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Because of historic difficulties in the measurement of sewage borne patho-
gens, the microbiological quality of stormwater runoff is often characterized 
on the basis of bacterial indicator species. These species are assumed to derive 
from a common (sewage) source with pathogens of interest, and to arrive in, 
survive in, and move through watershed environments in numbers that cor-
relate with the health risk from those pathogens. Commonly used indicator 
species (especially Escherichia coli and Enterococcus spp., or enterococci), 
however, may derive from sources other than sewage, and survive in the (non-
enteric) environment at rates divergent from those of the pathogens they are 
presumed to indicate (National Research Council, 2004). 

Field and Samadpour (2007) provide a critical review of both the the 
indicator paradigm (our current reliance on fecal indicator bacteria, FIBs) and 
an alternative monitoring regimen utilizing fecal source tracking (FST) meth-
ods. While noting the inadequate state of the art for direct measurements of 
pathogens, the authors find deficiencies in the correlations of FIBs to specific 
pathogens, and of FIBs to epidemiological measures of human health. They 
ascribe the deficiencies in the indicator paradigm to its inability to identify 
the source hosts of environmental FIBs. Landscape survival of FIBs and the 
ratio of FIBs to human pathogens deposited on the landscape are dependent 
on the source of the feces. More specifically, though zoonotic infections from 
non-human sources occur, correlation between human health threat and FIB 
presence suffers when major fecal sources other than sewage are present. (The 
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authors proceed to find current state FST methods alone also deficient: they 
propose a multi-level combination of expanded source and epidemiological 
surveys, and pathogen, FIB and FST testing, while noting the expense and the 
laboratory retooling that would be required for such an approach.)

Continued reliance on the use of FIBs to manage the microbiological 
risk of environmental waters would be better informed by knowledge of the 
nonhuman contributions of FIBs to stormwater. In an ongoing effort to model 
background (i.e. of non-sewage origin) discharges of indicator species from 
stormwater source areas in which the presence of sewage contamination can 
be precluded, in the Tuscaloosa, Alabama area, a model for the environment-
ally relevant survival of indicator species (E. coli and enterococci) on im-
pervious surfaces within the environment is presented. 

14.1 Methods

14.1.1 Bacterial Cultivation and Enumeration

A full factorial study (23, temperature/moisture/UVB exposure, the latter being 
ultraviolet B radiation) of the indicator species’ environmental survival fac-
tors was performed for each taxon (enterococci and E. coli). Pet feces slurries 
(1 mL) were applied to salt passivated paving blocks and incubated in con-
trolled environmental chambers (freezerless refrigerators fitted with commer-
cial biological oxygen demand, BOD, controllers and heaters for temperature 
control, desiccant or humidifiers for moisture control, and UVB enhanced 
fluorescents with Lexan panels to split the chambers into UV exposed and 
UV shielded regions) at conditions encompassing those likely to be found in 
Tuscaloosa. The raw concrete paving blocks had been prepared by an over-
night soak in mild brine (0.25 cup, 62.5 mL, table salt into 40 gal, 151.4 L, 
trash can of tap water), followed by thorough tap water rinse and air drying, 
to provide an unreactive, passive surface. Slurries were produced by blend-
ing dog feces with distilled water (to assure microbiological purity and the 
absence of bactericidal components) and immediately applied (with a 3 mL 
sterile disposal syringe) to the passive blocks (to quickly relieve any potential 
osmotic stress of the distilled water). No additional nutrients (other than fecal 
materials) were added. Active control of temperature (40 °F and 90 °F, 4.4 °C 
and 32 °C, cool or warm) held the parameter steady (±2 °F, 1.1 °C) over the 
study period. Relative humidity (25% and 80%, dry or wet) varied over about 
±4%. UV exposure was treated as present or absent (UV or dark).

