Evaluating Scour Potential in Stormwater Catchbasin Sumps Using a Full-Scale Physical Model and CFD Modeling

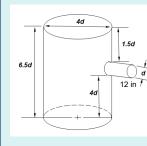
Humberto Avila

Universidad del Norte, Department of Civil and Environmental Engineering, Barranquilla, Colombia. havila@uninorte.edu.co

Robert Pitt

The University of Alabama, Department of Civil, Construction, and Environmental Engineering, Tuscaloosa, AL, USA. rpitt@eng.ua.edu

World Environmental & Water Resources Congress EWRI – ASCE 2009

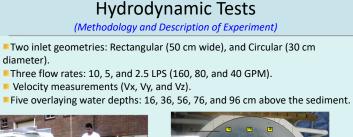

1

Methodology and Description of Experiment

The full-scale physical model was based on the optimal catchbasin geometry recommended by Lager, et al. (1977), and tested by Pitt 1979; 1985; and 1993. Water is re-circulated during the test.

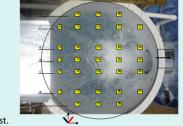
Two different evaluations were performed:

- ✓ Hydrodynamics: Velocity measurements (Vx, Vy, and Vz)
- ✓ Scour: Sediment scour at different overlying water depths and flow rates, and for different sediment characteristics

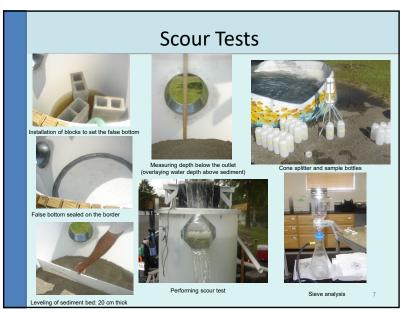

Introduction

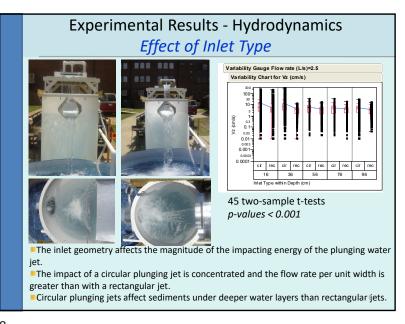
Sediment removal measurements in catchbasin sumps and hydrodynamic separators does not necessarily imply the prevention of scour of previously captured sediment.

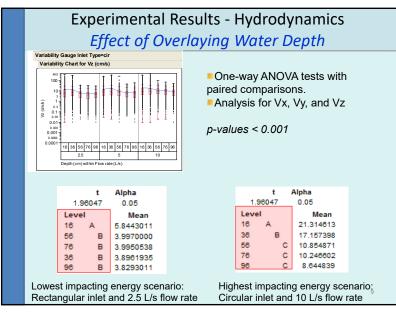
Understanding scour mechanisms and losses in catchbasins and similar devices is critical when implementing stormwater management programs relying on these control practices.

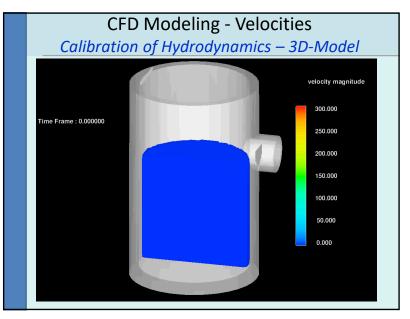

Simplified models were developed during this research to calculate sediment scour in catchbasin sumps. These can be implemented in stormwater management software packages, such as WinSLAMM, to calculate the expected sediment scour.

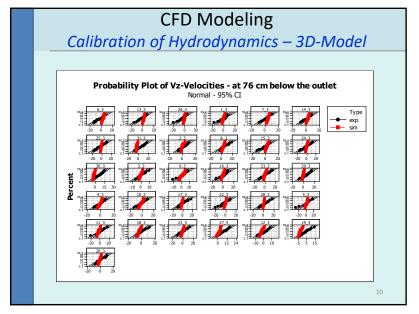
2

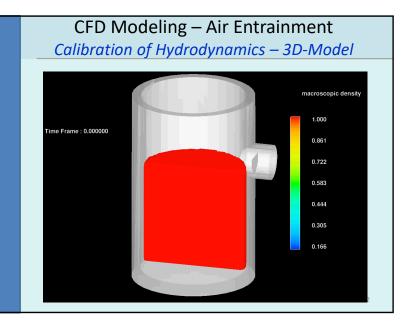


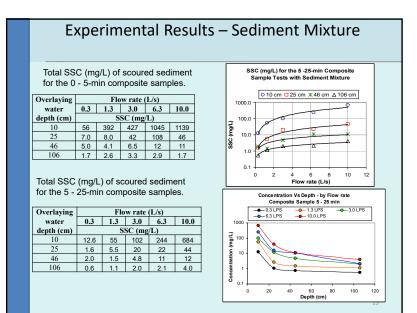

diameter).

