STORMWATER TREATMENT PLANNING FOR AN INDUSTRIAL PERMIT WITH NUMERIC LIMITS

CASQA Conference, September 28, 2011

Brandon M. Steets, PE, Geosyntec Consultants Jonathan E. Jones, PE, Wright Water Engineers Michael K. Stenstrom, PE, University of California Los Angeles Robert Pitt, PE, University of Alabama

Geosyntec Consultants

Acknowledgements

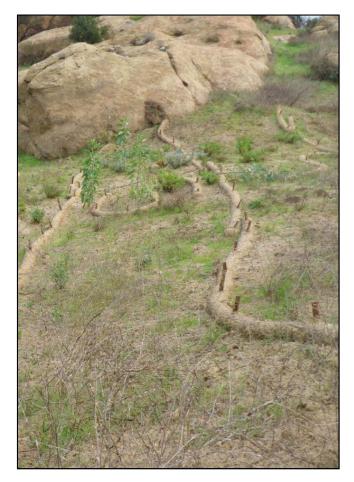
Independent Expert Panel

- Dr. Robert A. Gearheart, PE, Humboldt State University
- Jonathan E. Jones, PE, Wright Water Engineers
- Dr. Michael Josselyn, WRA Consultants
- Dr. Robert Pitt, PE, University of Alabama
- Dr. Michael K. Stenstrom, PE, Univ. California, Los Angeles

The Boeing Company

- Paul Costa
- Debbie Taege
- 🗖 Lori Blair

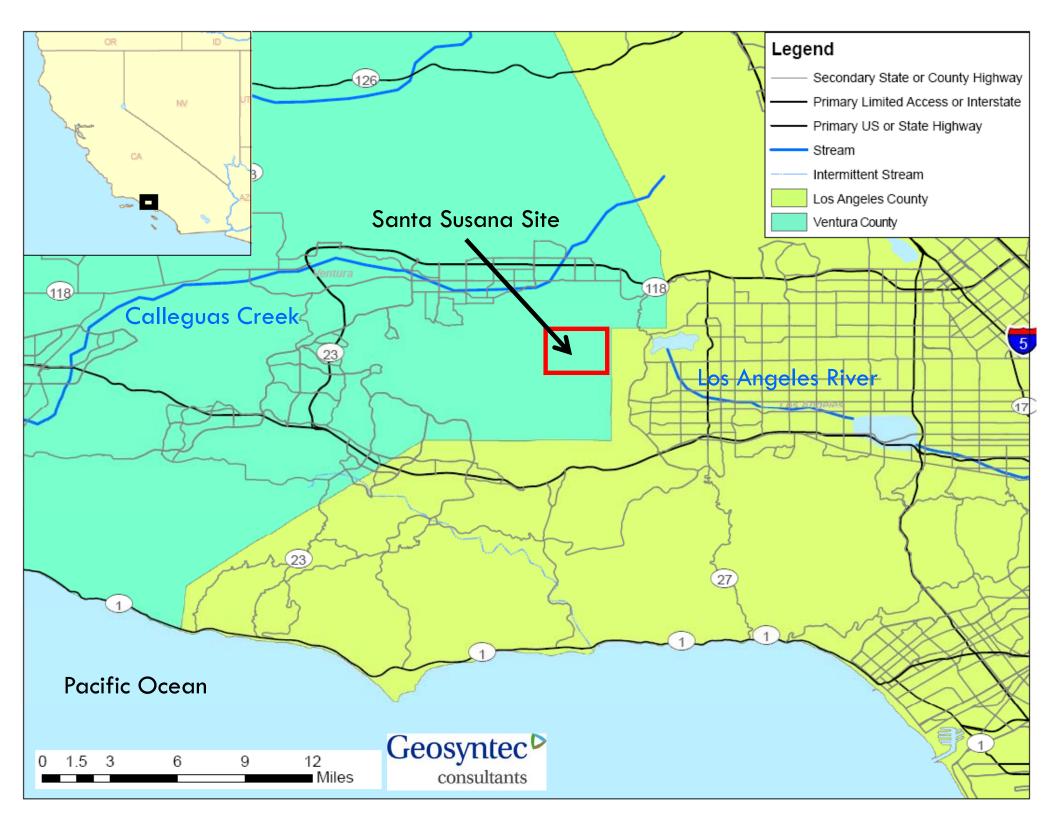
Geosyntec Consultants


- Eric Strecker, PE
- Megan Patterson, PE
- Many others!

Outline

- Background
- Management Approach
- Site Ranking Method
- Lessons learned

Vegetation regrowth in Watershed 008


Background – Santa Susana Field Geosyntec^D Laboratory (SSFL)

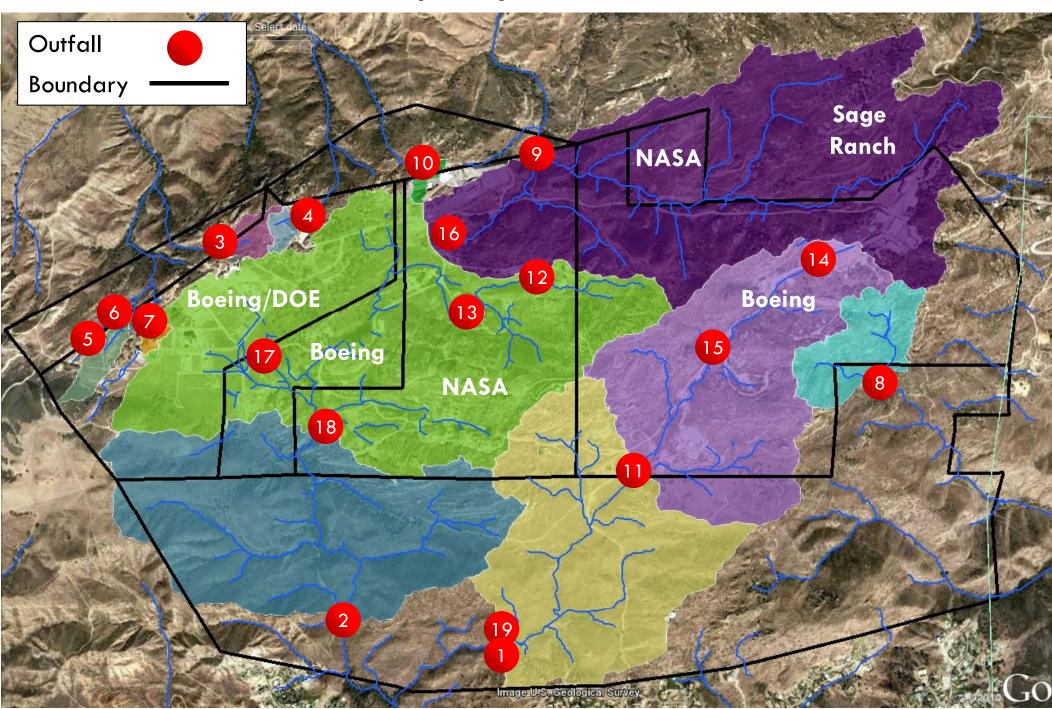
- 2800-acre former federal government rocket engine testing and energy research facility
- Located in the Santa Susana mountains of eastern Ventura County
- Owned by the Boeing Company (post-1966) and the U.S. Government
- Future parkland and open space
- Activities currently limited to demolition, remediation, and restoration
- Operated rocket testing and energy research 1950 - 1988