Over an extended period (about two weeks), duplicate inoculated pav-
ing blocks were subjected to mechanical biofilm disruption by consistent-
ly applied and timed toothbrush abrasion (three scrubs of 1 min each, with 
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intervening wetting between scrubs), washing the slurry debris into sample 
bottles and dilution to 100 mL (with distilled water). Method development 
comparisons of wash-off MPN to inoculant MPN showed incomplete but 
consistent (within 95% confidence bands of MPN measurement) recovery of 
the inoculant by this abrasion–rinse technique. Washed-off samples were im-
mediately mixed with defined substrate formulations (Colilert or Enterlert) 
for relief of osmotic stresses. The most probable numbers (MPN) of surviving 
E. coli and enterococci colony forming units (CFU) per 100 mL were meas-
ured using IDEXX (IDEXX Laboratories, Inc.) methods and normalized to 
the inoculation date (Day 0) MPN (also acquired from brush-off samples from 
blocks inoculated and brushed in the same way). IDEXX reagents (Colilert 
and Enterolert) provide for selective incubation of the taxons of interest, and 
colorimetric and fluorometric indicators of viable colonies within 24 h. These  
are recognized water assays under Standard Methods for the Examination of 
Water and Wastewater (Eaton et al., 2005:sections 9223 and 9230b, respect-
ively). MPN measurement values with three orders of magnitude ranges (from 
1 MPN/100 mL to 2 420 MPN/100 mL) are directly available with the re-
agents when used in conjunction with Quantitray 2000 units. Additional dilu-
tions of each sample were incubated to ensure that all samples were quantified 
over even wider ranges.

14.1.2 Breakpoint Analysis

There is considerable reason to expect that the growth or decline (change in 
MPN over time) of bacterial populations is a first order (log-linear) relation-
ship, arising as the sum of binary fission and death of individual cells (both 
dependent on the number of viable cells at any given time). This pattern, well 
established in textbooks currently in use (e.g. Madigan et al, 2002:142) is of 
the form:

log (MPN / initial MPN) = k × t (14.1)

where: 
 k = net growth constant (slope of the function), and
 t = time (hours).

Changes in the slope of log(MPN) versus time are likely caused by a 
change in environmental conditions or a change in the makeup of the subject 
population. Introduction of a viable bacterial inoculant to a new (habitable) 
medium (batch style) typically results in up to four distinct phases of popu-
lation behavior: lag, exponential growth, stationary, and exponential death 
(Madigan et al., 2002:144–5):
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Lag Phase
The lag phase is characterized as a period of adaptation to the new environ-
ment, in which little or no population growth occurs, and its length is depend-
ent on differences between the environmental history of the inoculant and 
the environmental conditions of the new medium. Inoculants transferred to 
environments similar to their historical conditions may exhibit little or no 
lag time; for transfers to a very different environment, lags may be consider-
able. Of course, if new conditions are so foreign to members of the inoculant 
population as to render it uninhabitable, individual cell death may occur until 
remnants of the inoculant population are viable (Madigan et al., 2002: 144–5). 

Growth Phase
In the growth phase, the adapted (or naturally selected) population grows ex-
ponentially; population at any given time is dependent on the number of act-
ively dividing members of the population present at previous times. Rate of 
growth is dependent on environmental conditions and the genetic (metabolic 
mechanisms available) composition of the population (Madigan et al., 2002: 
144–5). 

Stationary Phase
The stationary phase (in which the population is static) represents conditions 
in which available nutrients (either from the original inoculant or from release 
by the lysis of dying cells) is balanced by a buildup of refractory (and often 
inhibitory) waste products (Madigan et al., 2002: 144–5).

Death Phase
The death phase (dominated by waste buildup) is exponential. 

Any or all of these phases may occur (or, of course, may be missed 
by insufficient time density of sampling) and both environmental conditions 
and the genetic makeup of the population are relevant (Madigan et al., 2002: 
144–5). The four main environmental factors influencing bacterial growth are 
temperature, pH, and the availability of water and oxygen (Madigan et al., 
2002: 151). For terrestrial environmental surfaces, oxygen is unlikely to be a 
factor. For dry weathered pavements (without liquid moisture, between rains), 
pH is likewise probably unimportant. An important factor in cell death, how-
ever, is that of UVB exposure (Madigan et al., 2002: 272–3), which is bacteri-
cidal, especially during cell division.

Because we cultivated our samples at constant conditions, a change in 
slope of log(MPN) versus time must be viewed as a population change. Popu-
lation change may arise either through induction of new enzymes in individ-
ual cells, or through natural selection in the overall population.



Survival of Bacterial Indicator Species on … 271

Each combination (23 = 8 combinations of temperature, humidity, and 
UV exposure) of environmental conditions (treatments, combinations of en-
vironmental factors) was treated as a log-linear (first order) segmented (with 
unknown break points) model of normalized MPN with respect to time, and 
with continuity between the segments imposed (as shown below in Figure 
14.3, for example).

