1.92E-06	9.59
34	-	-	+	+	+	+	4.83E-04	1.02E-05	0.96
35	-	+	-	+	+	+	1.47E-03	3.12E-05	9.60
36	-	-	-	+	+	+	3.93E-03	8.33E-05	0.96
37	-	+	+	-	+	+	1.22E-03	2.59E-05	0.96
38	-	-	+	-	+	+	1.42E-03	3.00E-05	0.24
39	-	+	-	-	+	+	1.40E-03	2.97E-05	0.96
40	-	-	-	-	+	+	2.14E-03	4.53E-05	0.24
41	-	+	+	+	-	+	1.28E-03	2.72E-05	9.68
42	-	-	+	+	-	+	4.22E-05	8.96E-07	0.97

Table C.30 SESOIL out put values for Triclosan (10 yrs of simulation)

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc ($\mu g/g$)	depth (m)
43	-	+	-	+	-	+	2.54E-03	5.39E-05	9.68
44	-	-	-	+	-	+	3.76E-03	7.97E-05	0.96
45	-	+	+	-	-	+	1.34E-04	2.84E-06	0.96
46	-	-	+	-	-	+	1.62E-03	3.44E-05	2.48
47	-	+	-	-	-	+	4.24E-03	8.99E-05	0.96
48	-	-	-	-	-	+	5.45E-04	1.16E-05	2.48
49	-	+	+	+	+	-	1.43E-03	3.03E-05	9.62
50	-	-	+	+	+	-	4.83E-04	1.02E-05	0.96
51	-	+	-	+	+	-	2.73E-03	5.78E-05	9.60
52	-	-	-	+	+	-	3.93E-03	8.33E-05	0.96
53	-	+	+	-	+	-	3.82E-04	8.11E-06	0.96
54	-	-	+	-	+	-	1.45E-03	3.07E-05	0.24
55	-	+	-	-	+	-	3.43E-04	7.27E-06	0.96
56	-	-	-	-	+	-	3.01E-03	6.39E-05	0.24
57	-	+	+	+	-	-	1.36E-03	2.88E-05	9.68
58	-	-	+	+	-	-	4.22E-05	8.96E-07	0.97
59	-	+	-	+	-	-	2.54E-03	5.39E-05	9.68
60	-	-	-	+	-	-	3.76E-03	7.97E-05	0.96
61	-	+	+	-	-	-	4.59E-04	9.73E-06	0.96
62	-	-	+	-	-	-	1.30E-05	2.76E-07	2.48
63	-	+	-	-	-	-	2.56E-03	5.42E-05	0.96
64	-	-	-	-	-	-	3.05E-03	6.47E-05	2.48

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc (µg/g)	depth (m)
1	+	+	+	+	+	+	2.11E-03	1.75E-05	1.14
2	+	-	+	+	+	+	1.13E-02	9.33E-05	1.14
3	+	+	-	+	+	+	3.44E-02	2.84E-04	11.40
4	+	-	-	+	+	+	9.19E-02	7.59E-04	1.14
5	+	+	+	-	+	+	2.86E-02	2.36E-04	1.15
6	+	-	+	-	+	+	3.31E-02	2.74E-04	0.29
7	+	+	-	-	+	+	3.28E-02	2.71E-04	1.14
8	+	-	-	-	+	+	5.00E-02	4.13E-04	0.29
9	+	+	+	+	-	+	3.18E-02	2.63E-04	11.49
10	+	-	+	+	-	+	9.88E-04	8.17E-06	1.15
11	+	+	-	+	-	+	5.95E-02	4.92E-04	11.49
12	+	-	-	+	-	+	8.80E-02	7.27E-04	1.14
13	+	+	+	-	-	+	3.14E-03	2.59E-05	1.14
14	+	-	+	-	-	+	3.79E-02	3.13E-04	2.94
15	+	+	-	-	-	+	9.92E-02	8.20E-04	1.14
16	+	-	-	-	-	+	1.27E-02	1.05E-04	2.94
17	+	+	+	+	+	-	3.34E-02	2.76E-04	11.43
18	+	-	+	+	+	-	1.13E-02	9.29E-05	1.14
19	+	+	-	+	+	-	6.38E-02	5.27E-04	11.40
20	+	-	-	+	+	-	9.19E-02	7.59E-04	1.14
21	+	+	+	-	+	-	8.95E-03	7.39E-05	1.14
22	+	-	+	-	+	-	3.39E-02	2.80E-04	0.29
23	+	+	-	-	+	-	8.02E-03	6.63E-05	1.14
24	+	-	-	-	+	-	7.06E-02	5.83E-04	0.29
25	+	+	+	+	-	-	3.18E-02	2.63E-04	11.49
26	+	_	+	+	-	-	9.88E-04	8.17E-06	1.15
27	+	+	-	+	-	-	5.95E-02	4.92E-04	11.49
28	+	_	-	+	-	-	8.80E-02	7.27E-04	1.14
29	+	+	+	-	-	-	1.07E-02	8.87E-05	1.14
30	+	_	+	-	-	-	3.05E-04	2.52E-06	0.29
31	+	+	-	-	-	-	5.98E-02	4.94E-04	1.14
32	+	_	-	-	-	-	7.14E-02	5.90E-04	2.94
33	-	+	+	+	+	+	9.42E-05	1.36E-06	11.39
34	-	_	+	+	+	+	5.04E-04	7.25E-06	1.14
35	-	+	-	+	+	+	1.53E-03	2.21E-05	11.40
36	-	-	-	+	+	+	4.10E-03	5.90E-05	1.14
37	-	+	+	-	+	+	1.27E-03	1.84E-05	1.14
38	-	-	+	-	+	+	1.48E-03	2.13E-05	0.29
39	-	+	-	-	+	+	1.46E-03	2.10E-05	1.14

Table C.31 SESOIL out put values for Ciprofloxacin (10 yrs of simulation)

