

Outline of Presentation

- Background and history of WinSLAMM
- Stormwater control practices that can be evaluated in WinSLAMM
- Unique aspects of WinSLAMM
- Selected basic analyses
- Example evaluations of emerging stormwater designs and controls

2

1. Background & History

- Development of WinSLAMM Began in mid-1970's
 - Early EPA street cleaning
 projects
 - San Jose and Coyote Creek (CA)

- Primary Purpose: • Identify Sources of <u>Urban</u> Stormwater Pollutants
- Evaluate Effectiveness of Control Practices

Background & History (cont.)

- Mid-1980's Model used in Agency Programs:
 - Toronto Area Watershed Management Strategy
 - Wis. Dept. of Natural Resources: Priority Watershed Program
- First Windows Version Developed in 1995
- Continuously being updated based on user needs and new research (such as from Stormwater Management Authority of Jefferson County, AL, the TVA, Economic Development group, Contech Stormwater Solutions, HydroInternational, WI DOT, WI DNR, US EPA, USGS, etc.)

- Hydrodynamic devices
- Development characteristics
- Wet detention ponds
- Porous pavements
- Street cleaning
- Green/blue roofs

- Catchbasin cleaning
- Grass swales and grass filtering
- Biofiltration and bioretention
- Cisterns and stormwater use
- Media filtration/ion exchange/sorption

Grass Filt	ter Strips	s Inpu	t Screen
Filter	r Strip Control Device		
	l Use: Institutional 1 T ce Area: Paved Parking 1 F	otal Area: 2.000 acre ilter Strip No. 1	\$
First	Source Area Control Practice		
A Martine Contraction of the Con	Device Propertie	55	
	Total Area in Source Area (ac)	2.000	and a summer of the second
	Area Fraction Served by Filter Strips	(0-1) 1.00	
A REAL PROPERTY AND	Total Filter Strip Length (ft)	0	
	Effective Width (ft)	0	
A CONTRACTOR OF	Infiltration Bate (in/hr)	0.000	
	Typical Longitudinal Slope (0-1)	0.000	
	Typical Grass Height (in)	0.0	
	Grass Retardance Factor	*	Contraction of the local division of the loc
All in when	Use Stochastic Analysis to account Infiltration Rate Uncertainty	for 🔳	A TO THE REAL PROPERTY OF
and the second s	Native Soil Infiltration Rate COV		
	Select Particle Size	File	
ſ	C\Program Files\WinSLAMM\NURP.	CPZ	
30	Sand, Sin/br	s hann - Olt in Ar	
	Loamu sand - 25 in/hr C Sillur	slav Inam - 0.05 in/hr	
	Sandy loam 1.0 in/hr C Sand	v clav - 0.05 in/hr	
di C	Loam 0.5 in/hr C Silty	slav -0.04 in /hr	
, C	Silt Ioam - 0.3 in/hr Clav	0.02 in/hr	
000 C	Sandy silt loam - 0.2 in/hr C Bain	Barrel/Cistern - 0.00 in/hr	and the second
A CONTRACTOR OF	Copy Filter Strip Data Pa	ste Filter Strip Data	
	Delete Cancel	Continue	A REAL REAL

3. Unique Aspects of WinSLAMM

- · Based on field measurements and calibrations of rainfall-runoff processes, particulate transport, source area pollutant characteristics, control practice performance, etc.
- Urban processes are unique and urban stormwater models must consider these aspects (stormwater receiving water effects, hydrology of pavements, disturbed/compacted urban soils, pollutant sources, etc.)