Astronaut Buzz Aldrin at SSFL (Ref: Rocketdyne Archives)

Regulation of SSFL Stormwater

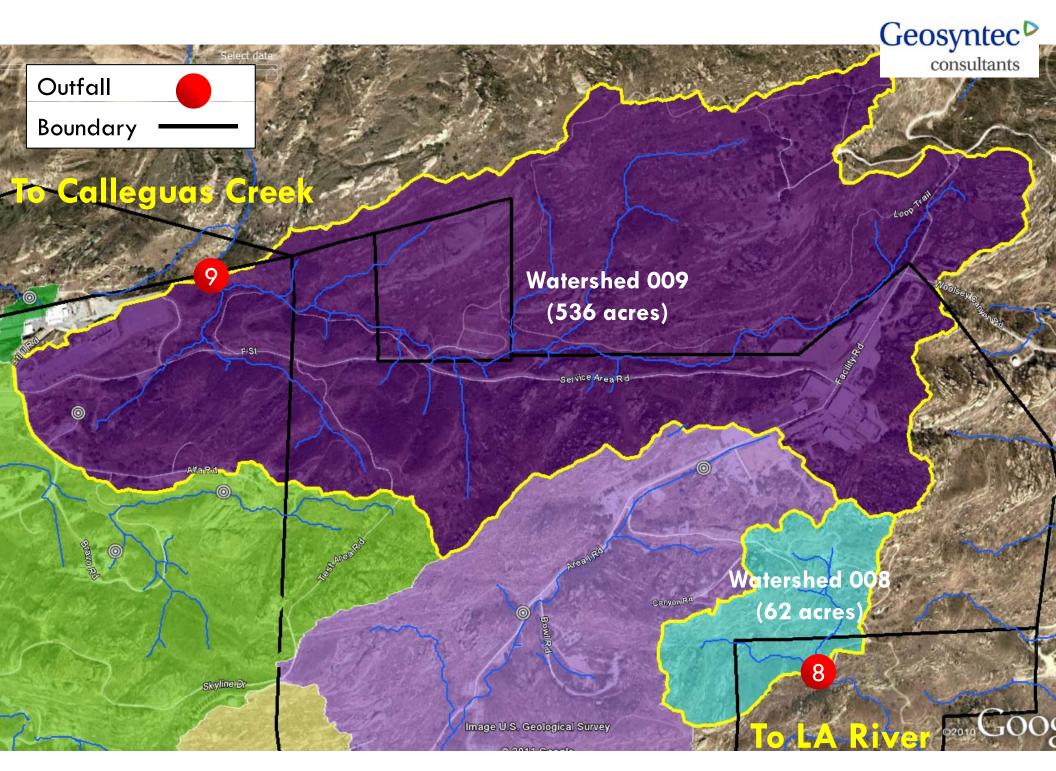
- 6
- Stormwater discharges are regulated by the LARWQCB through an individual NPDES permit, which requires:
 - Composite discharge sampling during storm events, and
 - Compliance with very protective Numeric Effluent Limits (NELs)
- NELs for a wide range of constituents including:
 - □ Dioxins (TCDD TEQ): 2.8x10⁻⁸ µg/L
 - Total Copper: 14 µg/L
 - Total Lead: 5.2 µg/L

	LOS ANGELES REGION						
	320 W. 4 ^{er} Street, Suite 200, Lou Angeles, Dalikonia 60013 Phone (213) 576 - 6600 + file: (213) 576 - 6640 http://www.waterboards.ca.gov						
	ORDER NO. R4-2010-0090 NPDES NO. CA0001309						
WASTE DIS	SCHARGE REQUIREMENTS FOR THE BOEING COMPANY, SANTA SUSANA FIELD LABORATORY						
	ger is subject to waste discharge requirements as set forth in this Orde	er:					
able 1.Discharger		-					
Discharger	The Boeing Company	-					
Name of Facility	Santa Susana Field Laboratory	-					
	5800 Woolsey Canyon Road	4					
	Canoga Park, CA 91304-1148						
Facility Address							
The U.S. Environme Control Board have e discharge by the	Canoga Park, CA 91304-1145 Ventura County ental Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat is as set forth in this Order:	ste					
Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					
The U.S. Environme Control Board have e discharge by the	Ventura County ential Protection Agency (USEPA) and the Regional Water Quality classified this discharge as a minor discharge. Owner from the discharge points identified below is subject to wat	ste					


Industrial General Permit NAL/NELs

- For direct dischargers and metals impaired watersheds, metal NALs vary with receiving water hardness
- IGP dischargers may soon experience similar treatment control planning as SSFL has

All Units	NAL/NEL Values (mg/L, total)										
mg/L	Cadmium	Copper	Lead	Nickel	Silver	Zinc					
0-25 mg/L	0.0005	0.0038	0.014	0.15	0.0007	0.04					
25-50 mg/L	0.0008	0.0056	0.023	0.20	0.0007	0.05					
50-75 mg/L	0.0013	0.0090	0.045	0.32	0.0017	0.08					
75-100 mg/L	0.0018	0.0123	0.069	0.42	0.0030	0.11					
100-125 mg/L	0.0023	0.0156	0.095	0.52	0.0046	0.13					
125-150 mg/L	0.0029	0.0189	0.122	0.61	0.0065	0.16					
150-175 mg/L	0.0034	0.0221	0.151	0.71	0.0087	0.18					
175-200 mg/L	0.0039	0.0253	0.182	0.80	0.0112	0.20					
200-225 mg/L	0.0045	0.0285	0.213	0.89	0.0138	0.23					
225-250 mg/L	0.0050	0.0316	0.246	0.98	0.0168	0.25					
250+ mg/L	0.0053	0.0332	0.262	1.02	0.0183	0.26					


Table from previous Draft IGP

SSFL Outfalls and Property Boundaries

Geosyntec[▶]

consultants

Expert Panel Scope of Work

- 10
- Independent Expert Panel was engaged with Regional Board consent to oversee stormwater planning and design work, as well as provide input on monitoring, source removal activities, and various NPDES permit issues
- Mission: Improve stormwater quality at NPDES Outfalls 008 and 009
- Additional responsibilities include overseeing scientific studies and interfacing with the public on risk and science communication.

