Background to Research Leading to Development of Upflow

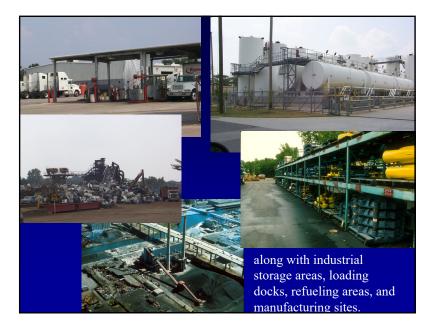
Lisa Glennon Hydro International, Inc. **Portland**, ME

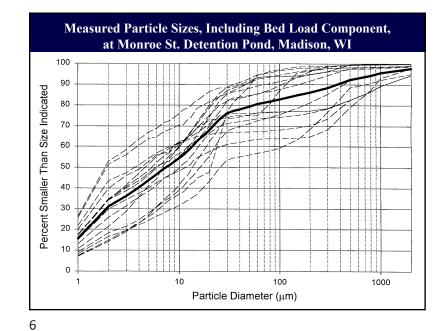
Robert Pitt

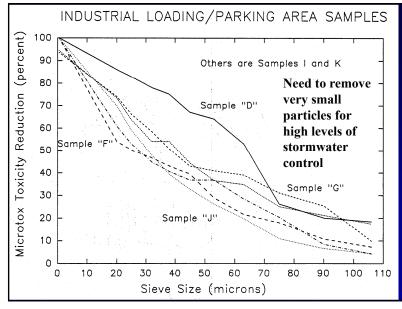
1

Department of Civil, Construction, and Environmental Engineering University of Alabama, Tuscaloosa, AL

Uday Khambhammettu Metcalf & Eddy, Inc. San Diego, CA






- Critical source area controls are important components of a comprehensive stormwater management program
- Pollution prevention, outfall controls, better site design, etc., are usually also needed
- In contaminated areas, infiltration should only be used cautiously, after pretreatment to minimize groundwater contamination

Storage yards, auto junk yards, and lumber yards

		Percent Pollutant Reduction after Removing all Particulates Greater than Size Shown			
		ан Рагас 20 µm	5μm	1μm	0.45 µm
High levels of pollutant	Total Solids	40%	43%	52%	53%
reduction	Suspended Solids	76	81	98	100
require the	Turbidity	43	55	92	96
capture of	Total-P	68	82	89	92
very fine	Total-N	30	41	35	23
particulates,	Nitrate	0	0	12	17
and likely	Phosphate	71	78	81	88
further	COD	48	52	52	47
capture of	Ammonia	35	46	54	58
"dissolved"	Cadmium	20	22	22	22
pollutant	Chromium	69	81	82	84
fractions.	Copper	26	34	34	37
	Iron	52	63	95	97
	Lead	41	62	76	82
	Zinc	64	70	70	72

Filtered Sample Ionic and Colloidal Associations

Analyte	% Ionic	% Colloidal
Magnesium	100	0
Calcium	99.1	0.9
Zinc	98.7	1.3
Iron	97	3
Chromium	94.5	5.5
Potassium	86.7	13.3
Lead	78.4	21.6
Copper	77.4	22.6
Cadmium	10	90

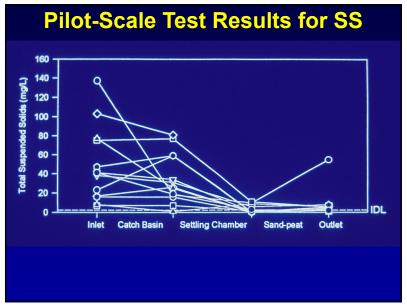
Most of the "dissolved" stormwater metals are in ionic forms and are therefore potentially amenable to sorption and ion-exchange removal processes.