			Vadose zone	Intrinsic	Organic		Conc at groundwater	Adsorbed	Maximum pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc ($\mu g/g$)	depth (m)
40	-	-	-	-	+	+	2.23E-03	3.21E-05	0.29
41	-	+	+	+	-	+	1.34E-03	1.92E-05	11.49
42	-	-	+	+	-	+	4.41E-05	6.34E-07	1.15
43	-	+	-	+	-	+	2.65E-03	3.82E-05	11.49
44	-	-	-	+	-	+	3.92E-03	5.65E-05	1.14
45	-	+	+	-	-	+	1.40E-04	2.01E-06	1.14
46	-	-	+	-	-	+	1.69E-03	2.43E-05	2.94
47	-	+	-	-	-	+	4.42E-03	6.37E-05	1.14
48	-	-	-	-	-	+	5.68E-04	8.18E-06	2.94
49	-	+	+	+	+	-	1.49E-03	2.15E-05	11.49
50	-	-	+	+	+	-	5.04E-04	7.25E-06	1.14
51	-	+	-	+	+	-	2.84E-03	4.09E-05	11.40
52	-	-	-	+	+	-	4.10E-03	5.90E-05	1.14
53	-	+	+	-	+	-	3.99E-04	5.74E-06	1.14
54	-	-	+	-	+	-	1.51E-03	2.17E-05	0.29
55	-	+	-	-	+	-	3.58E-04	5.15E-06	1.14
56	-	-	-	-	+	-	3.14E-03	4.53E-05	0.29
57	-	+	+	+	-	-	1.42E-03	2.04E-05	11.49
58	-	-	+	+	-	-	4.41E-05	6.34E-07	1.15
59	-	+	-	+	-	-	2.65E-03	3.82E-05	11.49
60	-	-	-	+	-	-	3.92E-03	5.65E-05	1.14
61	-	+	+	-	-	-	4.79E-04	6.89E-06	1.14
62	-	-	+	-	-	-	1.36E-05	1.96E-07	2.94
63	-	+	-	-	-	-	2.67E-03	3.84E-05	1.14
64	-	-	-	-	-	-	3.18E-03	4.58E-05	2.94

							Cono		Movimum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc (μ g/g)	depth (m)
1	+	+	+	+	+	+	6.60E-04	2.59E-06	5.35
2	+	-	+	+	+	+	3.53E-03	1.39E-05	5.35
3	+	+	-	+	+	+	1.07E-02	4.22E-05	53.41
4	+	-	-	+	+	+	2.87E-02	1.13E-04	5.34
5	+	+	+	-	+	+	8.92E-03	3.51E-05	5.38
6	+	-	+	-	+	+	1.03E-02	4.06E-05	1.34
7	+	+	-	-	+	+	1.02E-02	4.02E-05	5.34
8	+	-	-	-	+	+	1.56E-02	6.13E-05	1.34
9	+	+	+	+	-	+	9.93E-03	3.90E-05	53.82
10	+	-	+	+	-	+	3.08E-04	1.21E-06	5.38
11	+	+	-	+	-	+	1.86E-02	7.30E-05	53.82
12	+	-	-	+	-	+	2.75E-02	1.08E-04	5.34
13	+	+	+	-	-	+	9.78E-04	3.84E-06	5.34
14	+	-	+	-	-	+	1.18E-02	4.65E-05	13.77
15	+	+	-	-	-	+	3.10E-02	1.22E-04	5.34
16	+	-	-	-	-	+	3.98E-03	1.56E-05	13.77
17	+	+	+	+	+	-	1.04E-02	4.10E-05	53.80
18	+	-	+	+	+	-	3.51E-03	1.38E-05	5.34
19	+	+	-	+	+	-	1.99E-02	7.82E-05	53.41
20	+	-	-	+	+	-	2.87E-02	1.13E-04	5.34
21	+	+	+	-	+	-	2.79E-03	1.10E-05	5.34
22	+	-	+	-	+	-	1.06E-02	4.15E-05	1.34
23	+	+	-	-	+	-	2.50E-03	9.84E-06	5.34
24	+	-	-	-	+	-	2.20E-02	8.65E-05	1.34
25	+	+	+	+	-	-	9.93E-03	3.90E-05	53.82
26	+	-	+	+	-	-	3.08E-04	1.21E-06	5.38
27	+	+	-	+	-	-	1.86E-02	7.30E-05	53.82
28	+	-	-	+	-	-	2.75E-02	1.08E-04	5.34
29	+	+	+	-	-	-	3.35E-03	1.32E-05	5.34
30	+	-	+	-	-	-	9.52E-05	3.74E-07	1.34
31	+	+	-	-	-	-	1.87E-02	7.33E-05	5.34
32	+	-	-	-	-	-	2.23E-02	8.75E-05	13.77
33	-	+	+	+	+	+	8.62E-05	1.03E-06	53.69
34	-	-	+	+	+	+	4.61E-04	5.48E-06	5.35
35	-	+	-	+	+	+	1.40E-03	1.67E-05	53.41
36	-	-	-	+	+	+	3.75E-03	4.46E-05	5.34
37	-	+	+	-	+	+	1.17E-03	1.39E-05	5.34
38	-	-	+	-	+	+	1.35E-03	1.61E-05	1.34
39	-	+	-	-	+	+	1.34E-03	1.59E-05	5.34
40	-	-	-	-	+	+	2.04E-03	2.43E-05	1.34
41	-	+	+	+	-	+	1.22E-03	1.45E-05	53.82
42	-	-	+	+	-	+	4.03E-05	4.80E-07	5.38

Table C.32 SESOIL out put values for Metoprolol (10 yrs of simulation)

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(µg/L)	Conc ($\mu g/g$)	depth (m)
43	-	+	-	+	-	+	2.43E-03	2.89E-05	53.82
44	-	-	-	+	-	+	3.59E-03	4.27E-05	5.34
45	-	+	+	-	-	+	1.28E-04	1.52E-06	5.34
46	-	-	+	-	-	+	1.55E-03	1.84E-05	13.77
47	-	+	-	-	-	+	4.05E-03	4.82E-05	5.34
48	-	-	-	-	-	+	5.20E-04	6.19E-06	13.77
49	-	+	+	+	+	-	1.36E-03	1.62E-05	53.76
50	-	-	+	+	+	-	4.61E-04	5.48E-06	5.34
51	-	+	-	+	+	-	2.60E-03	3.10E-05	53.41
52	-	-	-	+	+	-	3.75E-03	4.46E-05	5.34
53	-	+	+	-	+	-	3.65E-04	4.34E-06	5.34
54	-	-	+	-	+	-	1.38E-03	1.64E-05	1.34
55	-	+	-	-	+	-	3.27E-04	3.89E-06	5.34
56	-	-	-	-	+	-	2.88E-03	3.42E-05	1.34
57	-	+	+	+	-	-	1.30E-03	1.54E-05	53.82
58	-	-	+	+	-	-	4.03E-05	4.80E-07	5.38
59	-	+	-	+	-	-	2.43E-03	2.89E-05	53.82
60	-	-	-	+	-	-	3.59E-03	4.27E-05	5.34
61	-	+	+	-	-	-	4.38E-04	5.21E-06	5.34
62	-	-	+	-	-	-	1.24E-05	1.48E-07	13.77
63	-	+	-	-	-	-	2.44E-03	2.90E-05	5.34
64	-	-	-	-	-	-	2.91E-03	3.46E-05	13.77

