Retardance of Rainwater-Leached Metals in Amended Soil Systems:

A Case Study

John D. Harden, P.G., Ph.D. Robert E. Pitt, P.E., Ph.D., BCEE, D.WRE Department of Civil, Construction & Environmental Engineering The University of Alabama Tuscaloosa, Alabama

Presentation Overview

- Goal and Scope of Research
- Background
- Ash and Soil Classification
- Batch Studies
- Column Studies
- Conclusions
- Future Work

1

Research Goal

Identify a readily available agricultural soil amendment to reduce the mobility of metals at Chromated Copper Arsenate (CCA)-treated wood burn sites.

Iron sulfate, agricultural lime, and gypsum were studied. The results for gypsum $(CaSO_4 \cdot 2H_2O)$ are presented.

Scope of Research

- What are the potential environmental effects on soil and water resulting from the burning of CCA-wood?
 - What is the composition of the ash?
 - What is the fate of the ash in soil?
 - How effectively are metals leached from the soil/ash by rainwater?
- Can the leaching rates be reduced by the addition of soil amendments?

2

2.5 pcf

A Treated Wood

A Treated Wo

0.25 pcf

Untreated

5

outhern Yellow

0.60 pcf

Background What is CCA?

- Chromated Copper Arsenate (CCA) wood preservative
- Designed for the humid Southeastern U.S. where wood is prone to insect and fungal attack
 - Cu serves as a fungicide
 - $\ensuremath{\mathsf{As}}$ serves as an insecticide
 - Cr a fixing agent for bonding Cu & As to wood
- Used in residential-use wood until 2004
- Very large amounts of wood were treated

Pictures: www.google.com/search?q=pictures+of+CCA+wood

Statistics on CCA Production

- ~1lb CCA preservative/3 ft³ treated wood
- 1997: 450 x 10⁶ ft³ of CCA-wood products
- Service life of CCA-wood 20-50 years
- CCA-treated wood waste will increase from 5 to 32 x 10⁶ ft³/yr by 2015
- As in CCA-wood waste: 31,000 metric tons introduced into Florida environment over the past 30 years
- Burning of waste/old CCA-treated wood has been common practice
- 6

Metal Species in CCA-Wood/Ash					
Name Symbol	Oxidation State	Cation/ Anion	Species	Characteristics	
Copper Cu	Cu(II)	Cation	Cu ⁺² CuOH ⁺ Cu ₂ (OH) ₄ ⁻	varying toxicity varying solubility varying mobility	
Chromium	Cr(III)	Anion	Cr Hydroxides Cr(OH)4 ⁻	less toxic less soluble less mobile	
Cr	Cr(VI)	Anion	Chromate CrO ₄ ⁻² Dichromate Cr ₂ O ₇ ⁻²	more toxic more soluble more mobile	
Arsenic	As(III)	Anion	Arsenite AsO ₃ - ³	more toxic (25-60 times) more soluble more mobile	
	As(V)	Anion	Arsenate AsO4 ⁻³	less toxic less soluble less mobile	

Investigations to Quantify Metals and Evaluate Mobility

- Produce ash & Quantify metals in CCA-ash
- How mobile are the metals?
 - Batch Leaching Experiments
 - Accelerated leach studies
 - Regulatory classification of CCA-ash
 - Leaching of CCA-ash & a soil/CCA-ash mixture
 - Potential contamination of water by CCA-metals
- Effect of CaSO₄ on metals mobility
 - Optimization Study
- Column Leaching Experiments
 - Evaluate CaSO₄ performance versus natural soil
 - Measure the pH range of the leach events

Sampling Points & CCA-metals **Concentration at Burn Site**

9

Microwave digestion & ICP

Na⁺

Soils i	Soils in US & Proportions of Major Adsorbed Cations on Surface Layers							
Order	Typical location	H ⁺ and Al ⁺³	Ca+2	Mg ⁺²	K +			

New England	00				
	٥V	15	3	2	trace
Southeast U.S.	65	25	6	3	1
PA to WI	45	35	13	5	2
AL to TX	40	38	15	5	2
Midwest U.S.	30	43	18	6	3
Southwest U.S.		65	20	10	5
	Southeast U.S. PA to WI AL to TX Midwest U.S. Southwest U.S.	Southeast U.S. 65 PA to WI 45 AL to TX 40 Midwest U.S. 30 Southwest U.S. 40	Southeast U.S. 65 25 PA to WI 45 35 AL to TX 40 38 Midwest U.S. 30 43 Southwest U.S. 65 65	Southeast U.S. 65 25 6 PA to WI 45 35 13 AL to TX 40 38 15 Midwest U.S. 30 43 18 Southwest U.S. 65 20	Southeast U.S. 65 25 6 3 PA to WI 45 35 13 5 AL to TX 40 38 15 5 Midwest U.S. 30 43 18 6 Southwest U.S. 65 20 10

10

Soi

14

Potential Contamination of Water by CCA-metals

Batch Leach (5 Leachings) 1.45 g CCA-ash, 8.25 g Test Soil, 465 mL Total Rainwater

Metal	Leached (µg g ⁻¹ ash)	Regulatory Level (µg L ⁻¹)	L g ⁻¹ ash
Cu	1130	10*	113***
Cr	2900	100**	29***
As	4700	10**	469***

 * Cu based on toxicity to freshwater clams, Harrison, et al. 1984 ** SDWA-MCL

*** Volume of Water Contaminated to Regulatory Level

18

Soil/CCA-ash/CaSO₄ System

- Ultisol Soil
 - Low Cation Exchange Capacity (CEC), 35% efficiency
 - Low to moderate Anion Exchange Capacity (AEC)
- CCA-ash
 - $XO => X(OH)_2 => XCO_3$, where X = Ca, Mg, Cu, Cr, As
- General Mechanisms from CaSO₄ Amendment
 - Ca⁺² replaces Al⁺³, increases CEC efficiency
 - Increased AI(OH)₃ and Cr(OH)₃ precipitation
 - Increased Ca⁺² concentration and negative surface charge produces greater adsorption and coprecipitation of As and Cr. Increased Cu mobility due to competition with Ca⁺² for adsorption sites and increased mobility of Cu-bound organic compounds

Accelerated One-Year Mass Leach of Metals

- Control -∆-CaSO4 - Contro -O-CaSO4 000000000000 ---- Contro → CaSO4 Cu

mobility

21

Ongoing Work & Future Potential

- Soil and Sediment Contamination journal has published two articles from this research on CCA- metals adsorption/desorption mechanisms in amended soil systems and a third article is under review in another journal
- The future of metals immobilization in soil by the use of common soil amendments could involve the manufacture of "enhanced" soil amendments to improve the performance of immobilization mechanisms

Conclusions

- Unamended soil retards leaching of As & Cr from CCA-ash while increasing Cu mobility
- CaSO₄ amendment of soil further reduces mobility of As by 77% and Cr by 72%
- Optimization study revealed 3:1 ratio of CaSO₄ to CCA-ash mass is recommended
- A higher ratio of CaSO₄ to CCA-ash mass would serve as a continued source of Ca+2 cations for long-term stabilization of As & Cr
- CaSO₄/Soil/CCA-ash system: 7.3 to 8.0 pH

22

Presentations

Parts of the research results have been presented at the following:

- EWRI-World Environmental & Water **Resources Congress 2008** Honolulu, HI
- American Water Resources Association 2010 Annual Conference Philadelphia, PA

