

Relative Effectiveness of Controls		
	Cost	Effectiveness
Inappropriate discharge	Low	High
Erosion control	Low to mod.	Low to moderate
Floatable and litter control	Low to mod.	Low to high
Oil&water separators	Moderate	Very low
Critical source control	High	Low to high
Low impact development	Low to mod.	Moderate to high
Public education	Low to mod.	?????
Wet detention ponds	Mod. To high	Usually high

Calculated Benefits of Various Roof Runoff Controls (compared to typical directly connected residential pitched roofs)

Annual roof runoff volume reductions	Birmingham, Alabama (55.5 in.)	Seattle, Wash. (33.4 in.)	Phoenix, Arizona (9.6 in.)
Cistern for reuse of runoff for toilet flushing and irrigation (10 ft. diameter x 5 ft. high)	66	67	88%
Planted green roof (but will need to irrigate during dry periods)	75	77	84%
Disconnect roof drains to loam soils	84	87	91%
Rain garden with amended soils (10 ft. x 6.5 ft.)	87	100	96%

There are therefore a number of potential controls for roof runoff, from the conventional to the unusual, that can result in very large runoff reductions.

5

6

Multi-Chambered Treatment Tank (MCTT) for Critical Source Areas (underground installation with very high removals of heavy metals and toxic organics, along with conventional pollutants)

Milwaukee, WI, Ruby Garage Public Works Maintenance Yard and Minocqua, WI, MCTT Sites

22

Full-Scale MCTT Test Results

(median % reductions and median effluent quality)	Milwaukee (15 events)	Minocqua (7 events)
Suspended Solids	98 (<5 mg/L)	85 (10 mg/L)
Phosphorus	88 (0.02 mg/L)	>80 (<0.1 mg/L)
Copper	90 (3 μg/L)	65 (15 μg/L)
Lead	96 (1.8 μg/L)	nd (<3 μg/L)
Zinc	91 (<20 μg/L)	90 (15 μg/L)
Benzo (b) fluoranthene	>95 (<0.1 µg/L)	>75 <0.1 μg/L)
Phenanthrene	99 (<0.05 μg/L)	>65 (<0.2 µg/L)
Pyrene	98 (<0.05 μg/L)	>75 (<0.2 μg/L)

Filtration Performance			
Constituent and units	Reported irreducible concentrations (conventional high- level stormwater treatment)	Effluent concentrations with treatment trains using sedimentation along with sorption/ion exchange	
Particulate solids (mg/L)	10 to 45	<5 to 10	
Phosphorus (mg/L)	0.2 to 0.3	0.02 to 0.1	
TKN (mg/L)	0.9 to 1.3	0.8	
Cadmium (µg/L)	3	0.1	
Copper (µg/L)	15	3 to 15	
Lead (µg/L)	12	3 to 15	
Zinc (µg/L)	37	<20	

- High Flow 500 - Mid Flow 500

Low Flow 500

High Flow 250 Mid Flow 250

- Low Flow 250

— High Flow 100 — Mid Flow 100

Low Flow 100 High Flow 50

- Mid Flow 50 - Low Flow 50

Retrofitted to result in 90% SS control, the longterm monitored results were 87%. 50% 10% 90% 87 35 97 <0 52 86 <0 41 76 <0 <0 56 15 80 95 29 60 84 <0 24 80 Particulate Phosphorus -20 60 80 <0 47 81 <0 43 83 -40 40 80 <0 45 75 <0 12 68 -117 70 95 <0 31 69 <0 59 <0

30

Soils are mostly hydrologic group B which is classified as silt, loam, and silt-loam, having typical infiltration rates of about 0.5 in/hr, although most of the soils are highly disturbed and will need to be restored.

North Huntsville Industrial Park Conservation Design

Reductions in Runoff Volume for Cedar Hills (calculated using WinSLAMM and verified by site monitoring)

Type of Control	Runoff Volume, inches	Expected Change (being monitored)
Pre-development	1.3	
No Controls	6.7	515% increase
Swales + Pond/wetland + Infiltration Basin	1.5	78% decrease, compared to no controls 15% increase over pre-development

Combinations of Controls Needed to Meet Many Stormwater Management Objectives

- Smallest storms should be captured on-site for reuse, or infiltrated
- Design controls to treat runoff that cannot be infiltrated on site
- Provide controls to reduce energy of large events that would otherwise affect habitat
- Provide conventional flooding and drainage controls

42

41

Appropriate Combinations of Controls

- No single control is adequate for all problems
- Only infiltration reduces water flows, along with soluble and particulate pollutants. Only applicable in conditions having minimal groundwater contamination potential.
- Wet detention ponds reduce particulate pollutants and may help control dry weather flows. They do not consistently reduce concentrations of soluble pollutants, nor do they generally solve regional drainage and flooding problems.
- A combination of bioretention and sedimentation practices is usually needed, at both critical source areas and at critical outfalls.