							Conc at		Maximum
			Vadose zone	Intrinsic	Organic		groundwater	Adsorbed	pollutant
Run	Concentration	Rainfall	Thickness	Permeability	Content	pН	(μg/L)	Conc ($\mu g/g$)	depth (m)
1	+	+	+	+	+	+	6.05E-04	7.12E-06	2.70
2	+	-	+	+	+	+	3.23E-03	3.81E-05	2.70
3	+	+	-	+	+	+	9.84E-03	1.16E-04	27.00
4	+	-	-	+	+	+	2.63E-02	3.10E-04	2.70
5	+	+	+	-	+	+	8.18E-03	9.64E-05	2.72
6	+	-	+	-	+	+	9.48E-03	1.12E-04	0.68
7	+	+	-	_	+	+	9.37E-03	1.10E-04	2.70
8	+	-	-	-	+	+	1.43E-02	1.68E-04	0.68
9	+	+	+	+	-	+	9.10E-03	1.07E-04	27.21
10	+	-	+	+	-	+	2.83E-04	3.33E-06	2.72
11	+	+	-	+	-	+	1.70E-02	2.01E-04	27.21
12	+	-	-	+	-	+	2.52E-02	2.97E-04	2.70
13	+	+	+	-	-	+	8.97E-04	1.06E-05	2.70
14	+	_	+	-	-	+	1.08E-02	1.28E-04	6.96
15	+	+	-	-	-	+	2.84E-02	3.34E-04	2.70
16	+	_	-	-	-	+	3.65E-03	4.30E-05	6.96
17	+	+	+	+	+	_	9.56E-03	1.13E-04	27.21
18	+	_	+	+	+	-	3.22E-03	3.79E-05	2.70
19	+	+	-	+	+	-	1.82E-02	2.15E-04	27.00
20	+	_	-	+	+	-	2.63E-02	3.10E-04	2.70
21	+	+	+	-	+	-	2.56E-03	3.02E-05	2.70
22	+	_	+	-	+	-	9.69E-03	1.14E-04	0.68
23	+	+	-	-	+	-	2.29E-03	2.70E-05	2.70
24	+	_	-	-	+	_	2.02E-02	2.38E-04	0.68
25	+	+	+	+	-	_	9.10E-03	1.07E-04	27.21
26	+	_	+	+	-	_	2.83E-04	3.33E-06	2.72
27	+	+	-	+	-	-	1.70E-02	2.01E-04	27.21
28	+	-	-	+	-	-	2.52E-02	2.97E-04	2.70
29	+	+	+	-	-	_	3.07E-03	3.62E-05	2.70
30	+	-	+	-	-	-	8.72E-05	1.03E-06	0.68
31	+	+	-	-	-	_	1.71E-02	2.02E-04	2.70
32	+	-	-	-	-	-	2.04E-02	2.41E-04	6.96
33	-	+	+	+	+	+	2.60E-05	7.21E-07	27.21
34	-	-	+	+	+	+	1.39E-04	3.86E-06	2.70
35	-	+	-	+	+	+	4.23E-04	1.17E-05	27.00
36	-	_	-	+	+	+	1.13E-03	3.14E-05	2.70
37	-	+	+	-	+	+	3.51E-04	9.76E-06	2.70
38	-	L	+	-	+	+	4.07E-04	1.13E-05	0.68
39	-	+	-	-	+	+	4.03E-04	1.12E-05	2.70

Table C.33 SESOIL out put values for Salicylic acid (10 yrs of simulation)

Run	Concentration	Rainfall	Vadose zone Thickness	Intrinsic Permeability	Organic Content	nH	Conc at groundwater (ug/L)	Adsorbed	Maximum pollutant depth (m)
40	-	-	-	-	+	+	6.15E-04	1.71E-05	0.68
41	-	+	+	+	-	+	3.68E-04	1.02E-05	27.21
42	-	-	+	+	-	+	1.21E-05	3.37E-07	2.72
43	-	+	-	+	-	+	7.32E-04	2.03E-05	27.21
44	-	_	-	+	-	+	1.08E-03	3.00E-05	2.70
45	-	+	+	-	-	+	3.85E-05	1.07E-06	2.70
46	-	-	+	-	-	+	4.66E-04	1.29E-05	6.96
47	-	+	-	-	-	+	1.22E-03	3.39E-05	2.70
48	-	_	-	-	-	+	1.57E-04	4.35E-06	6.96
49	-	+	+	+	+	-	4.11E-04	1.14E-05	27.21
50	-	-	+	+	+	-	1.39E-04	3.86E-06	2.70
51	-	+	-	+	+	-	7.84E-04	2.18E-05	27.00
52	-	-	-	+	+	-	1.13E-03	3.14E-05	2.70
53	-	+	+	-	+	-	1.10E-04	3.05E-06	2.70
54	-	-	+	-	+	-	4.16E-04	1.16E-05	0.68
55	-	+	-	-	+	-	9.86E-05	2.74E-06	2.70
56	-	-	-	-	+	-	8.67E-04	2.41E-05	0.68
57	-	+	+	+	-	-	3.91E-04	1.09E-05	27.21
58	-	-	+	+	-	_	1.21E-05	3.37E-07	2.72
59	-	+	-	+	-	-	7.32E-04	2.03E-05	27.21
60	-	-	-	+	-	-	1.08E-03	3.00E-05	2.70
61	-	+	+	-	-	-	1.32E-04	3.66E-06	2.70
62	-	-	+	-	-	-	3.75E-06	1.04E-07	6.96
63	-	+	-	_	-	-	7.35E-04	2.04E-05	2.70
64	-	-	-	_	-	-	8.77E-04	2.43E-05	6.96

Run	Concentration	Rainfall	Vadose zone Thickness	Intrinsic Permeability	Organic Content	pН
1	+	+	+	+	+	+
2	+	-	+	+	+	+
3	+	+	-	+	+	+
4	+	-	-	+	+	+
5	+	+	+	-	+	+
6	+	-	+	-	+	+
7	+	+	-	-	+	+
8	+	-	-	-	+	+
9	+	+	+	+	-	+
10	+	-	+	+	-	+
11	+	+	-	+	-	+
12	+	-	-	+	-	+
13	+	+	+	-	-	+
14	+	-	+	-	-	+
15	+	+	-	-	-	+
16	+	-	-	-	-	+
17	+	+	+	+	+	-
18	+	-	+	+	+	-
19	+	+	-	+	+	-
20	+	-	-	+	+	-
21	+	+	+	-	+	-
22	+	-	+	-	+	-
23	+	+	-	-	+	-
24	+	-	-	-	+	-
25	+	+	+	+	-	-
26	+	-	+	+	-	-
27	+	+	-	+	-	-
28	+	-	-	+	-	-
29	+	+	+	-	-	-
30	+	-	+	-	-	-
31	+	+	-	-	-	-
32	+	-	-	-	-	-
33	-	+	+	+	+	+
34	-	-	+	+	+	+
35	-	+	-	+	+	+
36	-	-	-	+	+	+
37	-	+	+	-	+	+
38	-	-	+	-	+	+
39	-	+	-	-	+	+
40	-	-	-	-	+	+
41	-	+	+	+	-	+
42	-	-	+	+	-	+
43	-	+	-	+	-	+

