

WinSLAMM Applied to Areas having Combined Sewers

- Detailed watershed evaluations of existing and proposed conditions
- Examine structural and non-structural controls at many locations in the watershed
- "Green infrastructure" components include disconnections of impervious areas, rain barrels and cisterns with stormwater beneficial reuse, porous pavement, bioretention facilities, grass swales, etc.
- Model outputs can be coupled with detailed drainage hydraulic models, such as SWMM5, to measure overall benefit to overflow frequency and overflow volume

2

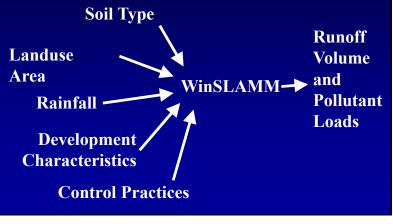
Background & History

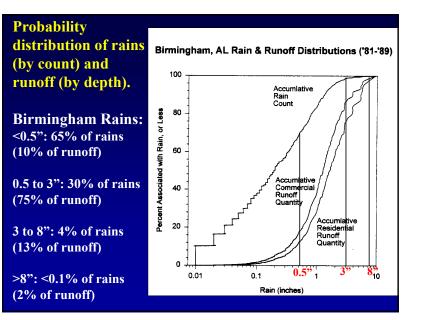
- Development Began in mid-1970's
 - Early EPA street cleaning and receiving water projects
 - San Jose and Coyote Creek (CA)
- Primary Purpose:
 - Identify Sources of <u>Urban</u> Stormwater Pollutants
 - Evaluate Efficiency of Control Practices

Background & History

Mid-1980's:

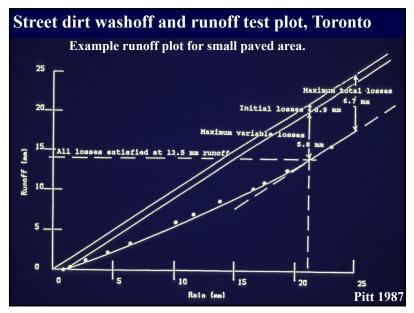
- Model expanded to include more management options beyond street cleaning
- Nationwide Urban Runoff Program (NURP) projects provided large data set for model, especially: Alameda Co. CA; Bellevue, WA; and Milwaukee, WI
- Ontario Ministry of the Environment (Ottawa)

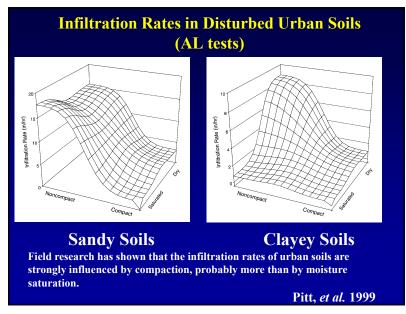

Background & History

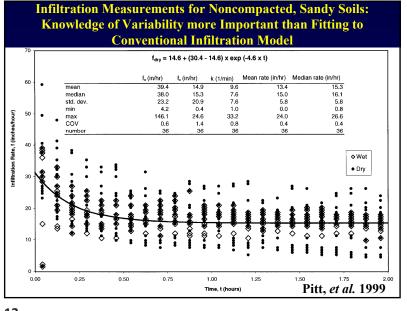

- Mid-1980's Model started to be used in Agency Programs:
 - Toronto Area Watershed Management Strategy
 - Wis. Dept. of Natural Resources: Priority Watershed Program
- First Windows Version Developed in 1995 (Currently developing Windows version 10)
- Continuously being updated based on user needs and new research (recent and current support from Stormwater Management Authority of Jefferson County, AL; the TVA, Economic Development group; WI DNR; and the USGS)
- Currently being used in the Kansas City national demonstration project of green infrastructure benefits in combined sewage area