And Aleas: 104.8 acres And Namber 1 Lefter 3 Particle Size Distribution File: C 3. Shape Created Weit C 3. Shape Created Weit C 3. Shape Created Weit C 4. Shape Created Weit C 5. Shape Created Weit C 6. Shape Created Weit C 7. Shape Cre		Add Outlet	III COMMERCIA SPECIAL	A CANADA AND AND A	d.	11.003	A. 1981	IN THE OWNER
nd Namber 1 detal Particle Size Distribution File:	104.8 acres	- Outlat Onlines						a second
Anticle Size Distribution File:	a 1	C 1. Sharp Crested Weir	WINSLAN	IM Input	SC	reel	ns te	or
VPROBRAM JESIVINSIAAMMEDULM CF2 C S. Natural Seepage C S. Variant Seepag	rticle Size Distribution File:	C 3. Orifice C 4. Seepage Basin	Wet Dete	ntion Po	nd	S	Wis.	
Anital Stage Elevation (II) C 9. Broad Crested War Text to Average Flow Ratio 3.00 Edit Stage Area Data Scheered Data Bland Plane Save thir Pond as a winds TPDM Flane Double Clested War Image Pond as a winds TPDM Flane Scheered Data Bland Plane Save thir Pond as a winds TPDM Flane Double Clested War Image Pond Area Data Scheered Data Bland Plane Flow Scheered Pond Clested War Image Pond Area Data Stage Area Data Flow Stage Area Data Image Pond Area Data Scheered Data Bland Plane Image Pond Area Data Scheered Pond Clested War Image Pond Area Data Stage Area Data Flow Stage Area Data Flow Stage Area Data Image Pond Area Data Stage Pond Rowt 1 Image Pond Rowt 1 Stage Pond Rowt 1 Image Pond Rowt 1 Stage Pond Rowt 1 Image Pond Rowt 1 Stage Pond Rowt 1 Image Area Number Pond Rowt 1 <td>AMM\MEDIUM.CPZ</td> <td>C 5. Natural Seepage C 6. Evaporation C 7. Other Outflow C 8. Water Withdrawl</td> <td>N.L.</td> <td></td> <td></td> <td></td> <td>14</td> <td>1.16</td>	AMM\MEDIUM.CPZ	C 5. Natural Seepage C 6. Evaporation C 7. Other Outflow C 8. Water Withdrawl	N.L.				14	1.16
Peak to Average Flow Ratio 3.80 Edit Stage Area Data Selected Dullets (Mar. 5) Dudlet Code Of	e Elevation (ft) 3	C 9. Broad Crested Weir C 10. Vertical Stand Pipe	She was	TORSE T				Ware .
Edit Egsting Outlet Stelect Outlet Max: 9) Double Clck to Edit or Dealer WanDETFOND Fia Energy Outlet Max: 9) Double Clck to Edit or Dealer Stelect Outlet Max: 9) Dealer Clck to Edit or Dealer Energy Outlet Max: 9) Dealer Clck to Edit or Dealer Energy Outlet Max: 9) Dealer Clck to Edit or Dealer Energy Outlet Max: 9) Dealer Clck to Edit or Dealer Pond Number: Outlet Clck to Edit or Dealer Pond Number: Outlet Clck to Edit or Dealer Image: Max and the pond and th	erage Flow Ratio 3.80		A HANNEL	A line			The second	
Save this Pand as a wabbe Selected Dullst (Max 6) I - V Mach Weir 2 - Bread Cacket of Weir 3 - Exepandion - V Mach Weir 2 - Bread Cacket of Weir 3 - Exepandion Flow Stage Area Values Modify Pand Area Stage (II) 1 - U Mach Weir 3 - Exepandion Stage (II) 0 - Stage Area Values Image (II) 0 - Stage Area Values Stage (II) 0 - Stage (II) 0 - Stage (III) 0 - Stage (IIII) 0 - Stage (IIII) 0 - Stage (III) 0 - Stage (III) 0	Stage Area Data	Edit Existing Outlet		with the state				500
Stage Area Values Flow Stage Area Values Pond Number 1 Stage (II) Area Values Utilal Stage (II) Area Values Image Area Values Stage (II) Area Common Image Area Values Stage (II) Area Common Image Area Values Stage (II) Area Common Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values Image Area Values	e this Pond as a DETPOND File	Selected Uutlets (Max. 5) Double Click to Edit or Delete 1 - V-Notch Weir 2 - Broad Crested Weir			CUM CONTRACT			
Flow Outal Stage (II) Area (acces) Com (acces) Modily Pond Areas Row 1 Stage (II) 0 0.000	1	3 - Evaporation	C. Calling Halan					
Flow Outfall Stage (II) Aceas Stage (II) Row 1 Stag	Je Delete Pond		Stage Area Value	s				
Modily Pond Areas Row 1 1 0 0.000 0.250 0.03 3.000 0.250 0.03 3.00 0.500 1.00 0.500 1.00 0.500 1.00 0.650 1.00 0.650 1.00 0.650 1.00 0.650 1.00 1.500 5.50 9.300 1.500 5.50 9.300 1.500 5.50 9.300 1.500 5.50 9.300 1.500 5.50 9.300 1.500 5.50 9.300 1.500 5.50 9.300 1.500 5.50 9.300 1.500	Je Delete Pond		Pond Number 1	5				1