Table C.34 Factorial Design for simulations of PPCPs

Dur	Ormania	Deinfell	Vadose zone	Intrinsic	Organic	
Run	Concentration	Rainfall	Inickness	Permeability	Content	рн
44	-	-	-	+	-	+
45	-	+	+	-	-	+
46	-	-	+	-	-	+
47	-	+	-	-	-	+
48	-	-	-	-	-	+
49	-	+	+	+	+	-
50	-	-	+	+	+	-
51	-	+	-	+	+	-
52	-	-	-	+	+	-
53	-	+	+	-	+	-
54	-	-	+	-	+	-
55	-	+	-	-	+	-
56	-	-	-	-	+	-
57	-	+	+	+	-	-
58	-	-	+	+	-	-
59	-	+	-	+	-	-
60	-	-	-	+	-	-
61	-	+	+	-	-	-
62	-	-	+	-	-	-
63	-	+	-	-	-	-
64	-	-	-	-	-	-

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-9.29E-01	BCE	-9.22E-01
В	1.09E+01	BCF	-9.40E-01
С	-9.12E-01	BDE	-2.11E+00
D	1.09E+01	BDF	-5.57E-01
E	-2.11E+00	BEF	-5.51E-01
F	-5.38E-01	CDE	-9.33E-01
AB	-5.42E-01	CDF	-9.53E-01
AC	-9.35E-01	CEF	-9.49E-01
AD	-5.55E-01	DEF	-5.56E-01
AE	-5.55E-01	ABCD	-9.44E-01
AF	-5.73E-01	ABCE	-9.43E-01
BC	-5.33E-01	ABCF	-9.14E-01
BD	1.16E+01	ABDE	-5.54E-01
BE	5.82E-01	ABDF	-5.83E-01
BF	-9.27E-01	ABEF	-5.81E-01
CD	-5.37E-01	ACDE	-9.48E-01
CE	-5.46E-01	ACDF	-9.22E-01
CF	-5.55E-01	ACEF	-1.14E+00
DE	5.73E-01	ADEF	-5.82E-01
DF	-9.36E-01	BCDE	-5.39E-01
EF	-9.33E-01	BCDF	-5.70E-01
ABC	-5.50E-01	BCEF	-5.71E-01
ABD	-9.35E-01	BDEF	-9.42E-01
ABE	-9.34E-01	CDEF	-5.72E-01
ABF	-9.54E-01	ABCDE	-5.62E-01
ACD	-5.61E-01	ABCDF	-5.44E-01
ACE	-5.63E-01	ABCEF	-5.37E-01
ACF	-5.23E-01	ABDEF	-9.73E-01
ADE	-9.41E-01	ACDEF	-5.44E-01
ADF	-9.71E-01	BCDEF	-9.62E-01
AEF	-9.60E-01	ABCDEF	-9.29E-01
BCD	-9.28E-01		

Table C.35 Calculated Effects of Factors and their Interactions on migration depth of Nystatin

Figure C.1 Estimated main effects and effect interactions on nystatin migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
Α	-1.05E+00	BCE	-1.02E+00
В	1.21E+01	BCF	-1.05E+00
С	-1.02E+00	BDE	-2.35E+00
D	1.21E+01	BDF	-6.20E-01
E	-2.36E+00	BEF	-6.18E-01
F	-6.17E-01	CDE	-1.02E+00
AB	-6.23E-01	CDF	-1.05E+00
AC	-1.04E+00	CEF	-1.05E+00
AD	-6.25E-01	DEF	-6.19E-01
AE	-6.22E-01	ABCD	-1.05E+00
AF	-6.21E-01	ABCE	-1.04E+00
BC	-5.95E-01	ABCF	-1.04E+00
BD	1.29E+01	ABDE	-6.23E-01
BE	6.43E-01	ABDF	-6.23E-01
BF	-1.04E+00	ABEF	-6.23E-01
CD	-5.91E-01	ACDE	-1.05E+00
CE	-5.95E-01	ACDF	-1.05E+00
CF	-6.23E-01	ACEF	-1.27E+00
DE	6.36E-01	ADEF	-6.24E-01
DF	-1.05E+00	BCDE	-5.92E-01
EF	-1.05E+00	BCDF	-6.24E-01
ABC	-6.17E-01	BCEF	-6.25E-01
ABD	-1.05E+00	BDEF	-1.05E+00
ABE	-1.05E+00	CDEF	-6.26E-01
ABF	-1.05E+00	ABCDE	-6.19E-01
ACD	-6.18E-01	ABCDF	-6.18E-01
ACE	-6.16E-01	ABCEF	-6.15E-01
ACF	-6.17E-01	ABDEF	-1.05E+00
ADE	-1.05E+00	ACDEF	-6.17E-01
ADF	-1.05E+00	BCDEF	-1.05E+00
AEF	-1.05E+00	ABCDEF	-1.04E+00
BCD	-1.03E+00		

Table C.36 Calculated Effects of Factors and their Interactions on migration depth of Dexamethasone

Figure C.2 Estimated main effects and effect interactions on dexamethasone migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-2.77E-01	BCE	-2.69E-01
В	3.21E+00	BCF	-2.78E-01
С	-2.69E-01	BDE	-6.26E-01
D	3.21E+00	BDF	-1.64E-01
E	-6.26E-01	BEF	-1.64E-01
F	-1.64E-01	CDE	-2.71E-01
AB	-1.65E-01	CDF	-2.78E-01
AC	-2.77E-01	CEF	-2.78E-01
AD	-1.65E-01	DEF	-1.64E-01
AE	-1.65E-01	ABCD	-2.78E-01
AF	-1.64E-01	ABCE	-2.77E-01
BC	-1.58E-01	ABCF	-2.78E-01
BD	3.42E+00	ABDE	-1.65E-01
BE	1.70E-01	ABDF	-1.65E-01
BF	-2.78E-01	ABEF	-1.64E-01
CD	-1.56E-01	ACDE	-2.78E-01
CE	-1.58E-01	ACDF	-2.79E-01
CF	-1.64E-01	ACEF	-3.39E-01
DE	1.68E-01	ADEF	-1.65E-01
DF	-2.79E-01	BCDE	-1.57E-01
EF	-2.78E-01	BCDF	-1.65E-01
ABC	-1.65E-01	BCEF	-1.64E-01
ABD	-2.78E-01	BDEF	-2.79E-01
ABE	-2.78E-01	CDEF	-1.64E-01
ABF	-2.78E-01	ABCDE	-1.65E-01
ACD	-1.65E-01	ABCDF	-1.65E-01
ACE	-1.65E-01	ABCEF	-1.64E-01
ACF	-1.64E-01	ABDEF	-2.78E-01
ADE	-2.78E-01	ACDEF	-1.64E-01
ADF	-2.78E-01	BCDEF	-2.78E-01
AEF	-2.78E-01	ABCDEF	-2.79E-01
BCD	-2.71E-01		