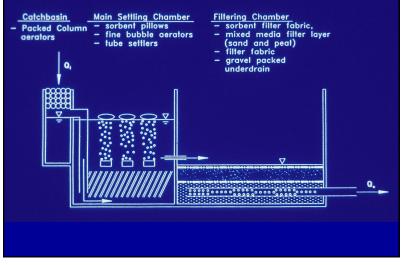
Development of Stormwater Control Devices using Media

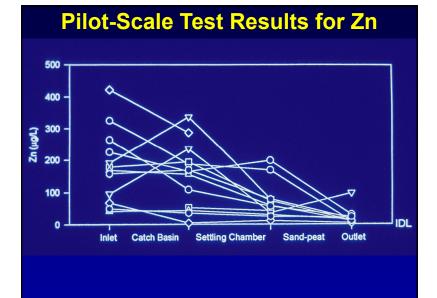
- Multiple treatment processes can be incorporated into stormwater treatment units sized for various applications.
 - Gross solids and floatables control (screening)
 - Capture of fine solids (settling or filtration)
 - Control of targeted dissolved pollutants (sorption/ion exchange)

10

9


Pilot-Scale Treatment Tests using Filtration, Carbon Adsorption, UV Disinfection, and Aeration


Pilot-scale filters examining many different media.



MCTT Cross-Section

Milwaukee, WI, Ruby Garage Public Works Maintenance Yard MCTT Site

Minocqua, WI, MCTT Installation

18

Wisconsin Full-Scale MCTT Test Results

(median % reductions and median effluent quality)	Milwaukee (15 events)	Minocqua (7 events)
Suspended Solids	98 (<5 mg/L)	85 (10 mg/L)
Phosphorus	88 (0.02 mg/L)	>80 (<0.1 mg/L)
Copper	90 (3 μg/L)	65 (15 μg/L)
Lead	96 (1.8 μg/L)	nd (<3 μg/L)
Zinc	91 (<20 μg/L)	90 (15 μg/L)
Benzo (b) fluoranthene	>95 (<0.1 μg/L)	>75 <0.1 μg/L)
Phenanthrene	99 (<0.05 μg/L)	>65 (<0.2 μg/L)
Pyrene	98 (<0.05 μg/L)	>75 (<0.2 μg/L)

Water Environment Research Foundation (WERF) project on Metals Removal from Stormwater

Main Project Goals:

- Contribute to the science of metals' capture from urban runoff by filter media and grass swales.
- Provide guidelines to enhance the design of filters and swales for metals capture from urban runoff.

Media Filtration Goals:

- Characterize physical properties
- Assess & quantify ability of media to capture metals
- Rank media & select media for in-depth study
- Evaluate effect of varying conditions on rate and extent of capture
- Laboratory- and pilot-scale studies of pollutant removal
- Disposal issues of used media (using TCLP)

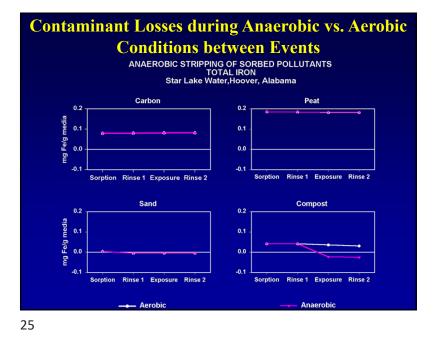
21

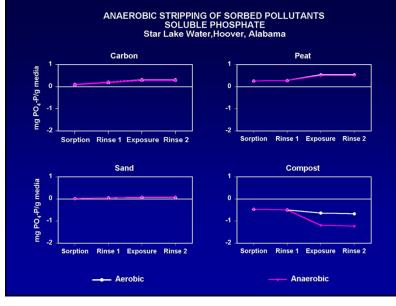
Laboratory Media Studies • Rate and Extent of Metals Capture

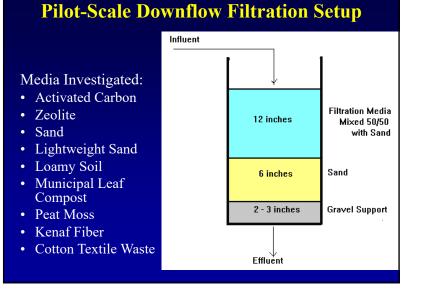
Metals Capture – Capacities

- (partitioning)
- Kinetics (rate of uptake)
- Effect of pH & pH changes due to media, particle size, interfering ions, etc
- Packed bed filter studies
- Physical properties and surface area determinations