Modily Fond Areas Row 1 1 100 0.075 0.01 1 1.00 0.075 0.01 1 1.00 0.075 0.01 1 1.00 0.075 0.01 1 1.00 0.075 0.01 1 1.00 0.075 0.01 1 1.00 0.075 0.01 1 1.00 0.250 0.01 1 1.00 0.075 0.01 1 1.00 0.075 0.01 1.00 0.250 0.01 1.00 0.075 0.01 1 0.01 1.00 0.075 0.01 1.00 0.075 0.01 1.00 2.5 0.01 1.00 2.5 0.01 1.00 2.5 0.01 1.00 2.5 0.01 1.00 2.5 0.01 1.00 2.5 0.01 1.500 5 0.01 1.500 5 0.01 1.500 5 0.01 1.500 5 0.01 1.500 5	, Delete Pond		Stage Area Value: Pond Number 1 Outfall	5		Stage (ft)	Area (acres)	Cumulative Volume (ac-ft)
1 2 200 0.125 0.125 1 3.00 0.250 0.3 4.400 0.375 0.65 1 1 1 0.075 0.00 1.500	, Delete Pond		Pond Number 1 Outfall	S Stage (ft)		Stage (ft)	Area (acres)	Cumulative Volume (ac-ft) 0.000
Insett a row before row number: Insett a row before row number: Insett Row 3 0.020 0.23 0.24 0.25 0.02 0.25 0.02 <td>Je Delete Pond</td> <td></td> <td>Pond Number 1 Outfall Modify Pond Areas</td> <td>S Stage (ft) Row 1</td> <td>0</td> <td>Stage (ft) 0.00 1.00</td> <td>Area (acres) 0.000 0.075</td> <td>Cumulative Volume (ac-ft) 0.000 0.038</td>	Je Delete Pond		Pond Number 1 Outfall Modify Pond Areas	S Stage (ft) Row 1	0	Stage (ft) 0.00 1.00	Area (acres) 0.000 0.075	Cumulative Volume (ac-ft) 0.000 0.038
Instel a row before	<u>Delete Pond</u>		Carl Stage Area Value Pond Number 1 Outfal Modify Pond Areas	Stage (h) Row 1		Stage (ft) 0.00 1.00 2.00	Area (acres) 0.000 0.075 0.125	Cumulative Volume (ac-ft) 0.000 0.038 0.138
Image: Norw number:	e Delete Pond		Pond Number 1 Outfal Modify Pond Areas	S Stage (fi) Row 1 100		Stage (ft) 0.00 1.00 2.00 3.00	Area (acres) 0.000 0.075 0.125 0.250 0.235	Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325
Delete row number: Delete Row 7 700 1.000 2.2 3 8 0.00 1.250 3 9 0.00 1.250 3 9 0.00 1.500 5.00 1.500 5.00	2e Delete Pond		Stage Area Value Pond Number 1 Outfal Modify Pond Areas Insert a row before	Stage (ft) Row 1 100	0 1 2 3 4	Stage (ft) 0.00 1.00 2.00 3.00 4.00 5.00	Area (acres) 0.000 0.075 0.125 0.250 0.250 0.375	Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325 0.638 1.025
Desire Control Control <thcontrol< th=""> <thcontrol< th=""> <thco< td=""><td>28 Delete Pond</td><td></td><td>Stage Area Value Pond Number 1 Outfal Modily Pond Areas Insett a row before row number:</td><td>Stage (R) Row 1</td><td>0 1 2 3 4 5</td><td>Stage (ft) 0.00 1.00 2.00 3.00 4.00 5.00 6.00</td><td>Area (acres) 0.000 0.075 0.125 0.250 0.375 0.500 0.750</td><td>Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325 0.638 1.075 1.200</td></thco<></thcontrol<></thcontrol<>	28 Delete Pond		Stage Area Value Pond Number 1 Outfal Modily Pond Areas Insett a row before row number:	Stage (R) Row 1	0 1 2 3 4 5	Stage (ft) 0.00 1.00 2.00 3.00 4.00 5.00 6.00	Area (acres) 0.000 0.075 0.125 0.250 0.375 0.500 0.750	Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325 0.638 1.075 1.200
Becalculate Cumulative Volume	polete Pond		Stage Area Value Pord Number 1 Outfall Modily Pond Areas Insert a row before row number: Delete row number:	S Stage (ft) Row 1	0 1 2 3 4 5 6 7	Stage (H) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00	Area (acres) 0.000 0.075 0.125 0.250 0.375 0.500 0.750 1.000	Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325 0.638 1.075 1.700 2.575
Becalculate Cumulative Volume	20 Delete Pond		Stage Area Value Pond Number 1 Duttal Modity Pond Areas Insert a row before row number: Delete row number:	S Row 1 TOO Insert Row Delete Row	0 1 2 3 4 5 6 7 8	Stage (ft) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	Area (acres) 0.000 0.075 0.125 0.250 0.375 0.500 0.750 1.000 1.250	Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325 0.638 1.075 1.700 2.575 3.700
	20 Delete Pond		Stage Area Value Pord Number 1 Outal Modily Pond Areas Insert a row before row number: Delete row number:	S Stage (it) Row 1 100	0 1 2 3 4 5 6 7 8 9	Stage (ft) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	Area (acres) 0.000 0.075 0.125 0.250 0.375 0.500 0.750 1.000 1.250 1.500	Cumulative Volume (ac-ft) 0.000 0.038 0.138 0.325 0.638 1.075 1.700 2.575 3.700 5.075