Site Constraints

11

- "End-of-pipe" stormwater controls are not feasible at Outfalls
 008 & 009 due to severe site constraints including:
 - Steep terrain
 - Space constraints
 - Existing infrastructure limitations

Outfall 009

Outfall 008

Site Constraints

- 12
- While treatment controls are employed at other outfalls with smaller watersheds, similar controls at 008 & 009 would result in very large dams and significant environmental impacts.
- Additionally, natural background soils have been found to contribute to Permit Limit exceedances.

Management Approach

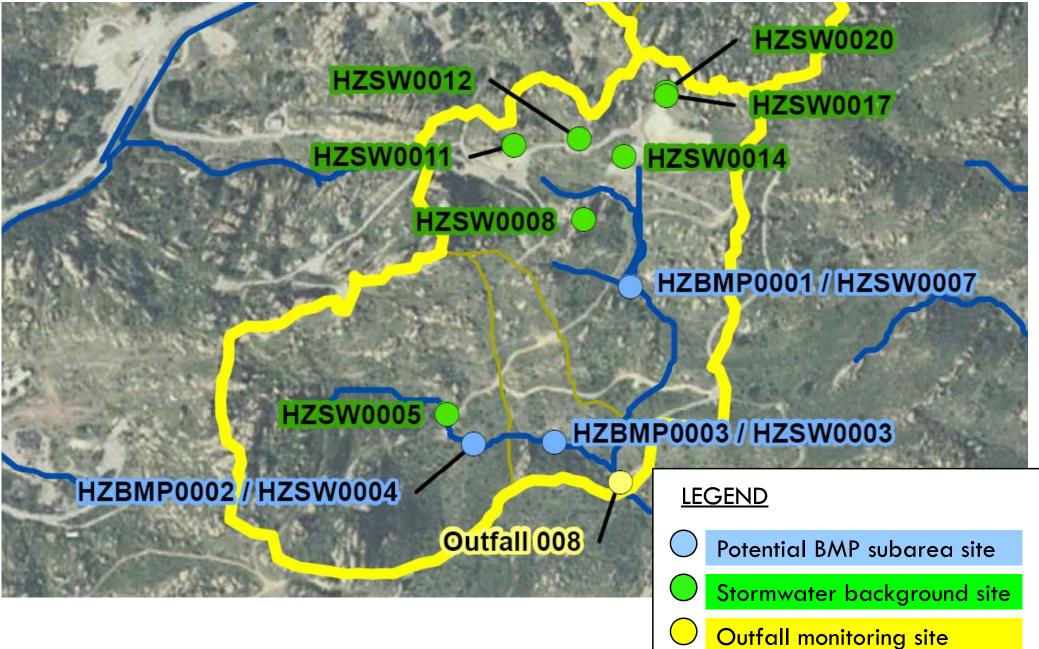
- Use sediment and treatment controls that:
 - Replicate natural processes and
 - Are distributed throughout the watersheds to capture the contaminants of concern (COCs)
- Integrate ongoing site management activities, including pavement removal, impacted surface soil removal, erosions control, and stream channel restoration

BMP Selection and Siting

- Iterative approach continue to implement BMPs as necessary while taking into account water quality impact of existing BMPs
- Prioritize potential BMP locations based on site specific performance monitoring data using a BMP subarea ranking methodology

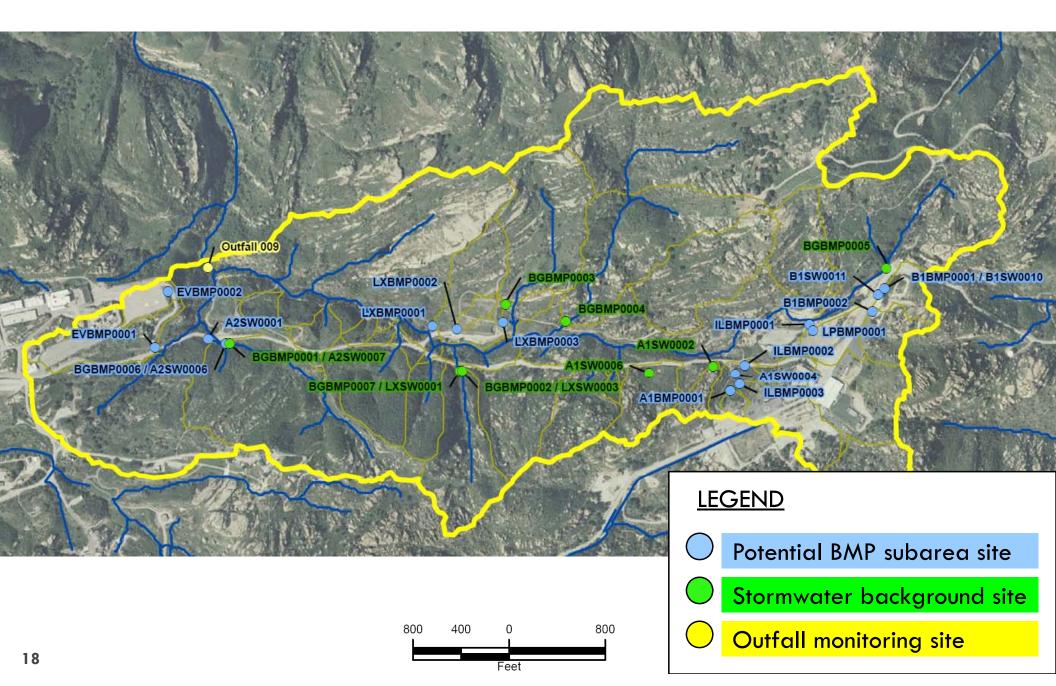
BMP Subarea Ranking Methodology

Geosyntec[▶]


- 15
- Innovative, statistically rigorous approach
- Rank potential BMP subarea monitoring sites based on comparisons of:
 - Stormwater background concentrations with NPDES permit limits
 - Stormwater "particulate strengths" with stormwater background particulate strengths
- Monitoring locations were scored based on number and percent of samples above permit limits and/or background concentrations
- Locations then ranked based on scores, and top locations identified
- Process to be repeated annually through 2014

Previous Approaches Considered

- Earlier approaches compared subarea monitoring results to fixed thresholds:
 - **75**th percentile background
 - 95th percentile background
 - Permit limit
 - 75th percentile background & Permit limit
 - 95th percentile background & Permit limit
- Data were generally robust -- regardless of specific approach, the same subareas tended to be ranked the highest
- Ultimately Panel preferred:
 - Rigorous statistical analysis, and
 - Best professional judgment used to improve rankings by taking into account constructability and site specific problems.