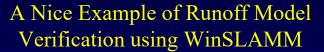

5

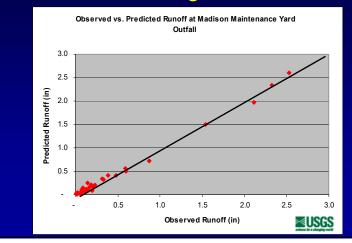
WinSLAMM Source Area, Land Use, Drainage System, and Outfall Controls										
	Hydro- dynamic Device	Wet Detent- ion	Street Clean- ing	Biofilt- ration	Porous Pave- ment	Rain Barrels/ Tanks	Beneficial Uses of Storm- water	Grass Swales	Catch- basin Clean- ing	Drainage Dis- connect- ions
Roof										
Paved Parking/Storage										
Unpaved Parking/Storage										
Playgrounds										
Driveways										
Sidewalks/Walks										
Streets/Alleys										
Undeveloped Areas										
Small Landscaped Areas										
Other Pervious Areas										
Other Impervious Areas										
Freeway Lanes/Shoulders										
Large Landscaped Areas										
Land Uses (multiple source areas)										
Drainage System										
Outfall		_								

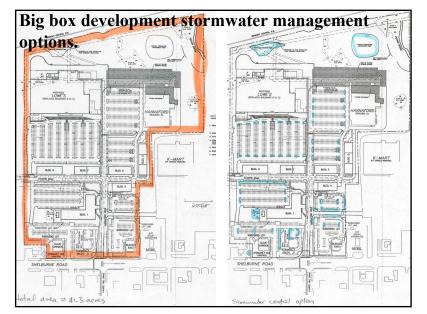

WinSLAMM integrates site and development information:











Soil Texture	Compaction Method	Dry Bulk Density (g/cc)	Long-term Average Infilt. Rate (in/hr)	Compaction, especially
Sandy	Hand	1.595	35	when a small
Loam	Standard	1.653	9	amount of
	Modified	1.992	1.5	clay is present.
Silt	Hand	1.504	1.3	causes a large
Loam	Standard	1.593	0.027	loss in
	Modified	1.690	0.0017	infiltration
Clay	Hand	1.502	0.29	capacity.
Loam	Standard	1.703	0.015	
	Modified	1.911	< 0.001	

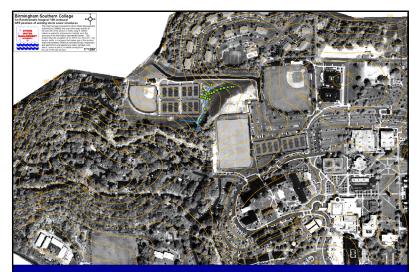
14

Conservation Design Approach for New Development

- Better site planning to maximize resources of site
- Emphasize water conservation and water reuse on site
- Encourage infiltration of runoff at site but prevent groundwater contamination
- Treat water at critical source areas and encourage pollution prevention (no zinc coatings and copper, for example)
- Treat runoff that cannot be infiltrated at site

Stormwater Controls

- Biofiltration areas (parking lot islands)
 - 52 units of 40 ft by 8 ft
 - Surface area: 320 ft²
 - Bottom area: 300 ft²
 - Depth: 1 ft
 - Vertical stand pipe: 0.5 ft. dia. 0.75 ft high
 - Broad-crested weir overflow: 8 ft long, 0.25 ft wide and 0.9 ft high
 - Amended soil: sandy loam
- Also examined wet detention ponds


Summary of Measured Areas

- Totally connected impervious areas: 25.9 acres
 - parking 15.3 acres
 - roofs (flat) 8.2 acres
 - streets (1.2 curb-miles and 33 ft wide) 2.4 acres
 - Landscaped/open space 15.4 acres
 - Total Area 41.3 acres