Table C.37 Calculated Effects of Factors and their Interactions on migration depth of Methoprene

Figure C.3 Estimated main effects and effect interactions on methoprene migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-1.82E+00	BCE	-1.76E+00
В	2.10E+01	BCF	-1.82E+00
С	-1.76E+00	BDE	-4.09E+00
D	2.10E+01	BDF	-1.08E+00
E	-4.10E+00	BEF	-1.07E+00
F	-1.07E+00	CDE	-1.77E+00
AB	-1.07E+00	CDF	-1.82E+00
AC	-1.82E+00	CEF	-1.82E+00
AD	-1.08E+00	DEF	-1.08E+00
AE	-1.07E+00	ABCD	-1.82E+00
AF	-1.07E+00	ABCE	-1.82E+00
BC	-1.03E+00	ABCF	-1.82E+00
BD	2.23E+01	ABDE	-1.08E+00
BE	1.11E+00	ABDF	-1.08E+00
BF	-1.82E+00	ABEF	-1.07E+00
CD	-1.02E+00	ACDE	-1.82E+00
CE	-1.03E+00	ACDF	-1.82E+00
CF	-1.07E+00	ACEF	-2.22E+00
DE	1.10E+00	ADEF	-1.08E+00
DF	-1.82E+00	BCDE	-1.02E+00
EF	-1.82E+00	BCDF	-1.08E+00
ABC	-1.07E+00	BCEF	-1.07E+00
ABD	-1.82E+00	BDEF	-1.82E+00
ABE	-1.82E+00	CDEF	-1.08E+00
ABF	-1.82E+00	ABCDE	-1.08E+00
ACD	-1.08E+00	ABCDF	-1.08E+00
ACE	-1.07E+00	ABCEF	-1.07E+00
ACF	-1.07E+00	ABDEF	-1.82E+00
ADE	-1.82E+00	ACDEF	-1.08E+00
ADF	-1.82E+00	BCDEF	-1.82E+00
AEF	-1.82E+00	ABCDEF	-1.82E+00
BCD	-1.78E+00		

Table C.38 Calculated Effects of Factors and their Interactions on migration depth of Prednisone

Figure C.4 Estimated main effects and effect interactions on prednisone migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-1.99E+00	BCE	-1.93E+00
В	2.29E+01	BCF	-1.99E+00
С	-1.93E+00	BDE	-4.47E+00
D	2.29E+01	BDF	-1.18E+00
E	-4.48E+00	BEF	-1.18E+00
F	-1.18E+00	CDE	-1.94E+00
AB	-1.18E+00	CDF	-1.99E+00
AC	-1.99E+00	CEF	-1.99E+00
AD	-1.18E+00	DEF	-1.18E+00
AE	-1.18E+00	ABCD	-1.99E+00
AF	-1.18E+00	ABCE	-1.99E+00
BC	-1.13E+00	ABCF	-1.99E+00
BD	2.44E+01	ABDE	-1.18E+00
BE	1.21E+00	ABDF	-1.18E+00
BF	-1.99E+00	ABEF	-1.18E+00
CD	-1.12E+00	ACDE	-1.99E+00
CE	-1.13E+00	ACDF	-1.99E+00
CF	-1.18E+00	ACEF	-2.43E+00
DE	1.20E+00	ADEF	-1.18E+00
DF	-1.99E+00	BCDE	-1.12E+00
EF	-1.99E+00	BCDF	-1.18E+00
ABC	-1.18E+00	BCEF	-1.18E+00
ABD	-1.99E+00	BDEF	-1.99E+00
ABE	-1.99E+00	CDEF	-1.18E+00
ABF	-1.99E+00	ABCDE	-1.18E+00
ACD	-1.18E+00	ABCDF	-1.18E+00
ACE	-1.18E+00	ABCEF	-1.18E+00
ACF	-1.18E+00	ABDEF	-1.99E+00
ADE	-1.99E+00	ACDEF	-1.18E+00
ADF	-1.99E+00	BCDEF	-1.99E+00
AEF	-1.99E+00	ABCDEF	-1.99E+00
BCD	-1.94E+00		

Table C.39 Calculated Effects of Factors and their Interactions on migration depth of Metronidazole

Figure C.5 Estimated main effects and effect interactions on metronidazole migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-1.13E+00	BCE	-1.10E+00
В	1.31E+01	BCF	-1.13E+00
С	-1.10E+00	BDE	-2.55E+00
D	1.31E+01	BDF	-6.72E-01
E	-2.55E+00	BEF	-6.70E-01
F	-6.70E-01	CDE	-1.11E+00
AB	-6.70E-01	CDF	-1.13E+00
AC	-1.13E+00	CEF	-1.13E+00
AD	-6.71E-01	DEF	-6.71E-01
AE	-6.70E-01	ABCD	-1.13E+00
AF	-6.70E-01	ABCE	-1.13E+00
BC	-6.42E-01	ABCF	-1.13E+00
BD	1.39E+01	ABDE	-6.71E-01
BE	6.90E-01	ABDF	-6.71E-01
BF	-1.13E+00	ABEF	-6.70E-01
CD	-6.37E-01	ACDE	-1.13E+00
CE	-6.43E-01	ACDF	-1.13E+00
CF	-6.70E-01	ACEF	-1.38E+00
DE	6.83E-01	ADEF	-6.71E-01
DF	-1.13E+00	BCDE	-6.39E-01
EF	-1.13E+00	BCDF	-6.72E-01
ABC	-6.70E-01	BCEF	-6.70E-01
ABD	-1.13E+00	BDEF	-1.13E+00
ABE	-1.13E+00	CDEF	-6.71E-01
ABF	-1.13E+00	ABCDE	-6.71E-01
ACD	-6.71E-01	ABCDF	-6.71E-01
ACE	-6.70E-01	ABCEF	-6.70E-01
ACF	-6.70E-01	ABDEF	-1.13E+00
ADE	-1.13E+00	ACDEF	-6.71E-01
ADF	-1.13E+00	BCDEF	-1.13E+00
AEF	-1.13E+00	ABCDEF	-1.13E+00
BCD	-1.11E+00		

Table C.40 Calculated Effects of Factors and their Interactions on migration depth of Clindamycin