Treatment Media Examined during WERF Study

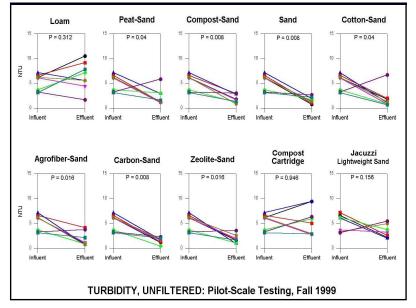

- <u>Traditional Media</u>
 - Ion Exchange Resin
 - Granular activated carbon (GAC)
 - Sand
 - <u>Metals Examined</u>
 Copper, Cadmium,
 Chromium, Zinc,
 Lead, and Iron

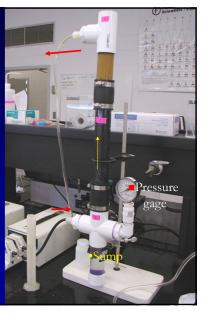

- <u>Other Low Cost (disposable)</u> <u>media</u>
 - Compost
 - 2 Zeolites
 - Iron Oxide Coated Sand
 - Agrofiber
 - Cotton Mill Waste
 - Peat-Sand Mix
 - Kudzu
 - Peanut Hull Pellets


22

Cation Exchange Capacities for Different Media

	CEC (meq/100 g)
Peat Moss	22
Compost	19
Activated Carbon	5.4
Zeolite	6.9
Cotton Waste	3.8
Agrofiber	9.4
Sand	3.5





29

Upflow Filters for Metals Removal

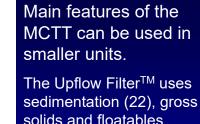
- Particulate Solids: Good removal (>90%) for all media for all runs.
- Particulate Metals: Generally 80-100% removal for Pb, Zn, Cd, and Fe and 60-95% removal for Cu and Cr.
- Peat had the best removal rates for particulate bound metals. Removal rates of compost and zeolite were about the same.

Clogging Problems Originally Addressed by Pre-Treatment. What about Upflow Filtration? **Expected Advantages: Upflow Filter Design with Sump** Reduced Clogging: Sump collects large fraction of Turbidity versus Cumulative Volume sediment load.

180 **Prolonged Life: Particles** 160 trapped on the surface of 140 No sump_ the media will fall into the 120 (n LN) 100 sump during quiescent **Furbidity** 80 High Flow Rates: Since large and heavy solids will be removed by way of With sump settling in the sump prior 20 to encountering the filter, the filters can be operated 1500 0 500 1000 at higher flow rates. Cumulative Volume (m)

30

periods.