Geosyntec^D consultants

Subarea Monitoring Sites Watershed 008 - 62 acres

Subarea Monitoring Sites Watershed 009 - 536 acres

Geosyntec[▶]

consultants

Data Summary – SW Background Sites

19

Pollutant of Concern	# samples	# NDs	# DNQ	Min	Median	95 th Percentile	Max	Permit limit for OF008 & OF009
TSS - 008	9	0	4	2.0	28	74	76	NA
TSS - 009	41	5	21	< 1.0	5.0	55	750	NA
TSS - all	50	5	25	< 1.0	6.5	73	750	NA
Cadmium	19	16	3	< 0.10	< 0.10	0.32	0.87	4
Copper	23	0	10	1.0	2.3	7.4	19	14
Lead	35	5	17	< 0.20	0.74	14.6	64	5.2
Mercury	19	19	0	< 0.10	< 0.10	<0.10	< 0.10	0.13
TCDD TEQ	37	10	NA	< 1.0E-10	6.0E-10	2.4E-07	8.5E-07	2.80E-08
2,3,7,8-TCDD	37	37	0	< 5.0E-08	< 8.7E-07	< 4.8E-06	< 5.4E-06	NA

= Permit limit exceeded

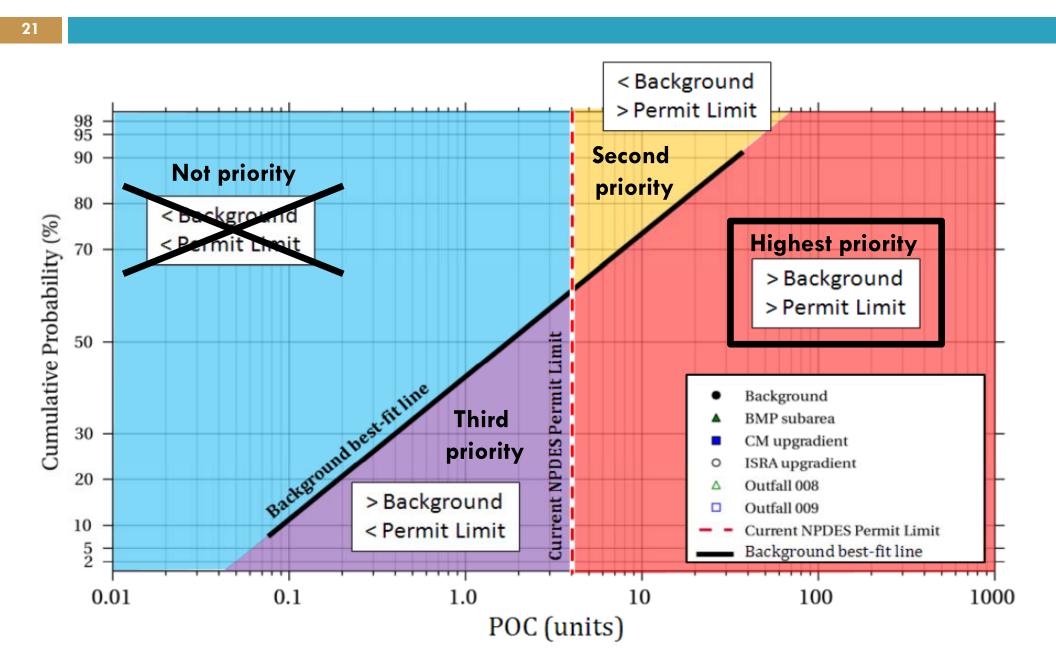
Concentrations (mg/L for TSS, μ g/L otherwise)

Geosyntec[▶]

consultants

Data Summary – Potential BMP Sites

20


Pollutant of Concern	# samples	# NDs	# DNQ	Min	Median	95 th Percentile	Max	Permit limit for OF008 & OF009
TSS - 008	27	4	7	< 1.0	15	300	840	NA
TSS - 009	70	6	22	< 1.0	12.5	260	890	NA
TSS - all	97	10	29	< 1.0	13	280	890	NA
Cadmium	70	31	39	< 0.1	0.13	0.51	0.96	4
Copper	85	0	10	0.6	4.1	14	27	14
Lead	99	19	30	< 0.2	1.2	15	55	5.2
Mercury	69	66	2	< 0.1	< 0.1	< 0.1	0.98	0.13
TCDD TEQ	91	21	NA	< 1.0E-10	3.8E-09	3.3E-06	1.4E-05	2.80E-08
2,3,7,8-TCDD	91	89	2	< 2.0E-08	< 1.0E-06	<6.5E-06	2.30E-06	NA

= Permit limit exceeded

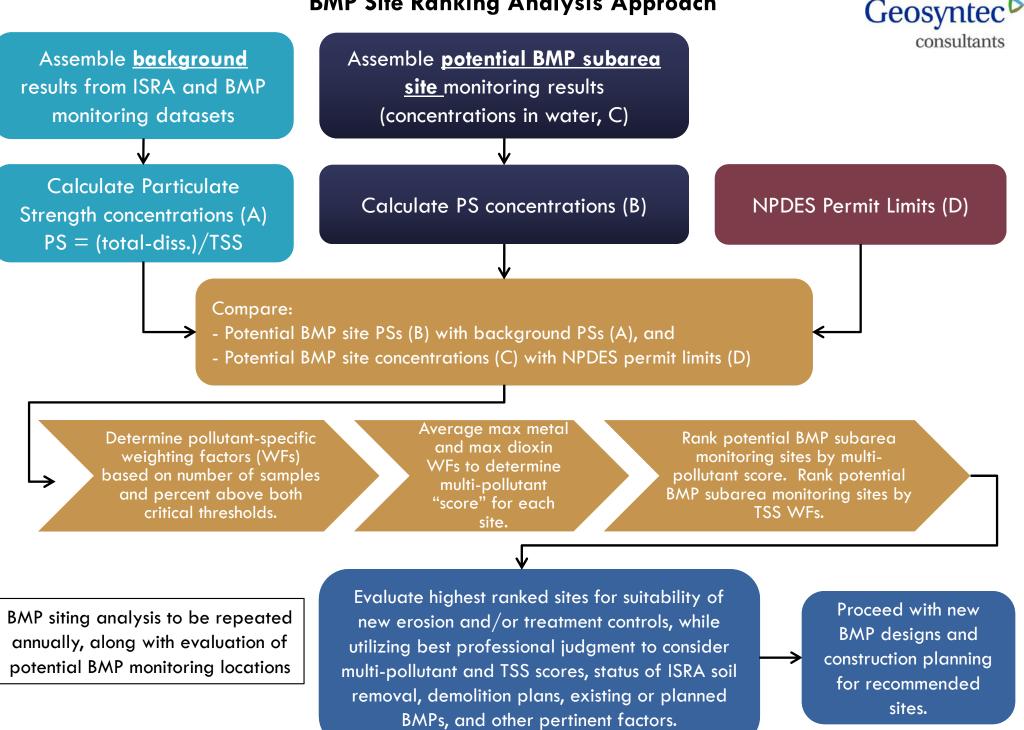
Concentrations (mg/L for TSS, μ g/L otherwise)