The statistical analysis of such models is not straightforward. Hud-
son (1966) provides a graphic algorithm (for minimization of overall sum 
of squares of error, SSE, in the segmented model) and shows that the algo-
rithm generally provides the maximum likelihood estimate (MLE) of the ab-
scissa of an unknown breakpoint (tBP); he provides no information as to how 
likely that estimate may be (rendering inferences impossible). Feder (1975a; 
1975b) proves that, provided the model is identified (i.e. includes no more hy-
pothesized breakpoints than are present in the real population), and if no hy-
pothesized tBP coincides with an abscissa of observation in the sample, then 
minimization of SSE (the MLE function) converges asymptotically to the true 
population breakpoint (BP).

In the unidentified case (i.e. too many BPs assumed), the MLE function 
becomes indeterminate (estimates are not asymptotically normal). Feder’s 
second condition arises because a discontinuity exists in the SSE function at 
each observation point, rendering it non-differentiable there, allowing for a 
possible true BP existing between the MLE tBP and an adjacent sample ob-
servation point (i.e. the MLE function becomes unstationary). For the unsta-
tionary case, he proves that, as the number of sample observations increases, 
minimization of SSE of a pseudocase (in which the observation point coincid-
ing with the tBP is removed from the dataset) still converges (at a known rate) 
to the true BP. Lerman (1980) adapts Feder’s work into a grid-search algo-
rithm (again, only for the identified case, and incorporating the pseudocase 
approach when necessary) in which proposed tBPs are mapped across the 
range of the observations and the SSE at each is determined. Progressive re-
finement (finer grain) of the grid provides the tBP (minimization of the SSE 
versus proposed-tBP function). The exercise also provides an estimate of the 
variance of that tBP estimate, corresponding to the range (which need not be 
continuous or symmetrical) of proposed-tBPs. The range includes all time in 
which SSE is less than the minimum SSE plus its associated mean square of 
error (minSSE + MSE). Finally, Bai and Perron (1998) derive a log-likelihood 
ratio by which it can be determined whether the addition of a new breakpoint 
to an identified model results in a new model which is also identified, and 
publish critical values for that ratio.

We found the grid search method amenable to spreadsheet implementa-
tion. We first modeled each treatment by simple linear regression, resulting in 
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a one-segment (R = 1, no breakpoints) model. We then hypothesized a break-
point, and searched for it by Lerman’s grid method. If the resulting MLE did 
not coincide with an observation point, we accepted the tBP and associated 
uncertainty indicated by the search (see Figure 14.1 below). We found grid 
search of the (asymptotically converging) pseudocase, however, problematic 
for the limited number of data points we had for each treatment (typically 
~35). In one case, analysis of the pseudocase resulted in the tBP jumping 
about 100 h (and across multiple observation points, an impossible situation) 
because of the slower convergence of the smaller, highly variable dataset. In 
these cases we retained the grid derived tBP and accepted the greater uncer-
tainty inherent; we conducted a one sided grid search solution around the tBP 
to establish one side of the variance range and took the adjacent observation 
point as the other (see Figure 14.2). Note that since we generated our grid 
search left-to-right (increasing t), the segment containing the discontinuity 
occurred between our tBP and the immediately preceding (adjacently left) 
observation. In both situations, the new model was tested against Bai and Per-
ron’s criteria for identification and, if it was identified, repeated the sequence. 
For the final model of each treatment, we numbered each tBP and intervening 
segments left-to-right (see Figure 14.3).

Figure 14.1 Example of graphic derivation of estimated tBP variance, 
normal case (with closeup inset).
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Figure 14.2 Example of right-sided graphic derivation of tBP variance, 
discontinuity on the left (with closeup inset).

Figure 14.3 Example of a three segment (R = 3) treatment model with 
segment and breakpoint designations. 
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14.1.3 Environmental Factors

Each taxon (E. coli and the enterococci) was subjected to traditional (pooled 
variance) factorial analysis to rank the importance of the environmental fac-
tors (temperature, humidity, and UV exposure, coded as 1 = shaded and 0 = 
exposed, plus their interactions) to the abscissa of each breakpoint and to the 
slope (k) of each intervening segment. The tBPs, their associated uncertain-
ties, and the k of each segment were derived directly from the breakpoint an-
alysis above. The variance of each k was determined from log (MPN / initial 
MPN) / t = k for each nonzero t in the segment.