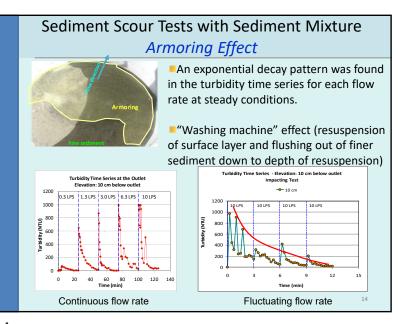


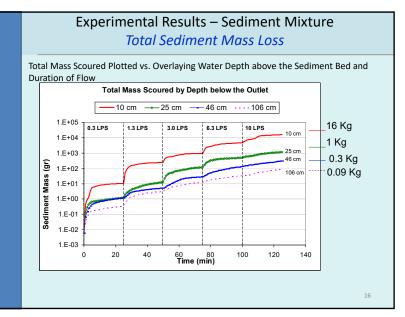

- Total points per test: 155
- 30 rapid velocity measurements at each point
- Instrument: Acoustic Doppler Velocity Meter (ADV) Flowtraker

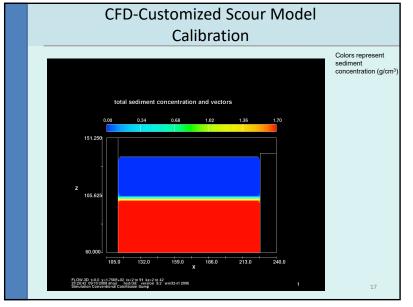

Scour Tests (Methodology and Description of Experiment)					Scour Tests (Methodology and Description of Experiment)	
Flow rate (L/s)	Water depth over sediment (cm)	Duration (min)	Sampling (Composite samples)		Sediment mixture (D ₅₀ = 500 μm; uniformity coefficient = 11) based on PSD found by Pitt (1997), Valiron and	Sediment with homogeneous particle size (D ₅₀ = 180 μm; uniformity coefficient = 2.5)
	10	25 min for each flow rate	First 5-min, and next 20-min for		Tabuchi (1992), and Pitt and Khambhammuttu (2006)	
3.0, 6.3,	46		each flow rate.		Particle Size Distribution of Sediment Mixture	Particle Size Distribution of Fine Sand
and 10	106		for each			100 90 Φ D ₈₀ = 250 μm
	10			Once through test using		
10			Ono composito	The pool traps the	$b_{50} = 500 \mu\text{m}$	² 60 ² 50 ² D ₅₀ = 180 μm
10	106		•		ο τ ο τ ο τ ο τ ο τ ο τ ο τ ο τ	5 40 2 30 10 D ₁₀ = 80 μm
	24	30 min for each elevation	3-min		0 100 1000 10000 Particle Diameter (gm)	0 10 100 1000 1000 Particle Diameter (μm)
10	35		samples at influent and effluent.		Develops armoring layer	Only a minimal armoring layer developed. Data also used for CFD calibration and validation.
3	rate (L/s) 0.3, 1.3, 3.0, 6.3, and 10 10	Flow rate (L/s) Water depth over sediment (cm) 10 10 0.3, 1.3, 25 3.0, 6.3, 46 and 10 106 10 25 10 25 10 25 10 25 10 25 106 24 106 24	Image: Water depth over sediment (cm)Duration (min)10100.3, 1.3, 3.0, 6.3, and 102525251062510641071061081061091061001061001061001061001061002410025	(Methodology and Description of ExFlow rateWater depth over sediment (cm)Duration (cmonout)Sampling (composite samples)10102525 min for each flow rateFirst 5-min, and next 20-min for each flow rate1004625 min for each flow rateFirst 5-min, and next 20-min for each flow rate. Inlet samples for each elevation.1001064 impacts with prolonged10046prolonged flow of 3 30 min for composite sample for each impact103530 min for elevation	(Methodology and Description of Experiment)Flow rate (L/S)Water depth over sediment (cm)Duration (min)Sampling (Composite samples)10 0.3, 1.3, 3.0, 6.3, and 10 10610025 min for each flow rateFirst 5-min, and next 20-min for each flow rate. Inlet samples) for each elevation.First 5-min, and next 20-min for each flow rate. Inlet samples for each elevation	Image: Note that the second

