Designing Treatment Media for Emerging Stormwater **Contaminants Based on** Water and Soil Chemistry

Shirley E. Clark, Ph.D., P.E., D. WRE Robert E. Pitt, Ph.D., P.E., BCEE, D. WRE

1

Current PA Guidance • Many guidance documents apply expected pollutant removals based on literature. However, typically presented as efficiencies of removal and Stormwater Functions have been misinterpreted and misapplied. Volume Reduction: Medium Recharge: Med./High Also difficult to remove 85% Water Quality: Med./High of pollutants in "clean" water. **Water Quality Functions** Do not address metals or problematic organics. TP: 85%

Why Does the Literature Report Widely **Different Efficiencies for Bioretention?**

NO3: 30%

FACTORS

- Influent Water Chemistry
- GeoChemical Reaction Equilibrium
- GeoChemical Reaction Kinetics
- Microbiogeochemical Interactions
- Vegetation

Influent Water Chemistry

- Types of Pollutants in Stormwater Runoff
 - Solids

5

- Wide range of sizes from colloidal to sands/gravels
- Pollutants (fraction of total load) that are associated with/attached to solids
 - Metals, Phosphorus, Organics, Bacteria
- Pollutants that are "dissolved" or "unbound" to solids
- Remainder of total load of metals, phosphorus, organics, bacteria
- · Nitrates, Nitrites, Ammonia, Chloride, etc.

6

Soil Chemistry

SOIL STRUCTURE O-horizon: leaf litter, organic material A-horizon: plough zone, rich in organic matter B-horizon: zone of accumulation C-horizon: weathering soil; little organic material or life R-horizon: unweathered parent material www.seafriends.org.nz/enviro/soil/geosoil.htm

Soil Chemistry Effects

- GOAL: Remove pollutants in the upper layers of the media (deeper penetration into the soil profile, greater likelihood of groundwater contamination or transport out of the device through an underdrain).
- Potential properties of interest in predicting removal:
 - Soil and water pH

10

- Pollutant forms (relationship to solids loading and PSD)
- Cation Exchange Capacity (CEC) [and Anion Exchange Capacity (AEC)]
- Mineral matter
- Organic content
- Phosphorus content
- Oxidizing or reducing environment
- Salinity and Sodium Adsorption Ratio (SAR)

13

Example Media Types • Activated carbon – made from a variety of carbon sources • Reacts with chemicals through hydrogen bonding and van der Waals forces • Typically attraction through dipole interactions | Downdored activated carbon | Downdored activated carbon | Peakpureair.com

Example Media Types

- Sand relatively inert (without modification)
 - Common modifications are iron oxide and manganese oxide coatings to improve pollutant retention.
- Ion-exchangers/Zeolites lattice structure
 - Interested in exchanging out ions with stronger attractive forces (particularly ones that have a higher valence/charge state)

Zeogarden.com

14

Example Media Types

Organic Non-Activated Media (soil, peat, compost, biosolids)

- Function of base material
- Soils mixture of organic matter from organic debris and weathering of parent material (rock)
 - Less weathering products (Ca, Mg, Na, K) & more relatively insoluble elements such as Fe & Al than original rock.
 - Most chemically active: colloidal clays & organic matter.
 - Organic fraction < 10% of soil mass by weight.
 - Reservoir for plant nutrients, nitrogen, phosphorus, and sulfur
 - Increases soil water holding and cation exchange capacities
 - Enhances soil aggregation and structure.

Summarizing Types of Media

Organic Non-Activated Media (soil, peat, compost, biosolids)

- Soils mixture of organic matter from organic debris and weathering of parent material (rock)
 - Soil pH affects nutrient transformations and the solubility of nutrients.
 - Phosphorus most available in slightly acid to slightly alkaline soils, while all essential micronutrients, except molybdenum, become more available with decreasing pH.
 - Aluminum, manganese, and even iron can become sufficiently soluble at pH < 5.5 to become toxic to plants.
 - Bacteria generally tend to be most active in slightly acid to alkaline conditions.

17

18

Treatability of Organics (example: Pesticides, PAHs)

- Compounds with high Log Kow (preferentially partition to organic phase) typically better removed by organic based media(GAC, peat moss, compost).
- Compounds with high solubility (Log S) variable removal by media; likely tied to whether they are negatively or positively charged in solution. Limited removal in ion-exchange resins such as zeolite because of molecular size.

21

22

Urban Runoff Quality and Treatability

Pollutants	Media Treatment Notes
NH ₃ -N	NH4* removed by organic media with variety of removal sites. May be removed by ion-exchange resins/zeolites if limited competition from +2 ions.
NO ₃ -N	Uptake by plants. Limited removal below root zone. Leaches. (AEC)
PO ₄ -P	Removed in high AEC or high Al/Fe media. Leaches if excess P in soil. (use soil test for preliminary determination) (low P; low OM)
TSS	Removal excellent for particles greater than 1 – 2 μm.
Cu, Total	Particulate fraction removed to some extent; Limited physical removals for Cu bound to particles smaller than 1 – 2 µm.
Cu, Dissolved	Valence charges range from +3 to -2. Cations potentially removed in ion-exchange resin. Anions and small positive charges likely removed in organic media with variety of removal sites. (CEC/OM)
Zn, Total	Particulate fraction removed to some extent; Limited physical removals for Zn bound to particles smaller than 1 – 2 µm.
Zn, Dissolved	Valence charges range from +3 to -2. Cations potentially removed in ion-exchange resin. Anions and small positive charges likely removed in organic media with variety of removal sites. (CEC/OM)

Conclusions

- Bioretention media can be selected/designed based on needed pollutant removals.
- Soil testing for nutrients can indicate whether media likely to capture or leach nutrients.
- Must match soil/media chemistry to chemistry of pollutants.
 - Complexation of metals
 - Organic polarity vs non-polarity
- Tradeoffs (most media act as ion exchange resins)
- Direct translation of laboratory tests to field conditions problematic.
 - Capacity less than predicted by lab testing, for example.