This exercise was rendered problematic by the fact that different treat-
ments (even within a taxon) differed in the number of tBPs revealed, from 
R = 1 (one segment with no BP) to R = 3 (three segments with two BPs). 
Orthogonality of the contrasts was achieved by the generation of artificial BPs 
within segments without breakpoints but for which tBPs were revealed in cor-
responding segments of other treatments. Transparency of the artificial points 
to the factorial analysis was achieved by assigning to them abscissae equal to 
the weighted average of revealed tBPs, and by assigning them zero variance. 
The k values of the new segments (on each side of the artificial BP) generated 
by this action were held to be equal, but the number of observation points (n) 
and the variance associated with those points were distributed (n-weighted) 
between the new segments.

Environmental factor effects on tBP or k values were deemed import-
ant if their standard errors (SE) led to conclusions of at least 90% confidence 
(reasonable, considering the small sample sets) that the effects were not zero, 
although confidence in the importance of effects was much higher (and noted) 
in some cases. Conclusions that effects were not zero were reached when the 
calculated confidence interval (CI) was smaller than the calculated effect:

CI = SE × t(a)       (14.2)

where:
 t(a) = Student’s t-table return for the appropriate degrees of 

freedom and 
 (a) = the p-value resulting in the reported confidence level (i.e. 

alpha).

14.1.4 Model Construction 

The important environmental effects (main effects and interactions) on k and 
tBP values, derived above, were used to model those parameters as a function 
of environmental factors:
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Model Parameter = Mean (Parameter) + 
  Sum of (Effects of Environmental Factors)  (14.3)

where:
 Parameter = treatment k or BP (artificial or not) entered into the 

tables of contrast for the factorial analyses,
 Mean(Parameter) = treatment weighted mean for that parameter, 

and
Effects of Environmental Factors (EEF) = adjustments to 

Mean(Parameter) attributable to each important 
environmental factor.

For 2-level factorial, effects are of the form:

EEF = [Product(EF-MEF) × (1/2 environmental effect)] / 
  Product(REF)     (14.4)

where:
 EF = value of that environmental factor for an observation 

point,
 MEF = mean of that environmental factor amongst observation 

points, and
 REF = range (high value to low value) of an environmental factor 

amongst observation points.

14.2 Results and Discussion

14.2.1 E. Coli

Results from breakpoint analysis of the E. coli dataset (Figure 14.4 below) 
are complex. One treatment (warm/wet/dark) showed no significant tBP (not 
even a lag), and also exhibited an absence of any initial accelerated decline. 
Two treatments (warm/dry/UV and warm/wet/UV) showed two tBPs each, 
with an initial decline, a rebound of growth, and a subsequent second decline. 
Cool treatments were nearly indistinguishable from each other, and resulted 
in more rapid declines than warm/shade treatments. All treatments exhibiting 
BPs showed slower declines later in the study period than in the initial die-off

Warm conditions in general, and warm/wet/dark in particular, most 
closely match the primary habitat (the gut of warm blooded animals) of our 
enteric bacteria, and would likely impose the least stringent adaptation re-
quirements. The fact that only warm/UV treatments elicit regrowth and three 
phase behavior suggests an interaction. While UVB (the primary bactericidal 
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band in sunlight) is not strictly ionizing radiation, it is of sufficiently high fre-
quency to rearrange bonds in complex biomolecules.

Most importantly, UVB causes dimerization of adjacent thymine units 
(and other photoproducts) within bacterial genomes that inhibit the progres-
sion of (both RNA and DNA) polymerases. An unrepaired lesion within a 
gene prevents transcription of that gene. Each unrepaired legion also stops 
replication of the entire genome during fission. (Wulff and Rupert, 1962; 
Sinha and Hader, 2002). Hospitable (e.g., warm) conditions prompting greater 
cell growth and division might increase UV sensitivity until repair mechan-
isms are induced or tolerant strains are selected for.

The factorial analysis results (Table 14.1) are likewise complex, espe-
cially in terms of the timing of the breakpoints. Such complexity should not 
be unexpected considering that even the number of breakpoints is treatment 
specific. The fact that only k1 shows any significant evidence of influence by 
environmental factors may imply adaptation (either at cellular or population 
level) for later segments.