Figure C.6 Estimated main effects and effect interactions on clindamycin migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-1.35E+00	BCE	-1.31E+00
В	1.55E+01	BCF	-1.35E+00
С	-1.31E+00	BDE	-3.03E+00
D	1.55E+01	BDF	-7.98E-01
E	-3.04E+00	BEF	-7.97E-01
F	-7.96E-01	CDE	-1.31E+00
AB	-7.96E-01	CDF	-1.35E+00
AC	-1.35E+00	CEF	-1.35E+00
AD	-7.98E-01	DEF	-7.98E-01
AE	-7.96E-01	ABCD	-1.35E+00
AF	-7.96E-01	ABCE	-1.35E+00
BC	-7.64E-01	ABCF	-1.35E+00
BD	1.66E+01	ABDE	-7.98E-01
BE	8.20E-01	ABDF	-7.98E-01
BF	-1.35E+00	ABEF	-7.96E-01
CD	-7.58E-01	ACDE	-1.35E+00
CE	-7.64E-01	ACDF	-1.35E+00
CF	-7.96E-01	ACEF	-1.64E+00
DE	8.12E-01	ADEF	-7.98E-01
DF	-1.35E+00	BCDE	-7.59E-01
EF	-1.35E+00	BCDF	-7.98E-01
ABC	-7.96E-01	BCEF	-7.97E-01
ABD	-1.35E+00	BDEF	-1.35E+00
ABE	-1.35E+00	CDEF	-7.98E-01
ABF	-1.35E+00	ABCDE	-7.98E-01
ACD	-7.98E-01	ABCDF	-7.98E-01
ACE	-7.96E-01	ABCEF	-7.96E-01
ACF	-7.96E-01	ABDEF	-1.35E+00
ADE	-1.35E+00	ACDEF	-7.98E-01
ADF	-1.35E+00	BCDEF	-1.35E+00
AEF	-1.35E+00	ABCDEF	-1.35E+00
BCD	-1.32E+00		

Table C.41 Calculated Effects of Factors and their Interactions on migration depth of Ketoconazole

Figure C.7 Estimated main effects and effect interactions on ketoconazole migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
A	-1.26E+00	BCE	-1.22E+00
В	1.46E+01	BCF	-1.26E+00
С	-1.22E+00	BDE	-2.84E+00
D	1.46E+01	BDF	-7.48E-01
E	-2.84E+00	BEF	-7.46E-01
F	-7.46E-01	CDE	-1.23E+00
AB	-7.46E-01	CDF	-1.26E+00
AC	-1.26E+00	CEF	-1.26E+00
AD	-7.47E-01	DEF	-7.47E-01
AE	-7.46E-01	ABCD	-1.26E+00
AF	-7.46E-01	ABCE	-1.26E+00
BC	-7.15E-01	ABCF	-1.26E+00
BD	1.55E+01	ABDE	-7.47E-01
BE	7.68E-01	ABDF	-7.47E-01
BF	-1.26E+00	ABEF	-7.46E-01
CD	-7.09E-01	ACDE	-1.26E+00
CE	-7.15E-01	ACDF	-1.26E+00
CF	-7.46E-01	ACEF	-1.54E+00
DE	7.60E-01	ADEF	-7.47E-01
DF	-1.26E+00	BCDE	-7.11E-01
EF	-1.26E+00	BCDF	-7.48E-01
ABC	-7.46E-01	BCEF	-7.46E-01
ABD	-1.26E+00	BDEF	-1.26E+00
ABE	-1.26E+00	CDEF	-7.47E-01
ABF	-1.26E+00	ABCDE	-7.47E-01
ACD	-7.47E-01	ABCDF	-7.47E-01
ACE	-7.46E-01	ABCEF	-7.46E-01
ACF	-7.46E-01	ABDEF	-1.26E+00
ADE	-1.26E+00	ACDEF	-7.47E-01
ADF	-1.26E+00	BCDEF	-1.26E+00
AEF	-1.26E+00	ABCDEF	-1.26E+00
BCD	-1.23E+00		

Table C.42 Calculated Effects of Factors and their Interactions on migration depth of Carbamazepine

Figure C.8 Estimated main effects and effect interactions on carbamazepine migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
A	-2.22E+00	BCE	-2.16E+00
В	2.57E+01	BCF	-2.22E+00
С	-2.16E+00	BDE	-5.00E+00
D	2.57E+01	BDF	-1.32E+00
E	-5.01E+00	BEF	-1.31E+00
F	-1.31E+00	CDE	-2.17E+00
AB	-1.31E+00	CDF	-2.23E+00
AC	-2.22E+00	CEF	-2.22E+00
AD	-1.32E+00	DEF	-1.32E+00
AE	-1.31E+00	ABCD	-2.23E+00
AF	-1.31E+00	ABCE	-2.22E+00
BC	-1.26E+00	ABCF	-2.22E+00
BD	2.73E+01	ABDE	-1.32E+00
BE	1.35E+00	ABDF	-1.32E+00
BF	-2.22E+00	ABEF	-1.31E+00
CD	-1.25E+00	ACDE	-2.23E+00
CE	-1.26E+00	ACDF	-2.23E+00
CF	-1.31E+00	ACEF	-2.71E+00
DE	1.34E+00	ADEF	-1.32E+00
DF	-2.23E+00	BCDE	-1.25E+00
EF	-2.22E+00	BCDF	-1.32E+00
ABC	-1.31E+00	BCEF	-1.31E+00
ABD	-2.23E+00	BDEF	-2.23E+00
ABE	-2.22E+00	CDEF	-1.32E+00
ABF	-2.22E+00	ABCDE	-1.32E+00
ACD	-1.32E+00	ABCDF	-1.32E+00
ACE	-1.31E+00	ABCEF	-1.31E+00
ACF	-1.31E+00	ABDEF	-2.23E+00
ADE	-2.23E+00	ACDEF	-1.32E+00
ADF	-2.23E+00	BCDEF	-2.23E+00
AEF	-2.22E+00	ABCDEF	-2.23E+00
BCD	-2.17E+00		

Table C.43 Calculated Effects of Factors and their Interactions on migration depth of Caffeine