18

Runoff Volume Changes

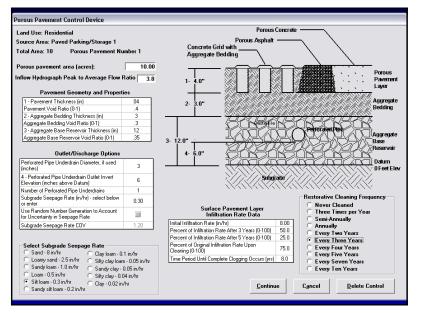
	Base conditions	With biofiltration
Runoff volume (10 ⁶ ft ³ /yr)	2.85	1.67
Flow-weighted average Rv	0.59	0.35
% reduction in volume	n/a	41%

Birmingham Southern College Campus (map by Jefferson County Stormwater Management Authority)

21

Birmingham Southern College Fraternity Row

	Acres	% of Total
Roadways	0.24	6.6%
Parking	0.89	24.5
Walks	0.25	6.9
Roofs	0.58	16.0
Landscaping	1.67	46.0
Total:	3.63	100.0


22

Supplemental Irrigation

	Inches per month (example)	Average Use for 1/2 acre (gal/day)
Late Fall and Winter (Nov-March)	1 to 1-1/2	230 - 340
Spring (April-May)	2 to 3	460 - 680
Summer (June- August)	4	910
Fall (Sept-Oct)	2 to 3	460 - 680
Total:	28 (added to 54 inches of rain)	

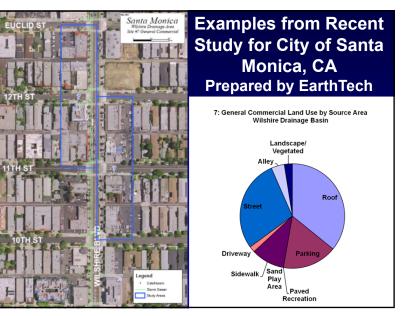
Capture and Reuse of Roof Runoff for Supplemental Irrigation

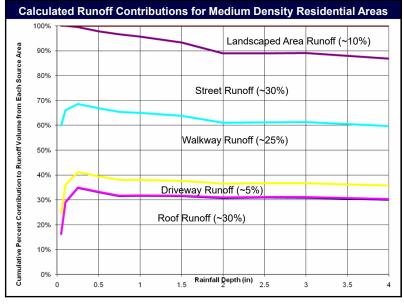
Tankage Volume (ft ³) per 4,000 ft ² Building	Percentage of Annual Roof Runoff used for Irrigation
1,000	56%
2,000	56
4,000	74
8,000	90
16,000	98

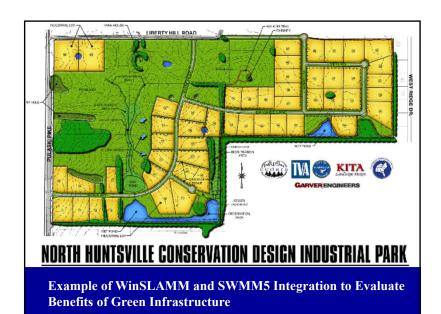
Combinations of Cor Runoff Vo		Reduce
	Total Annual Runoff (ft ³ /year)	Increase Compared to Undeveloped Conditions
Undeveloped	46,000	
Conventional development	380,000	8.3X
Grass swales and walkway porous pavers	260,000	5.7
Grass swales and walkway porous pavers, plus roof runoff disconnections	170,000	3.7
Grass swales and walkway porous pavers, plus bioretention for roof and parking area runoff	66,000	1.4