Table 14.1 Important alpha, (a) ≤0.1.

E. coli k1
Main Effects Effects SE(Effect) t(a) CI(effect df=17
Humidity 0.061 0.00055 2.6 0.060 (a)=0.01

Interactions
Temp/Humid 0.11 0.024 2.9 0.070 (a)=0.01

E. coli BP1
Main Effects Effects SE(Effect) t(a) CI(effect df=224
Temperature 2.1 0.33 2.6 0.87 (a)=.005
Humidity 3.2 0.33 2.6 0.87 (a)=.005
ShadeCode -3.9 0.33 2.6 0.87 (a)=.005

Interactions
Temp/Humid 12.6 0.33 2.6 0.87 (a)=.005
Temp/Shade -5.0 0.33 2.6 0.87 (a)=.005
Humid/Shade -6.2 0.33 2.6 0.87 (a)=.005
Temp/Humid/Shade -2.8 0.33 2.6 0.87 (a)=.005

E. coli BP2
Main Effects Effects SE(Effect) t(a) CI(effect df=37
Temperature -9.2 1.05 2.8 2.9 (a)=.005
Humidity 17.9 0.80 2.8 2.2 (a)=.005

Interactions
Temp/Humid 17.9 0.80 2.8 2.25 (a)=.005
Humid/Shade 17.9 0.80 2.8 2.2 (a)=.005
Temp/Humid/Shade 17.9 0.80 2.8 2.2 (a)=.005
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Figure 14.4 E. coli BP models; CFU determined by MPN (IDEXX) 
methods.

Our model for E. coli survival is therefore, for times t ≤ tBP1:

log(MPN / initial MPN) = k1 × t    (14.5)

where:
k1 = −0.108 + (H − 52.5) × 0.000551 +  
  (T − 65) × (H − 52.5) × 0.0000203 (14.6)

where:
 T = temperature (°F)
 H = %relative humidity, and 

tBP1(hours) = 21.6 + (T − 65) × 0.0209  
  (H − 52.5) × 0.0293 − 
  (S − 0.5) × 1.95 + (T − 65) × (H − 52.5) × 0.00229 −  
  (T − 65) × (S − 0.5) × 0.0503 − 
  (H − 52.5) × (S − 0.5) × 0.0560 − 
  (T − 65) × (H − 52.5) × (S − 0.5) × 0.000506 (14.7)

where: 
 S = shade code (1 = shade, 0 = exposed)

Our model for E. coli survival is, for times t > tBP1 and t ≤ tBP2:

log(MPN / initial MPN) = k1 × tBP1 + 0.002214 × (t − tBP1) 
       (14.8)
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where:

tBP2 = 80.71 − (T − 65) × 0.0924 + (H − 52.5) × 0.163 +  
  (T − 65) × (H − 52.5) × 0.00326 − 
  (H − 52.5) × (S − 0.5) × 0.163 − 
  (T − 65) × (H − 52.5) × (S − 0.5) × 0.00326 
       (14.9)

Our model for E. coli survival is, for times t > tBP2:

log(MPN / initial MPN) = k1 × tBP1 + 0.00221 × (tBP2) −  
  (0.00501) × (t − tBP2)              (14.10)

The model presented does not fully account for the variability in the ob-
servations (R2 is only 0.42, and see Figure 14.5) of the full E. coli dataset. It 
does, however, offer improved correlations with, and better balance between, 
under- and over-predictions than would be provided by a simple linear regres-
sion of the same dataset (compare Figures 14.6 and 14.7, and note closely 
concentric trending in Figure 14.5). Residuals of the model show little evi-
dence of any trend over time, providing some comfort in the pooled variance 
methods used here (Figure 14.8). 

Figure 14.5 Overlay of model predictions on observations, all treat-
ments combined.
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Figure 14.6 Observations vs model; line is observation = model predic-
tion.

Figure 14.7 Observations vs predictions of linear regression without 
environmental factorial.
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Figure 14.8 Residuals vs time for the presented E coli model.

The model derived parameters applied to our experimental conditions 
are presented in Table 14.2 below. All treatments exhibit an initial lag or die-
off, the rate of which depends on the temperature and humidity. Notably, the 
warm/wet conditions (those most like the enteric habitat, and exerting the 
least pressure for adaptation) show the lowest initial rate (k1) of decline, but 
all inoculants had declined from two to three orders of magnitude within a day 
or so. The duration of the decline appears to be quite variable (19 h to 27 h), 
but should be interpreted with caution.