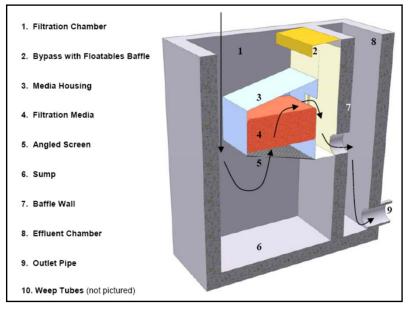

Upflow filter insert for catchbasins **→** ининининининини 24 32

22

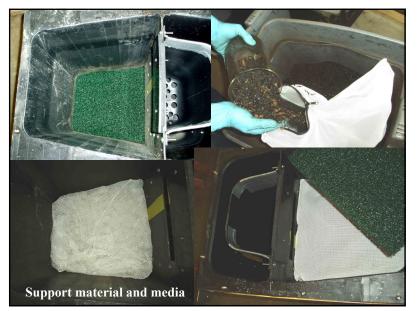
FIG.1

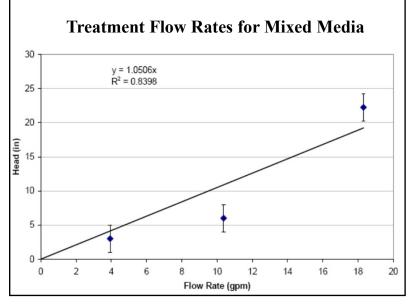
Upflow FilterTM patented

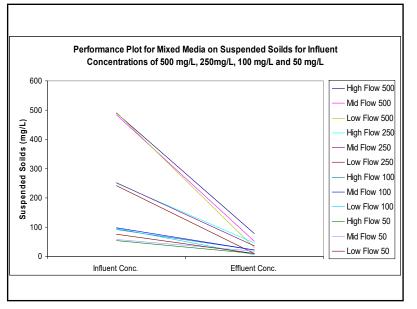
36

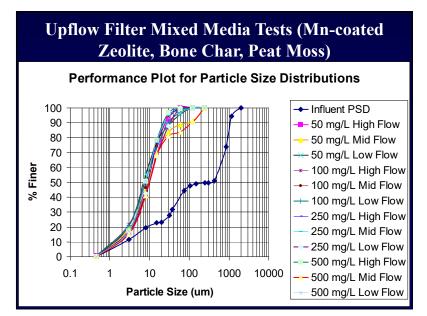


solids and floatables screening (28), moderate to fine solids capture (34 and 24), and sorption/ion exchange of targeted pollutants (24 and 26).

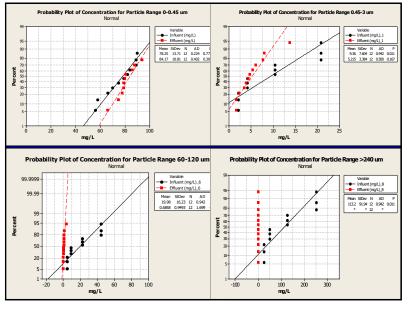

Successful flow tests using prototype unit and mixed media as part of EPA SBIR phase 1 project (controlled lab tests). Phase 2 tests recently completed (field tests), and

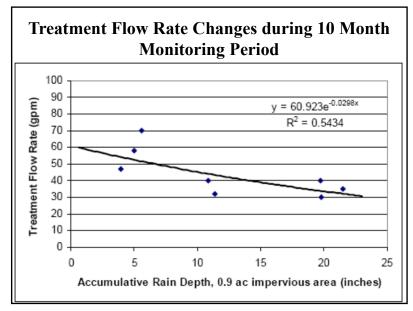


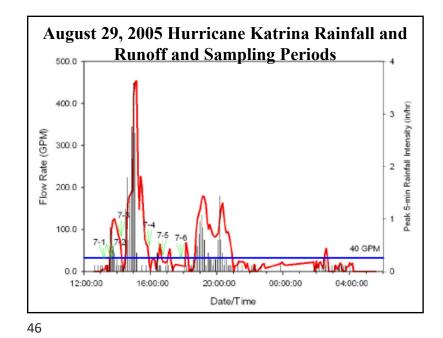


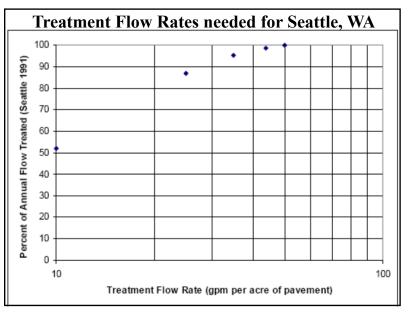


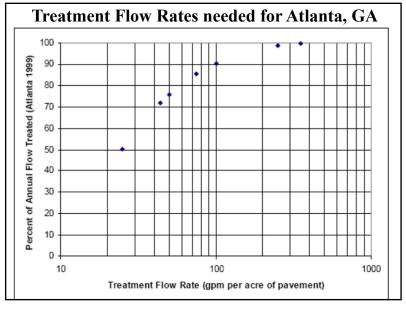
Media (each bag)	Flow (gpm)	Influent SS Conc. (mg/L)	Average Effluent SS Conc. (mg/L)	% SS reduc.
Zeo+ Zeo	High (21)	480	75	84
Zeo+ Zeo	Mid (10)	482	36	92
Zeo+ Zeo	Low (6.3)	461	16	97
Mix + Mix	High (27)	487	75	85
Mix + Mix	Mid (15)	483	42	91
Mix + Mix	Low (5.8)	482	20	96