10

<0.5": 65% of rains (10% of runoff). Smallest storms should be captured on-site for reuse, or infiltrated.

0.5 to 3": 30% of rains (75% of runoff). Infiltrate all you can, but also provide controls to treat runoff that cannot be infiltrated on site.

3 to 8": 4% of rains (13% of runoff) . Provide controls to reduce energy of large events that would otherwise affect habitat.

>8": <0.1% of rains (2% of runoff). Provide conventional flood and drainage controls.

Probability distribution of Birmingham, AL, rains (by count) and runoff (by depth).

Birmingham, AL Rain & Runoff Distributions ('81-'89) 100 Accum Rain Count or Less 80 60 40 Commercial Runoff

Classical Saw-tooth Pattern of Particulate Loading on

Disturbed Urban Soils have Unique Infiltration Rates that are Greatly Affected by Compaction

4. Selected Basic WinSLAMM Model Evaluations

- Sources of stormwater runoff and pollutants
- Flow rate-duration distributions for alternative development practices and controls
- Detailed evaluations of controls for regulatory compliance
- Identification of critical sources areas and outfalls for targeted controls
- Cost analyses
- Batch processing and decision analyses to compare alternatives

18

WinSLAMM can calculate life-cycle costs and compare different control programs to obtain unit removal costs with the batch processor:

Volume (cf)	Solids Yield (lbs)	Basin Capital Cost	Basin Land Cost	Basin Maint. Cost	Sub Basin Total Annual Cost	Sub Basin Total Present Value Cost	% Part. Solids Reduc.	Lost per Ib Sediment Reduced
5246545	37413	0	0	0	0	0	0%	n/a
3136146	22341	119109	0	9100	18658	232515	40%	\$ 1.24
4425257	30761	681686	0	3422	58122	724332	18%	\$ 8.74
3193328	20784	1704215	0	8555	145306	1810829	44%	\$ 8.74
	Volume (cf) 5246545 3136146 4425257 3193328	Volume (cf) Solids Yield (lbs) 5246545 37413 3136146 22341 4425257 30761 3193328 20784	Volume (cf)Solids Yield (lbs)Basin Capital Cost52465453741303136146223411191094425257307616816863193328207841704215	Volume (cf)Solids Yield (lbs)Basin Capital CostBasin Land 	Volume (cf)Solids Yield (lbs)Basin Capital Capital CostBasin Land Maint.524654537413313614622341.1191094425257307616816863193328207841704215	Volume (cf)Solids Yield (lss)Basin Capital CostBasin Land CostBasin Maint CostBasin Total Annual Cost524654537413513614622341.119109313614622341.1191094425257307616816863193328207841704215	Volume (cf)Solids Yield (lbs)Basin Capital CostBasin Land CostBasin Maint CostBasin Total AcostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Total CostBasin Cost	Volume (cf)Solids Yield (lbs)Basin Capital CostBasin Land CostBasin Maint. CostBasin Total Noilds CostBasin Total Noilds CostPart. Solids Reduct Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. Solids Part. P

25

Batch Processor used for Combinations of Controls for							
Stormwater Treatment Option	Annual Total SW Treat. Cost (\$/yr)	Annual Addit. Drain. System Cost (\$/yr)	Total Annual Cost (\$/yr)	Land Needs for SW mgt (acres)	Runoff Volume (cf/yr)	Part. Solids Yield (Ibs/yr)	Reduc in SS Yield (%)
Base, No Controls	0	64,230	64,230	0	5,600,000	71,375	n/a
Option 1 Pond	19,134	64,230	83,364	4.5	5,507,000	10,192	86
Option 2 Reg. Swale	3,158	26,850	30,008	0	2,926,000	32,231	55
Option 3 Site Biofilter	32,330	37,380	69,710	0	2,705,000	68,890	1
Option 4 Small pond	10,209	64,230	74,439	2.3	5,557,000	19,552	73
Option 5 Pond and reg. swale	22,292	26,850	49,142	4.5	2,844,000	4,133	94
Option 6 Pond, swale, biofilter	54,622	0	54,622	4.5	1,203,000	2,183	97
Option 7 Small pond and swale	13,367	26,850	40,217	2.3	2,887,000	6,937	90
Option 8 Small pond, swale and biofilter	45,698	0	45,698	2.3	1,253,000	4,125	94

These life-cycle costs can be easily plotted to identify the most cost-effective control options:

26

					<u> </u>		
Stormwater Treatment Option	Part. Phos Yield (Ibs/yr)	Volum. Runoff Coeff. (Rv) (est. bio. cond.)	% of time flow >1 cfs	% of time flow >10 cfs	SS conc. (mg/L)	Part. P conc. (mg/L)	Zn conc. (μg/L)
Base, No Controls	174	0.29 (poor)	4.5	0.3	204	0.50	359
Option 1 Pond	25	0.29 (poor)	4	0.05	30	0.073	128
Option 2 Reg. Swale	79	0.15 (fair)	2	0.1	178	0.43	390
Option 3 Site Biofilter	172	0.14 (fair)	2	0.2	408	1.0	696
Option 4 Small pond	41	0.29 (poor)	4	0.2	48	0.12	151
Option 5 Pond and reg. swale	10	0.15 (fair)	2	0	23	0.057	203
Option 6 Pond, swale, biofilter	5.5	0.06 (good)	0.5	0	29	0.073	386
Option 7 Small pond and swale	17	0.15 (fair)	2	0.05	39	0.095	220
Option 8 Small pond, swale and biofilter	10	0.07 (good)	0.8	0	53	0.13	390

Additional Batch Processor Data (cont.)

5. Example Evaluations of New Stormwater Controls

- Example of "green infrastructure" controls in a combined sewer area (modeling of roof runoff control alternatives) in areas having marginal soils
- Example of storage-treatment balancing for stormwater media filters

Continuous Simulations using Kansas City 1972 to 1999 Rain Series to Evaluate Roof Runoff Controls in Combined Sewer Area

30

29

This plot shows the time-averaged infiltration rates based on the individual incremental values. The surface infiltration rates are less than 1 in/hr for rains about 2 hrs long and longer. Additional site measurements and deep soil profiles have indicated that infiltration rates are quite low for most of the area.