Figure C.9 Estimated main effects and effect interactions on caffeine migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-4.70E-01	BCE	-4.56E-01
В	5.43E+00	BCF	-4.70E-01
С	-4.56E-01	BDE	-1.06E+00
D	5.43E+00	BDF	-2.79E-01
E	-1.06E+00	BEF	-2.78E-01
F	-2.78E-01	CDE	-4.59E-01
AB	-2.78E-01	CDF	-4.71E-01
AC	-4.70E-01	CEF	-4.70E-01
AD	-2.79E-01	DEF	-2.79E-01
AE	-2.78E-01	ABCD	-4.71E-01
AF	-2.78E-01	ABCE	-4.70E-01
BC	-2.67E-01	ABCF	-4.70E-01
BD	5.78E+00	ABDE	-2.79E-01
BE	2.87E-01	ABDF	-2.79E-01
BF	-4.70E-01	ABEF	-2.78E-01
CD	-2.65E-01	ACDE	-4.71E-01
CE	-2.67E-01	ACDF	-4.71E-01
CF	-2.78E-01	ACEF	-5.74E-01
DE	2.84E-01	ADEF	-2.79E-01
DF	-4.71E-01	BCDE	-2.65E-01
EF	-4.70E-01	BCDF	-2.79E-01
ABC	-2.78E-01	BCEF	-2.78E-01
ABD	-4.71E-01	BDEF	-4.71E-01
ABE	-4.70E-01	CDEF	-2.79E-01
ABF	-4.70E-01	ABCDE	-2.79E-01
ACD	-2.79E-01	ABCDF	-2.79E-01
ACE	-2.78E-01	ABCEF	-2.78E-01
ACF	-2.78E-01	ABDEF	-4.71E-01
ADE	-4.71E-01	ACDEF	-2.79E-01
ADF	-4.71E-01	BCDEF	-4.71E-01
AEF	-4.70E-01	ABCDEF	-4.71E-01
BCD	-4.60E-01		

Table C.44 Calculated Effects of Factors and their Interactions on migration depth of Ibuprofen

Figure C.10 Estimated main effects and effect interactions on ibuprofen migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-8.55E-01	BCE	-8.29E-01
В	9.87E+00	BCF	-8.55E-01
С	-8.30E-01	BDE	-1.92E+00
D	9.87E+00	BDF	-5.07E-01
E	-1.93E+00	BEF	-5.06E-01
F	-5.05E-01	CDE	-8.35E-01
AB	-5.06E-01	CDF	-8.56E-01
AC	-8.55E-01	CEF	-8.55E-01
AD	-5.07E-01	DEF	-5.07E-01
AE	-5.06E-01	ABCD	-8.56E-01
AF	-5.06E-01	ABCE	-8.55E-01
BC	-4.85E-01	ABCF	-8.55E-01
BD	1.05E+01	ABDE	-5.07E-01
BE	5.21E-01	ABDF	-5.07E-01
BF	-8.55E-01	ABEF	-5.06E-01
CD	-4.81E-01	ACDE	-8.56E-01
CE	-4.85E-01	ACDF	-8.56E-01
CF	-5.05E-01	ACEF	-1.04E+00
DE	5.15E-01	ADEF	-5.07E-01
DF	-8.56E-01	BCDE	-4.82E-01
EF	-8.55E-01	BCDF	-5.07E-01
ABC	-5.06E-01	BCEF	-5.06E-01
ABD	-8.56E-01	BDEF	-8.56E-01
ABE	-8.55E-01	CDEF	-5.07E-01
ABF	-8.55E-01	ABCDE	-5.07E-01
ACD	-5.07E-01	ABCDF	-5.07E-01
ACE	-5.06E-01	ABCEF	-5.06E-01
ACF	-5.06E-01	ABDEF	-8.56E-01
ADE	-8.56E-01	ACDEF	-5.07E-01
ADF	-8.56E-01	BCDEF	-8.56E-01
AEF	-8.55E-01	ABCDEF	-8.56E-01
BCD	-8.36E-01		

Table C.45 Calculated Effects of Factors and their Interactions on migration depth of Diclofenac

Figure C.11 Estimated main effects and effect interactions on diclofenac migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
A	-2.31E+00	BCE	-2.24E+00
В	2.66E+01	BCF	-2.31E+00
С	-2.24E+00	BDE	-5.20E+00
D	2.66E+01	BDF	-1.37E+00
E	-5.20E+00	BEF	-1.37E+00
F	-1.36E+00	CDE	-2.25E+00
AB	-1.37E+00	CDF	-2.31E+00
AC	-2.31E+00	CEF	-2.31E+00
AD	-1.37E+00	DEF	-1.37E+00
AE	-1.37E+00	ABCD	-2.31E+00
AF	-1.37E+00	ABCE	-2.31E+00
BC	-1.31E+00	ABCF	-2.31E+00
BD	2.84E+01	ABDE	-1.37E+00
BE	1.41E+00	ABDF	-1.37E+00
BF	-2.31E+00	ABEF	-1.37E+00
CD	-1.30E+00	ACDE	-2.31E+00
CE	-1.31E+00	ACDF	-2.31E+00
CF	-1.36E+00	ACEF	-2.82E+00
DE	1.39E+00	ADEF	-1.37E+00
DF	-2.31E+00	BCDE	-1.30E+00
EF	-2.31E+00	BCDF	-1.37E+00
ABC	-1.37E+00	BCEF	-1.37E+00
ABD	-2.31E+00	BDEF	-2.31E+00
ABE	-2.31E+00	CDEF	-1.37E+00
ABF	-2.31E+00	ABCDE	-1.37E+00
ACD	-1.37E+00	ABCDF	-1.37E+00
ACE	-1.37E+00	ABCEF	-1.37E+00
ACF	-1.37E+00	ABDEF	-2.31E+00
ADE	-2.31E+00	ACDEF	-1.37E+00
ADF	-2.31E+00	BCDEF	-2.31E+00
AEF	-2.31E+00	ABCDEF	-2.31E+00
BCD	-2.26E+00		

Table C.46 Calculated Effects of Factors and their Interactions on migration depth of Acetaminophen

Figure C.12 Estimated main effects and effect interactions on acetaminophen migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-3.42E-01	BCE	-3.32E-01
В	3.95E+00	BCF	-3.42E-01
С	-3.32E-01	BDE	-7.70E-01
D	3.95E+00	BDF	-2.03E-01
E	-7.71E-01	BEF	-2.02E-01
F	-2.02E-01	CDE	-3.34E-01
AB	-2.02E-01	CDF	-3.42E-01
AC	-3.42E-01	CEF	-3.42E-01
AD	-2.03E-01	DEF	-2.03E-01
AE	-2.02E-01	ABCD	-3.42E-01
AF	-2.02E-01	ABCE	-3.42E-01
BC	-1.94E-01	ABCF	-3.42E-01
BD	4.20E+00	ABDE	-2.03E-01
BE	2.08E-01	ABDF	-2.03E-01
BF	-3.42E-01	ABEF	-2.02E-01
CD	-1.92E-01	ACDE	-3.42E-01
CE	-1.94E-01	ACDF	-3.42E-01
CF	-2.02E-01	ACEF	-4.17E-01
DE	2.06E-01	ADEF	-2.03E-01
DF	-3.42E-01	BCDE	-1.93E-01
EF	-3.42E-01	BCDF	-2.03E-01
ABC	-2.02E-01	BCEF	-2.02E-01
ABD	-3.42E-01	BDEF	-3.42E-01
ABE	-3.42E-01	CDEF	-2.03E-01
ABF	-3.42E-01	ABCDE	-2.03E-01
ACD	-2.03E-01	ABCDF	-2.03E-01
ACE	-2.02E-01	ABCEF	-2.02E-01
ACF	-2.02E-01	ABDEF	-3.42E-01
ADE	-3.42E-01	ACDEF	-2.03E-01
ADF	-3.42E-01	BCDEF	-3.42E-01
AEF	-3.42E-01	ABCDEF	-3.42E-01
BCD	-3.34E-01		