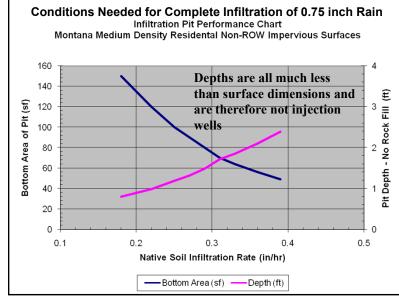
26

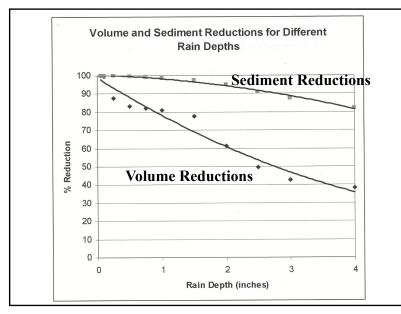
Elements of Conservation Design for Cedar Hills Development (near Madison, WI, project conducted by Roger Bannerman, WI DNR and Bill Selbig, USGS)

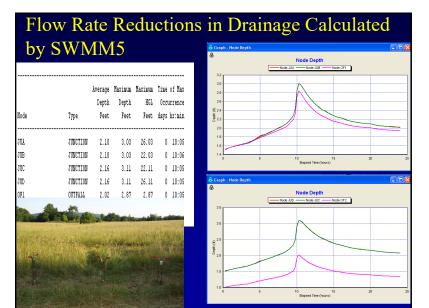

- Grass Swales
- Wet Detention Pond
- Infiltration Basin/Wetland
- Reduced Street Width




Reductions in Runoff Volume for Cedar Hills (calculated using WinSLAMM and verified by site monitoring)

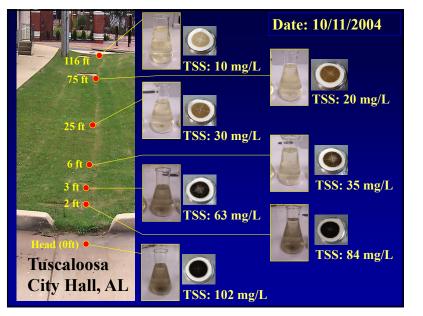

Type of Control	Runoff Volume, inches	Expected Change (being monitored)
Pre-development	1.3	
No Controls	6.7	515% increase
Swales + Pond/wetland + Infiltration Basin	1.5	78% decrease, compared to no controls 15% increase over pre-development

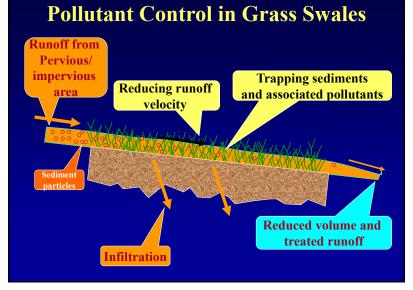


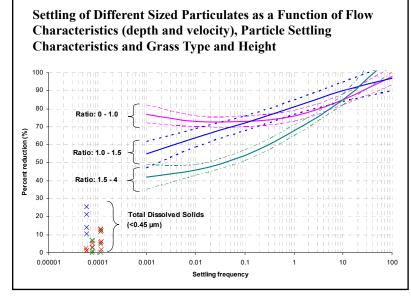

34

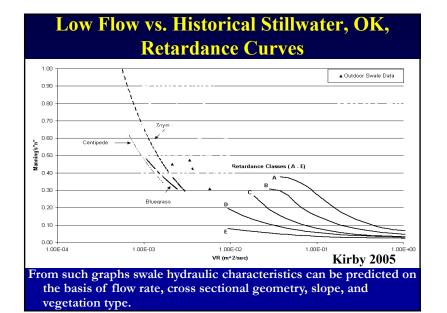
Conservation Design Elements for North Huntsville, AL, Industrial Park

- Grass filtering and swale drainages
- Modified soils to protect groundwater
- Wet detention ponds
- Bioretention and site infiltration devices
- Critical source area controls at loading docks, etc.
- Pollution prevention through material selection (no exposed galvanized metal, for example) and no exposure of materials and products.