Basic Rain Garden Input Screen in WinSLAMM

Household water use (gallons/day/house) from rain barrels or water tanks for outside irrigation to meet ET requirements:

34

Water Use Calculations in WinSLAMM

WinSLAMM conducts a continuous water mass balance for every storm in the study period.

For rain barrels/tanks, the model fills the tanks during rains (up to the maximum amount of runoff from the roofs, or to the maximum available volume of the tank).

Between rains, the tank is drained according to the water demand rate. If the tank is almost full from a recent rain (and not enough time was available to use all of the water in the tank), excess water from the event would be discharged to the ground or rain gardens after the tank fills.

0.125 ft of storage is needed for use of 75% of the total annual runoff from these roofs for irrigation. With 945 ft² roofs, the total storage is therefore 118 ft³, which would require 25 typical rain barrels, way too many! However, a relatively small water tank (5 ft D and 6 ft H) can be used instead.

rain	percentage			
barrel/tank	reduction	# of 35	tank height	tank height
storage per	in annual	gallon rain	size required	size required if
house (ft ³)	roof runoff	barrels	if 5 ft D (ft)	10 ft D (ft)
0	0	0	0	0
4.7	20	1	0.24	0.060
9.4	31	2	0.45	0.12
19	43	4	0.96	0.24
47	58	10	2.4	0.60
118	75	25	6.0	1.5
470	98	100	24	6.0

Clogging Potential for Different Sized Rain Gardens Receiving Paved Parking Area Runoff

Rain gardens should be at least 10% of the paved drainage area, or receive significant pre-treatment (such as with long grass filters or swales, or media filters) to prevent premature clogging.

42

Storage-Treatment Tradeoffs for Stormwater Media Filters

- The performance of a stormwater treatment filter is dependent on the amount of the annual runoff that is treated and by the level of treatment provided.
- Most filters usually have a maximum treatment flow rate that can be utilized per filter unit to obtain the stated treatment level of the treated water.
- The use of storage can moderate the high flows, decreasing the amount of stormwater that is bypassed without treatment.
- The sizing of this adjacent storage needs to be done in conjunction with a continuous model that can evaluate many storage-treatment combinations.

The typical approach to treat large flows is to use a large number of filter units.

The Multi-Chambered Treatment Train (MCTT) was developed by Pitt (1999) for the EPA to provide pre-treatment of stormwater from critical source areas before infiltration. In order to handle a wide range of flows and to provide excellent treatment, storage (provided in the main settling chamber) before the filtration unit was considered a critical unit process.

45

Knowledge of Site Hydrology is Critical in the Design of Stormwater Treatment Systems

- Continuous simulations allow evaluations to consider highly varying flow rates and antecedent conditions.
- Critical flow characteristics vary for different regions and for different development characteristics.
- This example is for commercial paved areas, common locations for stormwater filters.
- A typical five year period used by the state of Wisconsin for stormwater quality evaluations was used in the evaluations.

Minocqua, WI, MCTT Installation

46

This period was selected by the WI DNR and the USGS to be representative of typical long-term conditions, and not to contain any unusually large rains. The largest rains in this period were about three inches in depth. A treatment system designed to treat 100% of the resultant flows from these events may bypass some limited flows every several years, depending on the frequency of very large drainage-class storm events.

Flow Rate Distribution Calculations

- WinSLAMM was used to calculate cumulative flow rate distribution plots for all events in the 5-year study period. These flows were calculated on 6-minute increments, then exported to Excel, sorted and summed to prepare the fraction of time associated with any flow rate, or less.
- Another plot was created showing how adjacent storage and controlled releases could reduce these flows.

Annual Cumulative Flow Rate Distributions (Madison, WI, 1980 through 1985 rains)

50

49

Treatment Flow Rates and Fraction of Total Flow Treated

- The 6-minute calculated flows were used to determine treatment flow rate effects.
- A number of treatment flow rates were subtracted from all of the calculated site runoff rate values. The excessive flows not treated for each flow increment were then summed and compared to the total flow quantity. These excessive flow sums for each treatment flow rate were then plotted to indicated how much of the total period flow would be treated, if different treatment flow rates were available.