Basic Approach (example)

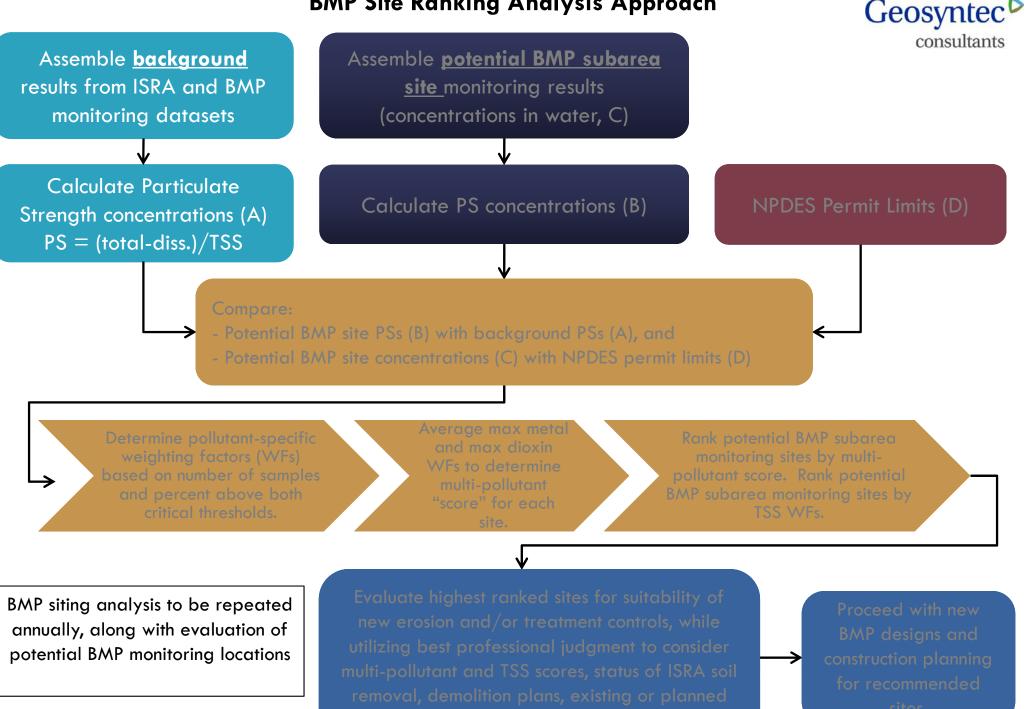
BMP Subarea Ranking Methodology

Statistical methodology developed to rank the sites based on threshold comparisons while accounting for the number of usable data available at each site

Geosyntec^D


- Modified binomial distribution (see table) for small data sets (observations <= 15 and critical values <= 14)
- Unadjusted value of the cumulative distribution function of a binomial distribution with p = 0.5 for large data sets (observations > 15 and critical values > 14)

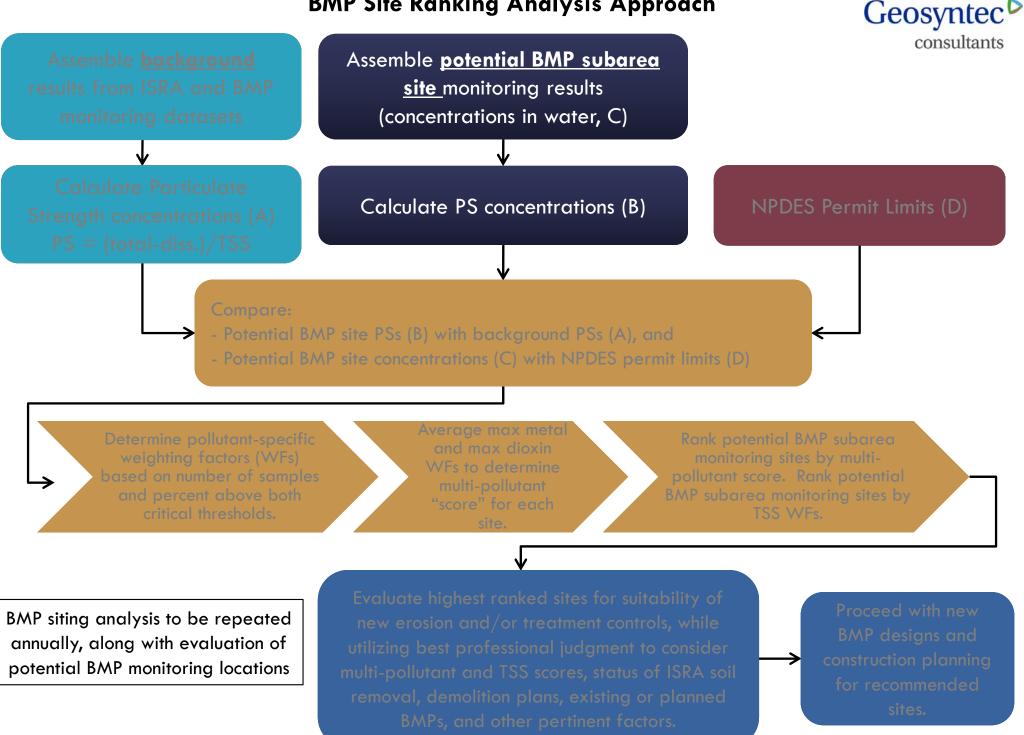
BMP Subarea Ranking Methodology


Geosyntec[▶]

- 23
- "Weighting factors" were calculated for each site for metals (cadmium, copper, and lead), dioxins (TCDD TEQ and 2,3,7,8-TCDD), and TSS.
- Multi-pollutant "score" was produced from metals and dioxin weighting factors to allow for relative ranking amongst potential BMP sites.