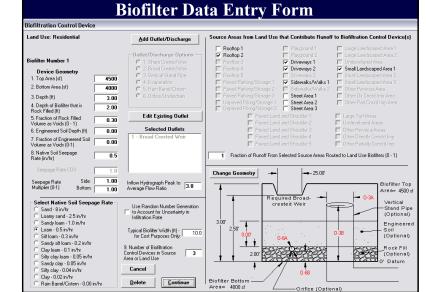


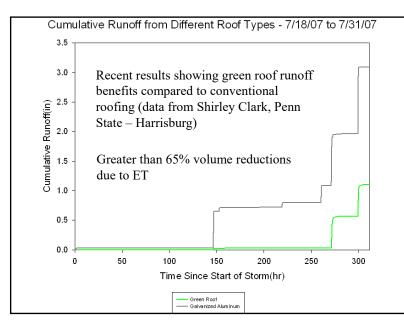


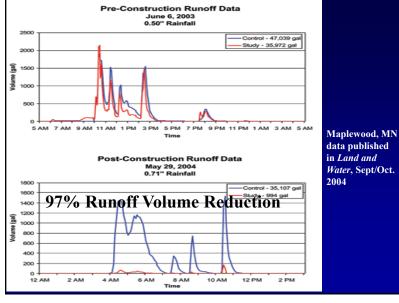




Grass Swale Data	Combined Land Uses	Residential Land Use	Institutional Land Use	Commercial Land Use	Industrial Land Use	Other Urban Land Use	Freeway Land Use
Total Area in Land Use (ac)		31.00		28.00	46.00		
Area Served by Swales (ac)		31.00		0.00	46.00		
Swale Density (ft/ac)		350.00		0.00	125.00		
Total Swale Length (ft)		10850		0	5750		
Average Swale Length to Outlet (ft)		990		0	2123		
Typical Bottom Width (ft)		3.0		0.0	7.0		
Typical Swale Side Slope (ft H : 1 ft V)		3.0		0.0	3.0		
Typical Longitudinal Slope (ft/ft, V/H)		0.015		0.000	0.015		
Swale Retardance Factor		D 🔻	-	-	D 👻	-	-
Typical Grass Height (in)		3.0		0.0	3.0		
Swale Dynamic Infiltration Rate (in/hr)		1.250		0.000	0.500		
Typical Swale Depth (ft) for Cost Analysis (Optional)		2.0		0.0	3.0		
				Total			
Select Critical Particle Size File Particle Size Distribution	n File Data (àrid		rotai		oy swales (acre otal area (acre	- 50 - C
Particle Size File Particle Size Distribution	n File Data (àrid		Sel	T ect infiltrati	otal area (acre ion rate by s	es): 105.00
Particle Size File Particle Size Distribution		ârid		Sel	T ect infiltrati Sand - 4 in/hi	otal area (acre ion rate by s	es): 105.00
Particle Size File Particle Size Distribution		àrid		Sel	T ect infiltrati Sand - 4 in/hi Loamy sand -	otal area (acre ion rate by s 1.25 in/hr	es): 105.00
Particle Size File Particle Size Distribution Combined Land Jees Residential LU C:\Program Files\WinSLAMM\NU		ârid		Sel	T ect infiltrati Sand - 4 in/hi Loamy sand - Sandy loam -	otal area (acre ion rate by s 1.25 in/hr 0.5 in/hr	es): 105.00
Particle Size File Particle Size Distribution		ârid		Sel	T ect infiltrati Sand - 4 in/hi Loamy sand - Sandy Ioam - Loam - 0.25 ir	otal area (acre ion rate by s r 1.25 in/hr 0.5 in/hr n/hr	es): 105.00
Particle Size File Particle Size Distribution Combined Land Jees Residential LU C:\Program Files\WinSLAMM\NU		àrid		Sel	T ect infiltrati Sand - 4 in/hi Loamy sand - Sandy loam - Loam - 0.25 ir Silt loam - 0.1	otal area (acre ion rate by s 1.25 in/hr 0.5 in/hr n/hr 5 in/hr	es): 105.00
Particle Size File Particle Size Distribution Combined Land Jees Residential LU C:\Program Files\WinSLAMM\NU	RP.CPZ		ses	Sel	T ect infiltrati Sand - 4 in/hi Loamy sand - Sandy Ioam - Loam - 0.25 in Silt Ioam - 0.1 Sandy silt Ioai	otal area (acre ion rate by s r 1.25 in/hr 0.5 in/hr n/hr 5 in/hr m - 0.1 in/hr	es): 105.00
Particle Size File Particle Size Distribution Combined Land Jess Residential LU C: VProgram Files W/inSLAMM WU nstitutional LU	RP.CPZ		ses	Sel	T ect infiltrati Sand - 4 in/hi Loamy sand - Sandy loam - Loam - 0.25 ir Silt loam - 0.1 Sandy silt loai Clay loam - 0.	otal area (acre ion rate by s r 1.25 in/hr 0.5 in/hr h/hr 5 in/hr m - 0.1 in/hr 05 in/hr	es): 105.00
Particle Size File Particle Size Distribution Combined Land Sessen Residential LU C: VProgram Files W/InSLAMM WU nstitutional LU	RP.CPZ		585	Sel CCCCCCCC	T ect infiltrati Sand - 4 in/hi Loamy sand - Sandy loam - Loam - 0.25 ir Silt loam - 0.1 Sandy silt loai Clay loam - 0.	otal area (acre ion rate by s r 1.25 in/hr 0.5 in/hr h/hr 5 in/hr m - 0.1 in/hr 05 in/hr n - 0.025 in/hr	es): 105.00