Recall that the BP analysis resulted in several tBPs that coincided with 
the first (earliest) observation point. Though the values listed in the table 
represent the best estimates for predictive purposes, they must be viewed 
mechanistically as the latest likely time for the change. The true BP1 may 
have occurred before the first observation. The insensitivities of k2 and k3 
to environmental factors imply that all adaptive mechanisms available to the 
inoculant population had been implemented prior to (and caused) the first 
breakpoint. The two phase behavior subsequent to BP1 could be attributed to 
waste buildup in these batch systems or to accumulation of UV generated thy-
mine dimers (and a review of the warm treatment behaviors in the original BP 
analysis, Figure 14.4 above, suggests that both factors are involved).
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Table 14.2 E. coli modeled parameters, applied to experimental condi-
tions.

k1 (1/hours) BP1 (hours) k2 (1/hours) BP2 (hours) k3 (1/hours)
Cool/Dry/UV -0.109 21.6 0.00221 76.8 -0.00501
Cool/Dry/Dark -0.109 22.1 0.00221 79.0 -0.00501
Cool/Wet/UV -0.107 21.3 0.00221 83.5 -0.00501
Cool/Wet/Dark -0.107 19.4 0.00221 81.2 -0.00501
Warm/Dry/UV -0.137 20.4 0.00221 71.0 -0.00501
Warm/Dry/Dark -0.137 19.1 0.00221 77.8 -0.00501
Warm/Wet/UV -0.0787 27.1 0.00221 91.2 -0.00501
Warm/Wet/Dark -0.0787 22.0 0.00221 84.5 -0.00501

14.2.2 Enterococci

Treatment analyses of the breakpoints is less complex for enterococci than for 
E. coli (see Figure 14.9), although some disparity as to number and tBP values 
per treatment appears here as well.

Figure 14.9 Enterococci BP models.

The warm/wet/dark treatment shows no evidence of a breakpoint (even 
a lag). It also displays a slope statistically indistinguishable from zero. The 
clear trend of greater net survival in warm treatments seen in the E. coli an-
alysis is not evident here, and the timing of breakpoints in treatments (where 
they occur) is less varied than occurred for E. coli. Our assay in this case is 
sensitive to metabolic signals for an entire genus rather than a single species. 
One is tempted to argue that the greater genetic diversity of the higher taxon 
provides an overall greater potentiality of adaptive capacity (natural selection 
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acting differently on distinct species or strains in different conditions) and a 
greater likelihood of genes for UVB damage repair mechanisms within the 
initial inoculant. Remarkably, when regrowth phases are recognized, none of 
the treatments show a net decline of more than about one order of magnitude 
over a 2 week period. It also should be noted that no population is in decline at 
the end of the study period. As a final note, our study was unable to distinguish 
bacterial lysis from other fecal components of the inoculant slurry as nutrients 
for growth. Factorial analyses (Table 14.3) for enterococci were also simpler 
than for E. coli, but again showing greater complexity for tBP values than for 
intervening segments. As for the E. coli analyses, k values become insensitive 
to environmental factors subsequent to the tBP, implying capacity for adapta-
tion to the secondary (non-enteric) habitat.

Table 14.3 Important factors per enterococci factorial analysis.

Enterococci k1
Main Effects Effects SE (Effect) t(a) CI(effect) df=56
Humidity 0.015 0.011 1.3 0.014 (a)=0.1
Shade Code 0.015 0.11 0.010 (a)=0.1

Interactions
Temp/Humid 0.020 0.011 1.7 0.019 (a)=0.05

Temp/Shade -0.077 0.011 2.7 0.030 (a)=0.005

Enterococci BP
Main Effects Effects SE (Effect) t(a) CI(effect) df=233
Temperature -8.8 0.31 2.7 0.84 (a)=0.005
Humidity -5.3 0.32 2.7 0.84 (a)=0.005
Shade Code 11.2 0.31 2.7 -0.84 (a)=0.005

Interactions
Temp/Humid 8.7 0.31 2.7 0.84 (a)=0.005
Temp/Shade 1.2 0.32 2.7 0.85 (a)=0.005
Humid/Shade -5.3 0.32 2.7 0.84 (a)=0.005
Temp/Humid/Shade -4.3 0.32 2.7 0.85 (a)=0.005