Treatment Flow Rates and Fraction of Total Flow Treated (cont.)

 This was repeated using the adjusted 6minute flow rate distributions associated with different storage volumes. These results were also plotted to indicate the benefits of storage and treatment flow rates on the amount of the total flow able to be treated.

53

Percentage of Annual Flows Treated for Different Treatment Flow Rates (no storage)

54

• As an example, about 45 gpm per acre of impervious area can provide 90% treatment of the total period flows, if about 1.1 inches of storage was available.

• Very little benefit is available for storage amounts up to about 0.34 inches.

Storage-Treatment Examples

- The following examples examine several treatment objectives and show how interactions of storage and treatment can be used to select the most cost-effective combination.
- Typical filter and storage costs are shown on the following tables and are used in conjunction with the previous performance curves to determine the costs of the different treatment and storage options.

Example Filter Costs

	Cost for Filters	Total Treatment Flow Rate (gpm)	Total Storage in Basic Unit (ft ³)
small vault and 3 filter cartridges	\$14,500	22.5	72
plus another 3 filter cartridges (total of 6)	\$19,000	45	72
large vault with 9 filter cartridges	\$33,500	67.5	360
plus another 3 filter cartridges (total of 12)	\$38,000	90	360
plus another 3 filter cartridges (total of 15)	\$42,500	112.5	360

58

57

Example Storage Volumes and Costs						
Total Storage Volume (ft³)	Number of Each Type of Storage Tank (200 ft³/1,000 ft³/6,000 ft³)	Total Cost for Storage				
200	1/0/0	\$5,000				
400	2/0/0	10,000				
1,000	0/1/0	15,000				
2,000	0/2/0	30,000				
6,000	0/0/1	40,000				
12,000	0/0/2	80,000				

Example Cost and Performance Scenarios

- The following plots examine a series of different combinations of storage and filtration capacity. Each example uses a different set of conditions that are able to meet the performance objectives.
- For each option, a combination of filters and storage volume was determined to meet the performance objective. The costs for each of these components are plotted separately for each option, along with the total costs for both components. The least cost option that can meet the performance objective is then easily identified.

2) Goal is to treat the total annual runoff at 40, 60, or 80% SSC reduction levels in order to meet TMDL requirements.

It is assumed that the filter unit can reduce the SSC at the 85% level under all flow conditions considered. The treatment flow options therefore vary for each level of control desired:

Control Option	Fraction of Total Annual Flow that Must be Treated, Assuming Constant 85% Reductions by the Filters
40% SSC Load	48%
Reductions	
60% SSC Load	71%
Reductions	
80% SSC Load	95%
Reductions	

62

Costs for different storage-treatment options for 60% SSC load reductions

Only the smallest vault with 5 filter cartridges is needed to provide the least cost option, with no additional storage. The expected total cost is about \$19,000 per acre of impervious acre.

Costs for different storage-treatment options for 80% SSC load reductions

An intermediate control option is slightly more cost-effective. This option uses the large vault with 15 filter cartridges, plus the small vault with 3 more cartridges, at about \$62,000 per impervious acre.

65

Conclusions

- WinSLAMM considers specialized urban hydrology and pollutant transport processes that consider the unique features of urban surfaces and soils.
- These are especially critical when considering water quality evaluations that are heavily influenced by smaller and intermediate-sized runoff events.
- Field measurements are needed for calibration and verification for all stormwater models, and are the basis for most of the processes included in WinSLAMM.
- WinSLAMM considers a wide range of historical and newly emerging stormwater control practices, and routes flows, particulates, and pollutants considering interactions of these controls and site conditions.

66

Additional WinSLAMM Information

- Supporting materials, documentation, and ordering information (\$300 for a site license) available at: http://www.winslamm.com/
- Upcoming training sessions through the University of Wisconsin, Engineering Professional Development (Madison, WI, April 19 and 20, 2010; Baltimore, MD, May 25 and 26, 2010).