Rain Garden Designed for Complete Infiltration of Roof Runoff

49

50

Calculated Benefits of Various Roof Runoff Controls (compared to typical directly connected residential pitched roofs)

Annual roof runoff volume reductions	Birmingham, Alabama (55.5 in.)	Seattle, Wash. (33.4 in.)	Phoenix, Arizona (9.6 in.)
Flat roofs instead of pitched roofs	13	21	25%
Cistern for reuse of runoff for toilet flushing and irrigation (10 ft. diameter x 5 ft. high)	66	67	88%
Planted green roof (but will need to irrigate during dry periods)	75	77	84%
Disconnect roof drains to loam soils	84	87	91%
Rain garden with amended soils (10 ft. x 6.5 ft.)	87	100	96%

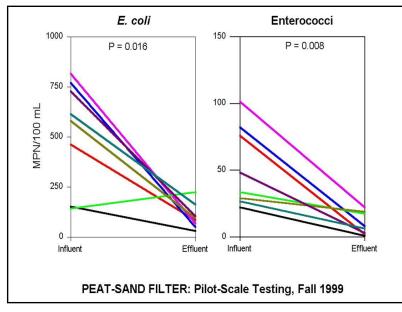
Soil Modifications for rain gardens and other biofiltration areas can significantly increase treatment and infiltration capacity compared to native soils.

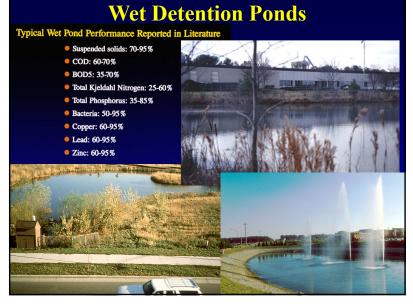
Rob Harrison ,Univ. of Wash., and Bob Pitt, Univ. of Alabama examined the benefits of adding large amounts of compost to glacial till soils at the time of land development (4" of compost for 8" of soil)

53

Changes in Mass Di	scharges for Plots having
Amended Soil Com	pared to Unamended Soil