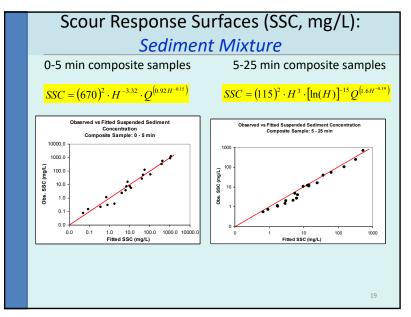


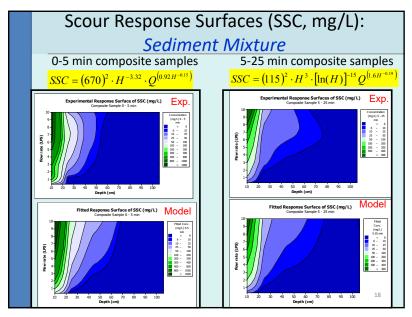


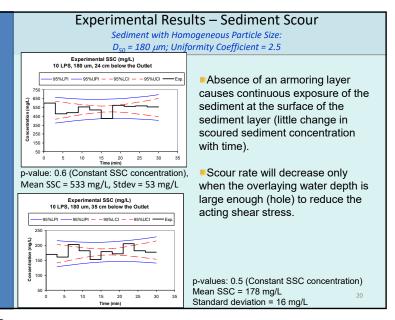


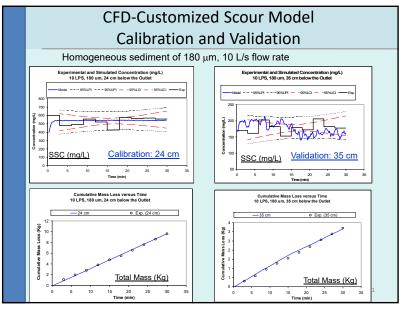


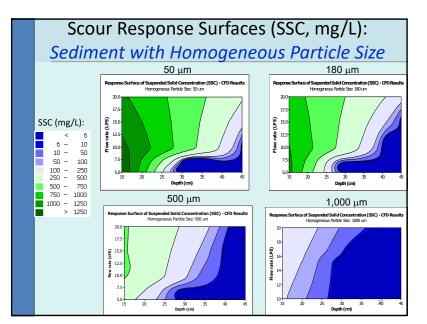


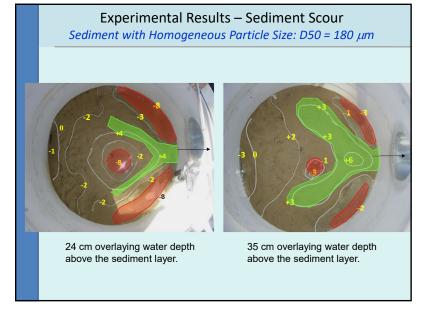


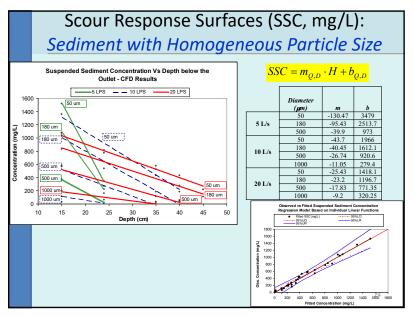












Conclusions

The overlaying water depth above the sediment is highly important in protecting the sediment from scour. SSC decreases with an exponential pattern as the overlaying water depth increases for a sediment mixture (with armoring), and with a linear pattern for sediment with a homogeneous particle size.

• The inlet geometry has a significant effect on the scour potential of sediments captured in conventional catchbasin sumps. Modifying the inlet flow to decrease the impacting energy and/or physically isolating the sediment from the impacting water provides a feasible alternative on catchbasins already installed .

It is recommended to perform scour tests with fluctuating flow rates to account for the flow variability that actually occurs during rainfall events

 The scour response surface equations can be implemented in stormwater management software packages to calculate the loss of sediment scoured from catchbasin sumps and similar devices.