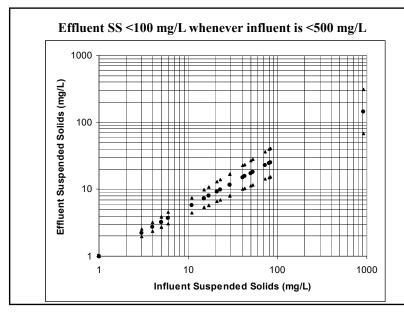

Zeo: Manganese-coated zeolite

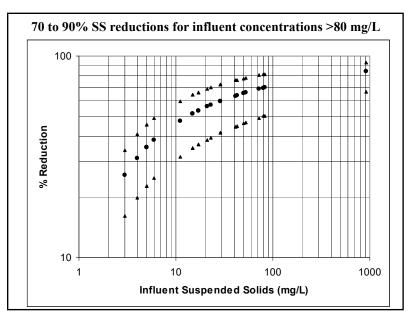

Mix: 45% Mn-Z, 45% bone char, 10% peat moss

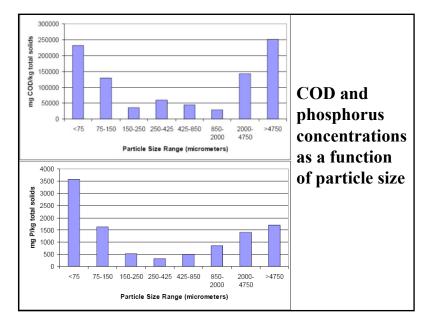

Suspended Solids Removal Tests

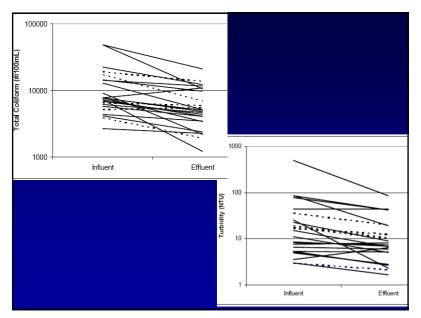

42

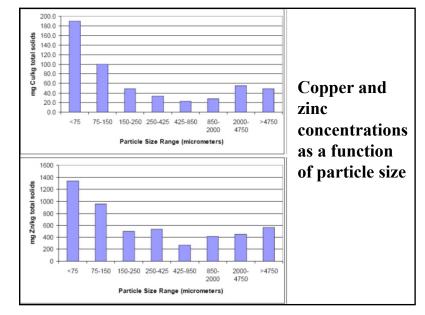

% Reductions	0 to 0.45 µm (TDS)		
			1200 m/day
concentration in particle size range (mg/L):	350 m/day (or less)	760 m/day	(to) overflow)
69 (and smaller)	0	0	0
70	0	0	0
80	0	0	0
93 (and larger)	0 0.45 to 3 μm	0	0
2.1 (and smaller)	0	0	0
4.2	0	0	0
10.4	80	42	26
20.8 (and larger)	80 60 to 120 μm	62	34
4.4 (and smaller	·) 95	95	95
8.	9 97	97	97
22.	2 98	97	97
44.4 (and larger	·) 98	98	98





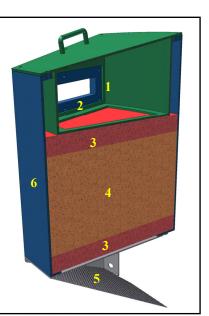




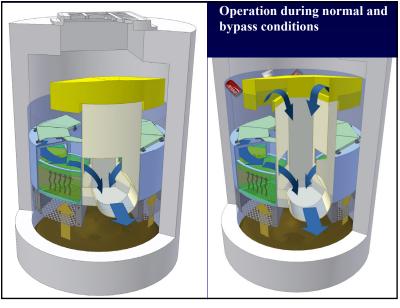

50

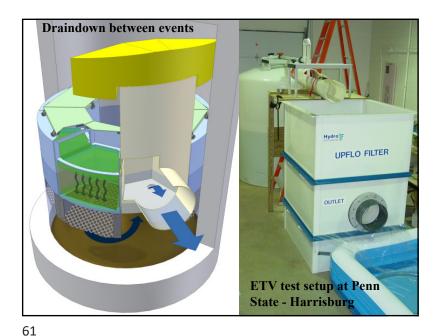
Particulate Solids Removal by Particle Size, during Monitoring Period (UpFlow Filter, with Sump)