BMP Site Ranking Analysis Approach

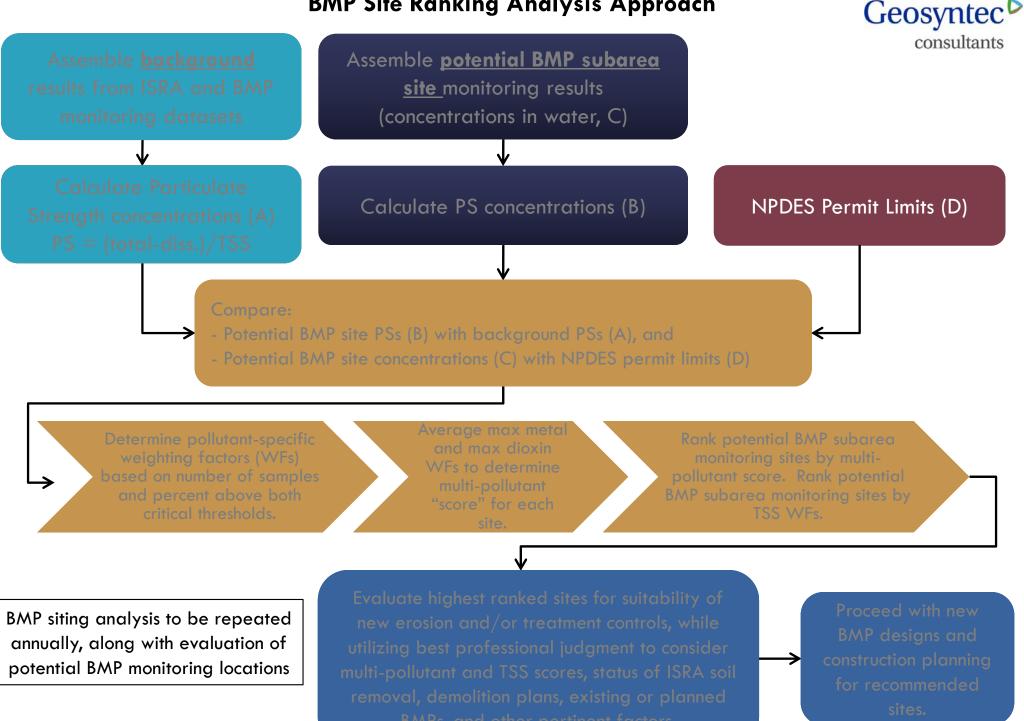
BMP Site Ranking Analysis Approach


25

Assemble **background** results from ISRA and BMP monitoring datasets

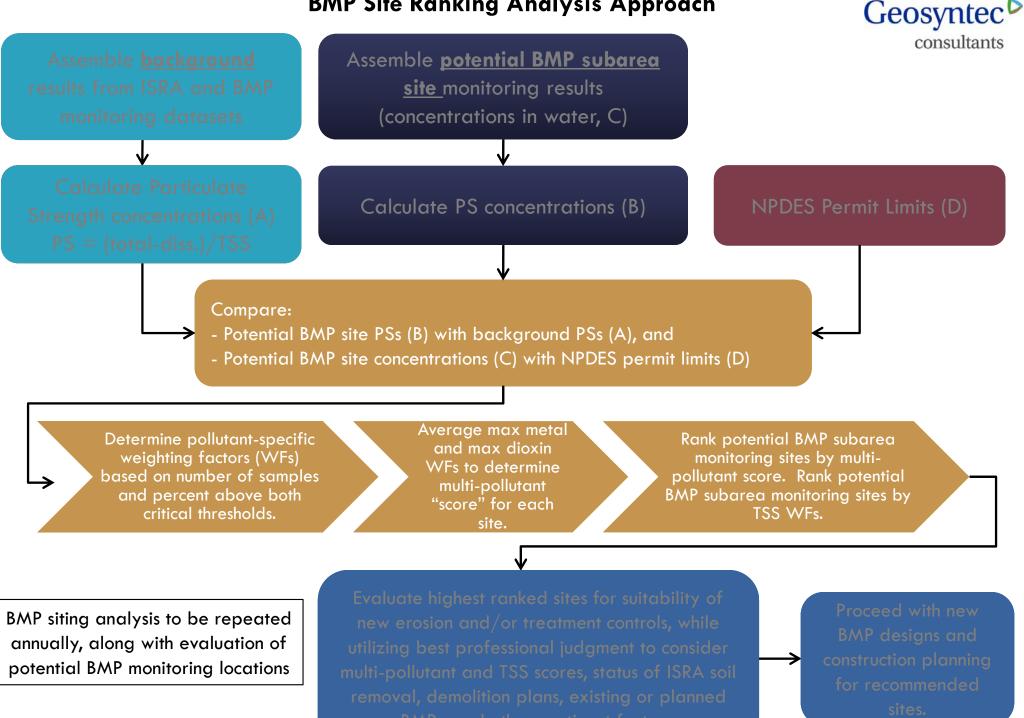
Calculate Particulate Strength concentrations (A) PS = (total-diss.)/TSS

BMP Site Ranking Analysis Approach



Assemble **potential BMP subarea** <u>site</u> monitoring results (concentrations in water, C)

Calculate PS concentrations (B)


BMP Site Ranking Analysis Approach

NPDES Permit Limits (D)

BMP Site Ranking Analysis Approach

Compare:

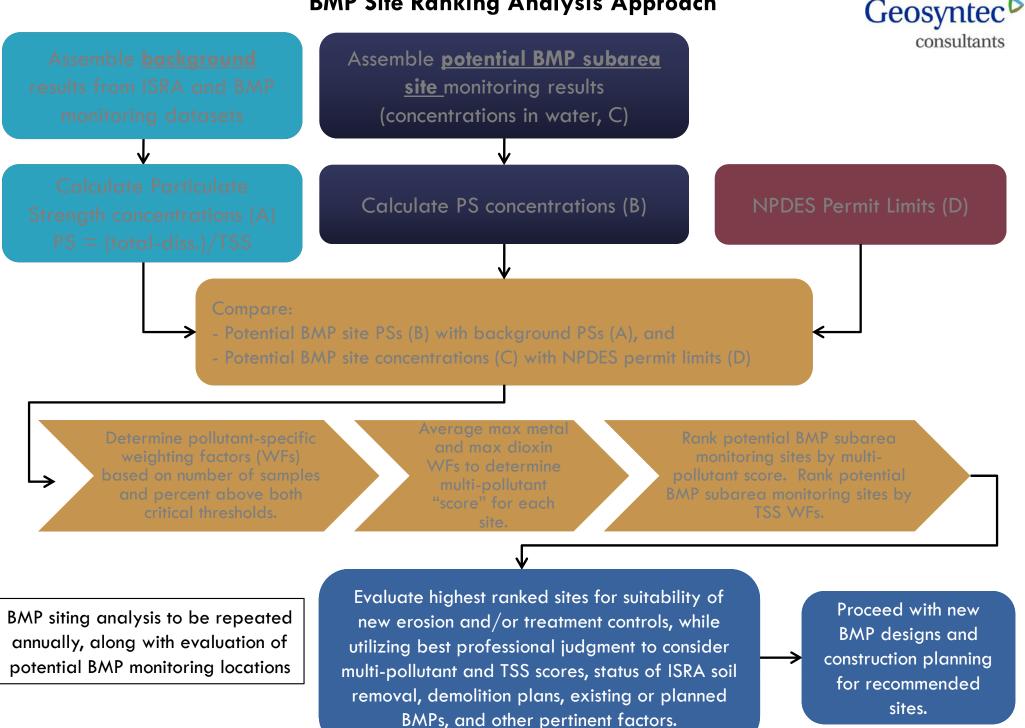
ba

and

cri

- Potential BMP site PSs (B) with background PSs (A), and
- Potential BMP site concentrations (C) with NPDES permit limits (D)

Determine pollutant-specific weighting factors (WFs)

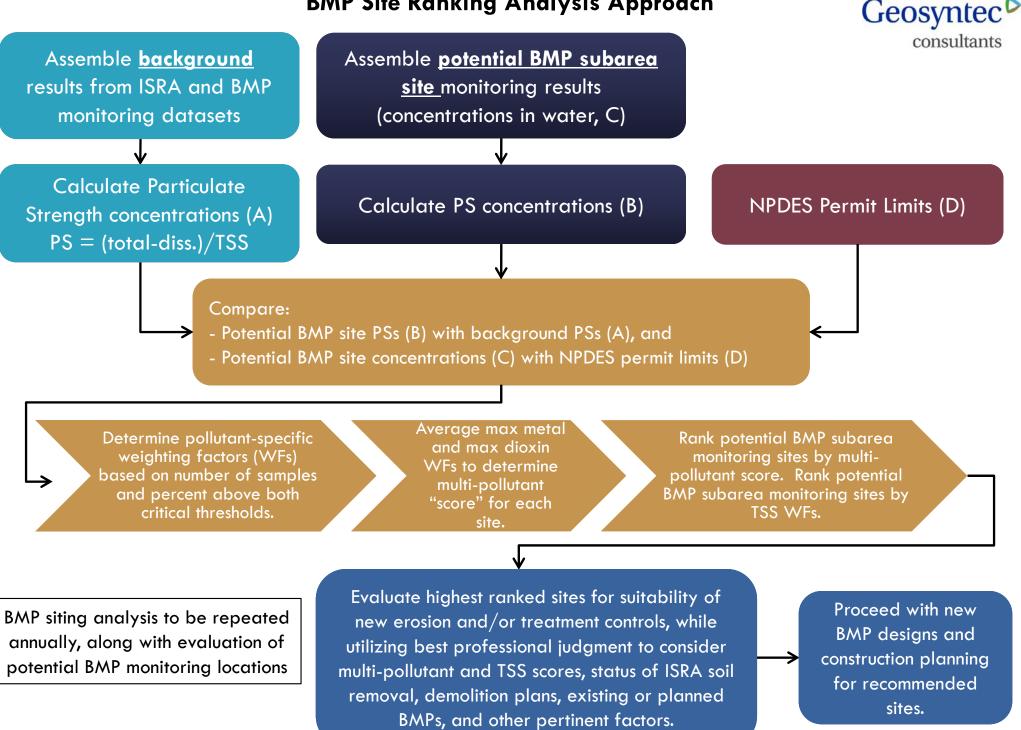

det

"sco

Average max metal and

Rank potential BMP subarea monitoring sites by multipollutant score. Rank potential BMP subarea monitoring sites by TSS WFs.

BMP Site Ranking Analysis Approach



Proceed with new BMP designs and construction planning for recommended sites.

Evaluate highest ranked sites for suitability of new erosion and/or treatment controls, while utilizing best professional judgment to consider multi-pollutant and TSS scores, status of ISRA soil removal, demolition plans, existing or planned BMPs, and other pertinent factors.

> BMP siting analysis to be repeated annually, along with evaluation of potential BMP monitoring locations

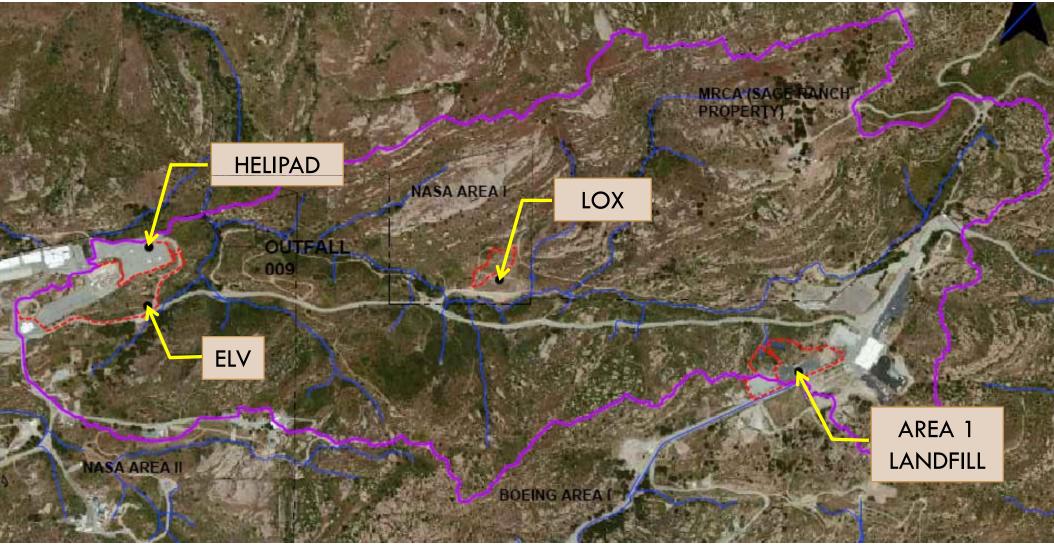
BMP Site Ranking Analysis Approach

Example:

Site A: n = 10, $m = 7 \rightarrow Weight_A = 0.83$

Based on weight alone, Site A would be prioritized over Site B.

