Sources of Bacteria and their Variability in Urban Watersheds

Robert Pitt Cudworth Professor Urban Water Systems Department of Civil, Construction, and Environmental Engineering The University of Alabama

Observed Bacteria Data in the National Stormwater Quality Database, version 3 (average and COV)

Land Use (number of observations)	Fecal Coliform (CFU/100 mL)
Overall (2,154)	47,700 (5.0)
Residential (505)	55,900 (5.7)
Commercial (270)	26,100 (3.0)
Industrial (317)	47,300 (6.1)
Freeways (67)	8,600 (2.7)
Open Space (7)	7,300 (1.2)

2

Experimental Design - Number of Samples Needed

The number of samples needed to characterize stormwater conditions for a specific site is dependent on the COV and allowable error. For fecal coliforms, the COV values are very large (1.2 to 6.1 in the NSQD). A typical goal of 25% allowable errors would require hundreds of samples, unless a better understanding/explanation of the variability was possible.

1

5

Tuscaloosa, AL, "Library" File Data (flow	
components affect combined water quality	

Mean/COV	<i>E. Coli</i> (CFU/100 mL)	Enterococci (CFU/100 mL)
Tap water	0	0
	(0)	(0)
Spring water	2.4	1.0
	(0.8)	(1.6)
Car wash	1480	1213
water	(0.07)	(1.4)
Industrial	409	477
wastewater	(2.7)	(2.3)

Potential baseflow components during warm weather

Full Factorial Experiment to Investigate Bacteria Survival on Pavement and Urban Soils: Moisture, temperature, and light vs. time

14

Conclusions

- Stormwater bacterial levels are high and variable, requiring many storm samples to confidently quantify.
- Some differences by land use (as expected, most open space areas have lower bacteria levels than developed areas).
- Seasonal variations very important (especially comparing stormwater with snowmelt)
- Many factors affect stormwater bacteria levels: contamination by industrial or sewage and urban wildlife (and their habitats).
- Upon discharge, rapid die-off then reach equilibrium conditions.
- Sedimentation with increased populations near sediment/water interface and elevated interstitial water bacteria levels.
- Survival on concrete is similar, with potential several growth and die-off stages. Warm, dark, and moist conditions result in their greatest survival.