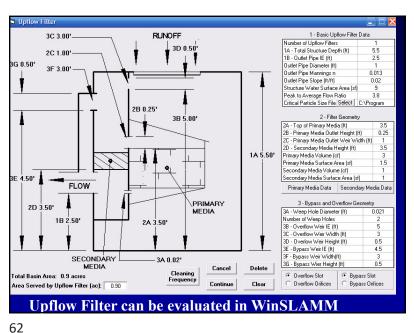
Particle size range (µm)	SS influent mass (kg)	SS effluent mass (kg)	SS removed (kg)	% reduction
0.45-3	9.3	2.8	6.6	70
3-12	18.7	6.4	12.3	66
12-30	22.4	7.7	14.7	66
30-60	26.7	6.8	19.9	74
60-120	4.6	1.8	2.9	61
120-250	19.8	4.3	15.5	78
250-425	11.5	0.0	11.5	100
425-850	17.1	0.0	17.1	100
850-2,000	10.5	0.0	10.5	100
2,000-4,750	4.8	0.0	4.8	100
>4,750	3.5	0.0	3.5	100
sum	148.9	29.8	119.2	80



Upflow Filter Components


- 1. Module Cap/Media Restraint and Upper Flow Collection Chamber
- 2. Conveyance Slot
- 3. Flow-distributing Media
- 4. Filter Media
- 5. Coarse Screen
- 6. Filter Module
- Hydro International, Ltd.


57



Hydraulic Characterization High flow tests Velocity [ft/s] 0.3782 0.2837 0.1891 0.0946 **Assembling Upflow** Filter modules for lab tests **Initial CFD** Model r x Hydro International, Ltd. Results

Conclusions

- The bench-scale treatability tests conducted during the development of the MCTT showed that a treatment train was needed to provide redundancy because of frequent variability in sample treatability storm to storm, even for a single sampling site.
- Possible to develop other stormwater controls that provide treatment train approach.
- Upflow filtration with a sump and interevent drainage provided the best combination of pre-treatment options and high flow capacity, along with sustained high contaminant removal rates.

Conclusions (continued)

Constituent and units	Reported irreducible concentrations (conventional high- level stormwater treatment)	Effluent concentrations with treatment train using sedimentation along with sorption/ion exchange
Particulate solids (mg/L)	10 to 45	<5 to 10
Phosphorus (mg/L)	0.2 to 0.3	0.02 to 0.1
TKN (mg/L)	0.9 to 1.3	0.8
Cadmium (µg/L)	3	0.1
Copper (µg/L)	15	3 to 15
Lead (µg/L)	12	3 to 15
Zinc (μg/L)	37	<20

Selected References

- Barrett, M. *Performance Summary Report for the Multi-Chambered Treatment Trains*. Prepared for the California Department of Transportation. May 2001.
- Clark, S., R. Pitt, and R. Raghavan. *SBIR Phase 1 report for Upflow Filtration Treatment of Stormwater*. U.S. EPA. Publication pending 2003.
- Corsi, S.R., S.R. Greb, R.T. Bannerman, and R.E. Pitt. Evaluation of the Multi-Chambered Treatment Train, a Retrofit Water Quality Management Practice. U.S. Geological Survey. Open-File Report 99-270. Middleton, Wisconsin. 24 pgs. 1999.
- Johnson, P., R. Pitt, S. Clark, M. Urritta, and R. Durrans. Innovative Metal Removal for Stormwater Treatment. Water Environment Research Foundation. Publication pending 2003.
- Pitt, R., B. Robertson, P. Barron, A. Ayyoubi, and S. Clark. Stormwater Treatment at Critical Areas: The Multi-Chambered Treatment Train (MCTT). U.S. Environmental Protection Agency, Wet Weather Flow Management Program, National Risk Management Research Laboratory. EPA/600/R-99/017. Cincinnati, Ohio. 505 pgs. March 1999.

Acknowledgements

WERF Project 97-IRM-2 Project Manager: Jeff Moeller

U.S. EPA Small Business Innovative Research Program (SBIR1 and SBIR2 plus ETV testing) Project Officer: Richard Field

Many graduate students at the University of Alabama and Penn State-Harrisburg

Industrial Partners (US Infrastructure and Hydro International)

65