Site B: n = 14, $m = 2 \rightarrow Weight_B = 0.01$

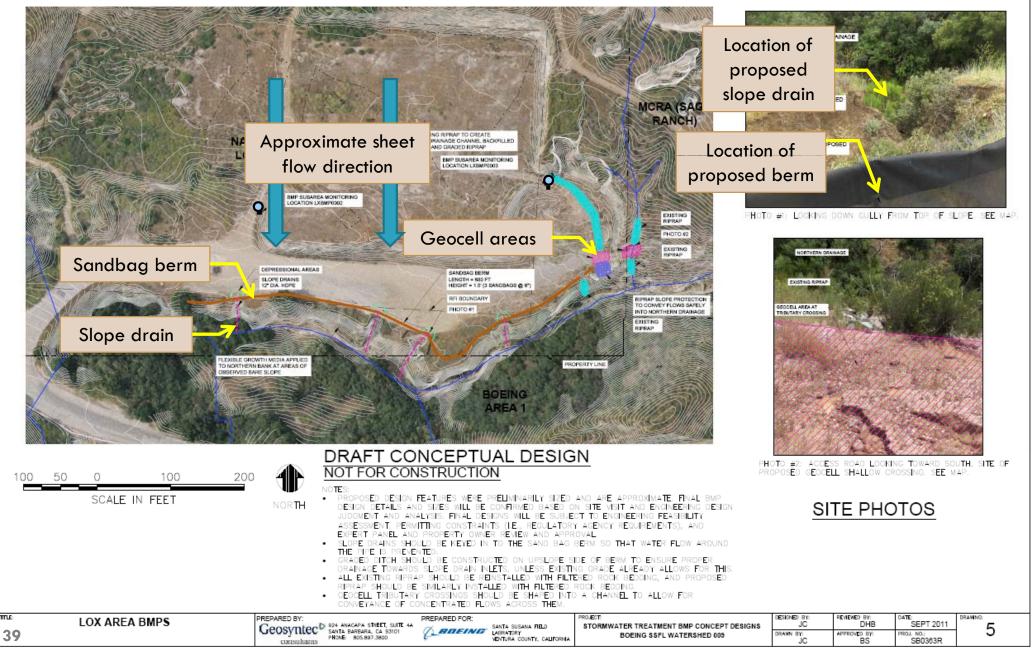

Total	Total Number of Critical Values in Data Set (m)														
Number of															
Observations	1	2	3	4	5	6		7	8	9	10	11	12	13	14
(n)															
1	50														
2	50	5													
3	50	Þ	87												
4	31	þ	69	94											
5	19	þ	50	81	97										
6	11	1	50	66	89	98									
7	6	В	50	50	77	94	4)							
8	4	1	36	50	64	86	1	}	99						
9	2		25	50	50	75	Ζ		98	99					
10							83	3	95	99	99				
11	1		11	27	50	50	7:	ъ	89	97	99	99			
12	0		7	19	39	50	63	3	81	93	98	99	99		
13	0		5	13	29	50	50	0	71	87	95	99	99	99	
14		1	3	9	21	40	5(0	61	79	91	97	99	99	99
15	0	0	2	6	15	30	5(0	50	70	85	94	98	99	99
15 36	0	0	2	б	12	30	50	5	50	70	δC	94	98	99	99

Geosyntec^D consultants

BMP Subarea Ranking Analysis

Rank from	Potential BMP			Approximate	Multi-	Rank from	Rank from
Averaged	Subarea			Upgradient DA	Pollutant	Maximum Metal	Maximum Dioxin
Weights	(Co-location)	Watershed	Description	(ac)	Score	Weighting	Weighting
1	EVBMP0002	Outfall 009	Helipad spillway	~4.0	0.66	6	1
2	ILBMP0001*	Outfall 009	Lower parking lot 24" stormdrain	23	0.5	1	2
2	LPBMP0001*	Outfall 009	Soil stockpile sheetflow	5.1	0.5	1	2
4	A2SW0001	Outfall 009	CM1 upgradient west (also ELV area and Area I road)	~13	0.45	5	2
5	LXBMP0002	Outfall 009	LOX mid	1.5	0.31	7	6
6	B1BMP0001* (B1SW0010)	Outfall 009	B1 culvert inlet	4.4	0.30	1	8
7	A1BMP0001	Outfall 009	A1LF downgradient	1.2	0.28	1	9
8	B1SW0011*	Outfall 009	B1 paved roadside ditch	<1	0.25	15	2
9	B1BMP0002	Outfall 009	B1 parking lot culvert inlet	5.3	0.13	8	7
10	LXBMP0003	Outfall 009	LOX east (Sage Ranch tributary)	~24	0.03	10	9
11	HZBMP0001 (HZSW0007)	Outfall 008	HV downgradient	<29	0.02	9	13
12	BGBMP0006 (A2SW0006)	Outfall 009	CM1 upgradient east	41	0.02	11	11
13	HZBMP0003 (HZSW0003)	Outfall 008	DRG downgradient 2	<33	0.005	11	15
13	A1SW0004	Outfall 009	CM9 upgradient	14	0.0012	14	12
13	Outfall 008**	Outfall 008	NPDES outfall 008	62	0.0003	13	15
16	EVBMP0001	Outfall 009	Helipad Road/ELV culvert inlet	unknown/small	0	16	15
16	ILBMP0002	Outfall 009	Road runoff to CM9	14	0	16	15
16	Outfall 009**	Outfall 009	NPDES outfall 009	536	0	15	14
16	LXBMP0001	Outfall 009	LOX West	unknown/small	0	16	15
16	ILBMP0003	Outfall 009	A1LF parking lot	9.5	0	16	15
16	HZBMP0002 (HZSW0004)	Outfall 008	DRG downgradient	26	0	16	15
							-

New BMP Recommendation Locations Ceosyntec Consultants


LEGEND:

009 WATERSHED BOUNDARY SUBCATCHMENT BOUNDARY

Example Conceptual Design

Lessons Learned

- Given 008 and 009 physical constraints, a watershed-based, distributed stormwater management approach is more appropriate than implementing "end-of-the-pipe" treatment systems.
- New BMPs and stormwater controls have been, and will continue to be (as necessary), implemented each year upon re-examination of new monitoring data.
- Integration of new BMPs with ongoing activities can further enhance BMP effectiveness.

Lessons Learned

- This approach could be applied to other large NPDES permittees (e.g., MS4s, industrial field laboratories, or landfills) that are in need of siting distributed stormwater treatment controls to meet strict NELs and have constructability constraints at the compliance monitoring locations.
- This approach has potential TMDL implementation planning implications, as it could help with structural BMP and source control planning based on monitoring or land use-based data, by accounting for the number of samples and percent of samples above both background and water quality standards thresholds.
- Acknowledge that 100% NEL compliance may not be achievable due to background sources and/or natural variability.

Questions?