Table C.47 Calculated Effects of Factors and their Interactions on migration depth of Triclosan

Figure C.13 Estimated main effects and effect interactions on triclosan migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-4.06E-01	BCE	-3.94E-01
В	4.69E+00	BCF	-4.06E-01
С	-3.94E-01	BDE	-9.14E-01
D	4.69E+00	BDF	-2.41E-01
E	-9.15E-01	BEF	-2.40E-01
F	-2.40E-01	CDE	-3.97E-01
AB	-2.40E-01	CDF	-4.07E-01
AC	-4.06E-01	CEF	-4.06E-01
AD	-2.41E-01	DEF	-2.41E-01
AE	-2.40E-01	ABCD	-4.07E-01
AF	-2.40E-01	ABCE	-4.06E-01
BC	-2.30E-01	ABCF	-4.06E-01
BD	4.99E+00	ABDE	-2.41E-01
BE	2.47E-01	ABDF	-2.41E-01
BF	-4.06E-01	ABEF	-2.40E-01
CD	-2.28E-01	ACDE	-4.07E-01
CE	-2.30E-01	ACDF	-4.07E-01
CF	-2.40E-01	ACEF	-4.96E-01
DE	2.45E-01	ADEF	-2.41E-01
DF	-4.07E-01	BCDE	-2.29E-01
EF	-4.06E-01	BCDF	-2.41E-01
ABC	-2.40E-01	BCEF	-2.40E-01
ABD	-4.07E-01	BDEF	-4.07E-01
ABE	-4.06E-01	CDEF	-2.41E-01
ABF	-4.06E-01	ABCDE	-2.41E-01
ACD	-2.41E-01	ABCDF	-2.41E-01
ACE	-2.40E-01	ABCEF	-2.40E-01
ACF	-2.40E-01	ABDEF	-4.07E-01
ADE	-4.07E-01	ACDEF	-2.41E-01
ADF	-4.07E-01	BCDEF	-4.07E-01
AEF	-4.06E-01	ABCDEF	-4.07E-01
BCD	-3.97E-01		

Table C.48 Calculated Effects of Factors and their Interactions on migration depth of Ciprofloxacin

Figure C.14 Estimated main effects and effect interactions on ciprofloxacin migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
A	-1.90E+00	BCE	-1.85E+00
В	2.20E+01	BCF	-1.90E+00
С	-1.85E+00	BDE	-4.28E+00
D	2.20E+01	BDF	-1.13E+00
E	-4.29E+00	BEF	-1.13E+00
F	-1.12E+00	CDE	-1.86E+00
AB	-1.12E+00	CDF	-1.90E+00
AC	-1.90E+00	CEF	-1.90E+00
AD	-1.13E+00	DEF	-1.13E+00
AE	-1.12E+00	ABCD	-1.90E+00
AF	-1.12E+00	ABCE	-1.90E+00
BC	-1.08E+00	ABCF	-1.90E+00
BD	2.34E+01	ABDE	-1.13E+00
BE	1.16E+00	ABDF	-1.13E+00
BF	-1.90E+00	ABEF	-1.12E+00
CD	-1.07E+00	ACDE	-1.90E+00
CE	-1.08E+00	ACDF	-1.90E+00
CF	-1.12E+00	ACEF	-2.32E+00
DE	1.15E+00	ADEF	-1.13E+00
DF	-1.90E+00	BCDE	-1.07E+00
EF	-1.90E+00	BCDF	-1.13E+00
ABC	-1.12E+00	BCEF	-1.13E+00
ABD	-1.90E+00	BDEF	-1.90E+00
ABE	-1.90E+00	CDEF	-1.13E+00
ABF	-1.90E+00	ABCDE	-1.13E+00
ACD	-1.13E+00	ABCDF	-1.13E+00
ACE	-1.12E+00	ABCEF	-1.12E+00
ACF	-1.12E+00	ABDEF	-1.90E+00
ADE	-1.90E+00	ACDEF	-1.13E+00
ADF	-1.90E+00	BCDEF	-1.90E+00
AEF	-1.90E+00	ABCDEF	-1.90E+00
BCD	-1.86E+00		

Table C.49 Calculated Effects of Factors and their Interactions on migration depth of Metoprolol

Figure C.15 Estimated main effects and effect interactions on metoprolol migration in vadose zone

	Effect on		Effect on
Factors/	migration	Factors/	migration
Interactions	depth	Interactions	depth
А	-9.62E-01	BCE	-9.33E-01
В	1.11E+01	BCF	-9.62E-01
С	-9.33E-01	BDE	-2.16E+00
D	1.11E+01	BDF	-5.70E-01
E	-2.17E+00	BEF	-5.69E-01
F	-5.69E-01	CDE	-9.39E-01
AB	-5.69E-01	CDF	-9.63E-01
AC	-9.62E-01	CEF	-9.62E-01
AD	-5.70E-01	DEF	-5.70E-01
AE	-5.69E-01	ABCD	-9.63E-01
AF	-5.69E-01	ABCE	-9.62E-01
BC	-5.45E-01	ABCF	-9.62E-01
BD	1.18E+01	ABDE	-5.70E-01
BE	5.86E-01	ABDF	-5.70E-01
BF	-9.62E-01	ABEF	-5.69E-01
CD	-5.41E-01	ACDE	-9.63E-01
CE	-5.46E-01	ACDF	-9.63E-01
CF	-5.69E-01	ACEF	-1.17E+00
DE	5.80E-01	ADEF	-5.70E-01
DF	-9.63E-01	BCDE	-5.42E-01
EF	-9.61E-01	BCDF	-5.70E-01
ABC	-5.69E-01	BCEF	-5.69E-01
ABD	-9.63E-01	BDEF	-9.63E-01
ABE	-9.62E-01	CDEF	-5.70E-01
ABF	-9.62E-01	ABCDE	-5.70E-01
ACD	-5.70E-01	ABCDF	-5.70E-01
ACE	-5.69E-01	ABCEF	-5.69E-01
ACF	-5.69E-01	ABDEF	-9.63E-01
ADE	-9.63E-01	ACDEF	-5.70E-01
ADF	-9.63E-01	BCDEF	-9.63E-01
AEF	-9.62E-01	ABCDEF	-9.63E-01
BCD	-9.40E-01		

Table C.50 Calculated Effects of Factors and their Interactions on migration depth of Salicylic acid

Figure C.16 Estimated main effects and effect interactions on salicylic acid migration in vadose zone