

2013 International Low Impact Development Symposium August 18-21, 2013 St. Paul, Minnesota

Kansas City's CSO Challenge

- Combined sewer area: 58 mi²
- Fully developed
- Rainfall: 37 in./yr
- 36 sewer overflows/yr by rain > 0.6 in; reduce frequency by 65%.
- 6.4 billion gal overflow/yr, reduce to 1.4 billion gal/yr
- Aging wastewater infrastructure
- Sewer backups
- Poor receiving-water quality
- 2

4

5

Major Land Use Components in Residential Portion of Study Area (% of area and % of total annual flow contributions)

	Roofs	Drive- ways	Side- walks	Park- ing	Streets	Land- scaped	Total
Directly							
connected	2 (6)	4 (9)	1 (3)	2 (5)	9 (21)		18 (44)
Disconnected	11 (7)	4 (3)	1 (1)				16 (11)
Landscaped						66 (45)	66 (45)
Total area	13 (13)	8 (12)	2 (4)	2 (5)	9 (21)	66 (45)	100

Based on KCMO GIS mapping and detailed site surveys, along with WinSLAMM calculations.

September 2, 2008 to October 12, 2012 Rains Monitored in the Kansas City Green Infrastructure Test Area

Varying-duration Site Infiltration Rates

This plot shows the timeaveraged infiltration rates based on the individual incremental values. The surface infiltration rates are less than 25 mm/hr for rains about 2 hrs long and longer.

Additional site measurements and deep

soil profiles have indicated that infiltration rates may be low for most of the area during the large and long-duration critical events for overflows. Example Water Level in Influent Flume and Water Stage Recordings in Biofilter used for Calculating Infiltration Rates during Rains

10

Observed vs. Modeled Flows during Final Baseline Conditions

13

Example micro flow and drainage area analysis for a set of stormwater controls in the test area, examining both direct runoff area to biofilters and overflows from upgradient biofilters.

14

Characteristics of Areas Draining to Stormwater Controls vs. Areas without Controls

Land Component	Area in subwatersheds with no devices		Area in subwatersheds with stormwater control devices		
	Area (acres)	Percent of subarea	Area (acres)	Percent of subarea	
Impervious, directly connected	8.09	17.7	15.02	27.6	
Impervious, draining to pervious areas	9.04	19.7	9.38	17.2	
Pervious areas	28.70	62.6	30.00	55.2	
Total area:	45.83	100.0	54.40	100.0	

17

Preliminary Test to Control Area Runoff Flow Ratios during Different Monitoring Periods

Summary of Constructed Stormwater Controls in Test Area					
Design plan component	Number of this type of stormwater control units in 100 acre test (pilot) area	Device as a % of the drainage area	Average drainage area for each unit (ac)	Total area treated by these devices (ac)	
Bioretention	24 (no curb extensions)	1.6	0.40	9.6	
	28 (with curb extension)	1.5	0.40	11.2	
	5 (shallow)	1.6	0.40	2.0	
Bioswale	1 (vegetated swale)	8.9	0.50	0.5	
Cascade	5 (terraced bioretention cells in series)	1.9	0.40	2.0	
Porous sidewalk	18 (with underdrains)	100.0	0.015	0.3	
or pavement	5 (with underground storage cubes)	99.9	0.015	0.1	
Rain garden	64 (no curb extensions)	2.8	0.40	25.6	
	8 (with curb extension)	1.5	0.40	3.2	

18

Preliminary Test and Control Watershed Flow Comparisons

Mann-Whitney Rank Sum Test

Group	N	Median	25%	75%	
Pre-construction pilot area to control area Rv ratio	78	0.99	0.64	1.33	
Post-construction pilot area to control area Rv ratio	8	0.69	0.59	0.83	
Mann-Whitney U Statistic= 206					
T = 242; n (small) = 8; n (big) = 78; (p = 0.12)					

- Therefore the difference is not significant at the 0.05 level for the number of sample pairs available (p = 0.12).
- The apparent change between the initial monitoring period and the after construction monitoring period is about 30%. Individual biofilter monitoring and modeling suggest differences of 50+%.
- Therefore, need to detect a difference of at least 30% between the two groups. With a COV of about 0.4, this would require about 25 sample sets (for 95% confidence and 80% power).
- These preliminary analyses focused on the 8 sets of data after construction in the current year (compared to the initial 78 data sets); many more events will be monitored before the end of the project period when the final analyses will be conducted. ²⁰

Observed and Modeled Flows in the Test Watershed after Construction of Stormwater Controls

Clogging Potential for Biofilters in the Kansas City Test Area

Conclusions

- There are a large number of infiltration-based stormwater controls that can be applied to a variety of land uses to reduce the volume and rates of stormwater discharged to combined sewers.
- Beneficial uses of stormwater can also be a useful tool to reduce these discharges, while still conserving important resources.
- Continuous WinSLAMM simulations can calculate the benefits of these controls in many combinations for an area.

Collaborations for Kansas City

- US EPA: National Risk Management Research Laboratory (NRMRL), Office of Research and Development (ORD), Region 7, Office of Wastewater Management (OWM), Office of Enforcement and Compliance Assurance (OECA)
- KCMO Water Services Department
- Tetra Tech, Inc.
- University of Missouri, Kansas City
- University of Alabama
- Mid-America Regional Council (MARC)
- Bergmann Associates
- Partnerships at neighborhood, watershed and regional levels