Our model for enterococci survival is therefore:

log (MPN / initial  MPN) = k1 × t for t ≤ tBP              (14.11)

where

k1 = −0.0356 + (H − 52.5) × 0.000137 + 
  (S − 0.5) × 0.00727 + 
  (T − 65) × (H − 52.5) × 0.00000372 − 
  (T − 65) × (S − 0.5) × 0.00771             (14.12)

and
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tBP = 68.74 − (T − 65) × 0.881 − 
  (H − 52.5) × 0.0483 +  
  (S − 0.5) × 5.59 +  
  (T − 65) × (H − 52.5) × 0.00158 + 
  (T − 65) × (S − 0.5) × 0.0119 − 
  (H − 52.5) × (S − 0.5) × 0.0483 − 
  (T − 65) × (H − 52.5) × (S − 0.5) × 0.000784 
                  (14.13)

and for t > tBP:

log(MPN / initial MPN) = k1 × tBP + 0.00652 × (t − tBP)        (14.14)

Comparison of the model with observations (Figure 14.10) makes it ap-
parent that there are other sources of variability than the environmental factors 
analyzed here (and R2 is only 0.59). However, the model again provides closer 
(and more balanced) agreement with the data than does a simple regression 
(Figures 14.11 and 14.12, and closely concentric trending in Figure 14.10). 
Residual plot, again, provides no evidence of increase or decrease over time 
(Figure 14.13). 

Figure 14.10 Enterococci, observations vs model comparison.
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Figure 14.11 Model Predictions vs observations; line shows observa-
tion = prediction.

Figure 14.12 Paired observations vs predictions from a simple linear 
regression; line displays observation = prediction.
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Figure 14.13 Residuals, over time, of the proposed model.

The model derived parameters applied to our experimental conditions 
are presented at Table 14.4. All treatments, again, exhibit an initial decline, 
with all three environmental factors (temperature, humidity, and UV expos-
ure) contributing (either as main effects or within interactions). The rates of 
decline, however, are only about half of those suffered by E. coli. None of the 
BPs for these populations coincided with initial observations, and the adapta-
tion phase of these inoculants lasted about three days. Even with the slower 
rates of decline, most inoculants had been reduced by two or three orders of 
magnitude in the initial period. 

Table 14.4 Enterococci modeled parameters, applied to experimental 
conditions.

k1 (1/hours) BP (hours) k2 (1/hours)
Cool/Dry/UV -0.0501 70.0 0.00652
Cool/Dry/Dark -0.0235 76.7 0.00652
Cool/Wet/UV -0.0477 66.5 0.00652
Cool/Wet/Dark -0.0211 70.5 0.00652
Warm/Dry/UV -0.0359 63.2 0.00652
Warm/Dry/Dark -0.0479 70.4 0.00652
Warm/Wet/UV -0.0233 64.0 0.00652
Warm/Wet/Dark -0.0353 68.6 0.00652
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The insensitivity of k2 to environmental effects, and the fact that it is 
positive (indicating net growth) implies that these organisms adapt to im-
pervious environmental surfaces quite well. By the end of the study period 
(about two weeks) all inoculants had rebounded to about 10% of their original 
populations.

14.3 Conclusions

We developed the models presented here in support of an ongoing effort to 
model source area processes contributing to the background (i.e. of non-
sewage origin) presence of fecal indicators in stormwater. Together with a 
planned similar study of survival on pervious surfaces (soils), they should 
contribute to a mass balance link between fecal deposition on the landscape 
and biological stormwater quality.

Others, however, may find the work of interest. The studied indicator 
organisms (especially Enterococci spp.) were found to be quite persistent (es-
pecially under environmental conditions that most closely approximate en-
teric conditions) on impervious surfaces subject to the extreme Tuscaloosa, 
Alabama environmental conditions. Moreover, under most conditions stud-
ied, the rate of disappearance of these organisms from the landscape slowed 
(or even reversed), rendering short term studies of their survival (or even the 
simple regression of long term studies) unreliable in predicting their environ-
mental fate. 

We hope that risk analysis of stormwater exposures, and efficient search 
for sources of indicators species in runoff, will be better informed by this 
work. 
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