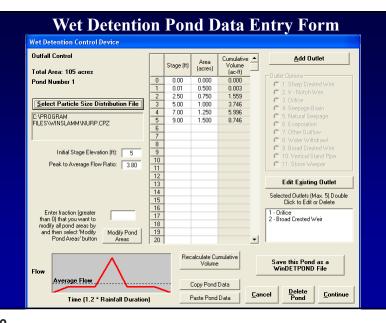
Constituent	Surface Runoff Mass Discharges	Subsurface Flow Mass Discharges
Runoff Volume	0.09	0.29 (due to ET)
Phosphate	0.62	3.0
Ammonia	0.56	4.4
Nitrate	0.28	1.5
Copper	0.33	1.2
Zinc	0.061	0.18

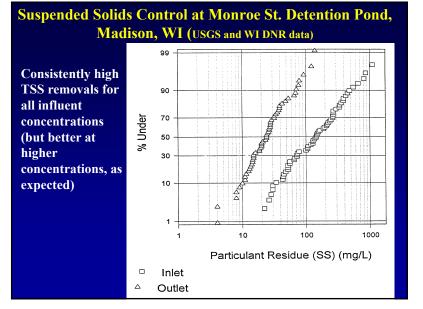

Increased mass discharges in subsurface water pollutants observed for many constituents (new plots).

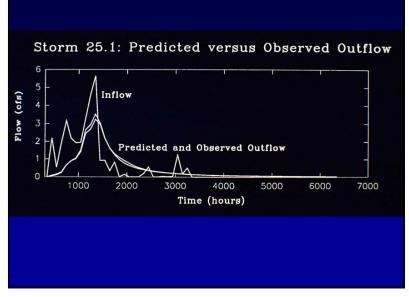

Enhanced Infiltration with Amendments

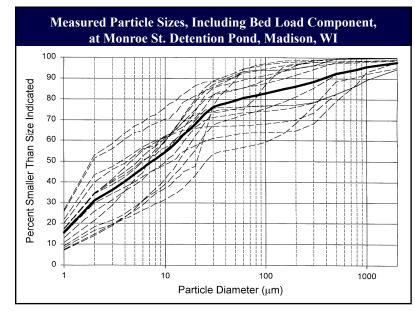
	Average Infiltration Rate (in/h)
UW test plot 1 Alderwood soil alone	0.5
UW test plot 2 Alderwood soil with Ceder Grove compost (old site)	3.0
UW test plot 5 Alderwood soil alone	0.3
UW test plot 6 Alderwood soil with GroCo compost (old site)	3.3

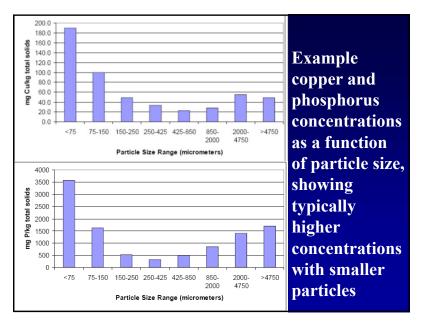
Six to eleven times increased infiltration rates using compost-amended soils measured during long-term tests using large test plots and actual rains (these plots were 3 years old).

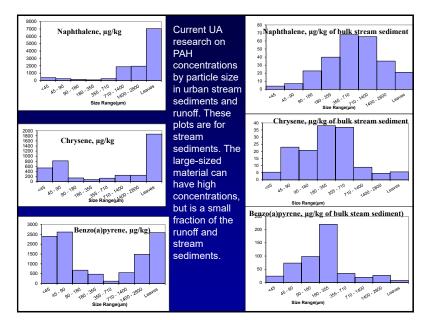


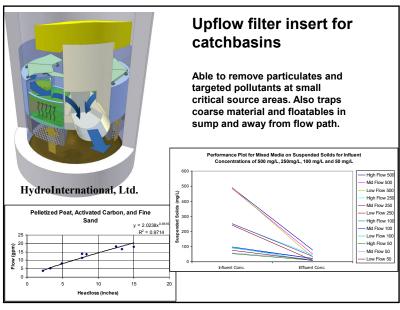


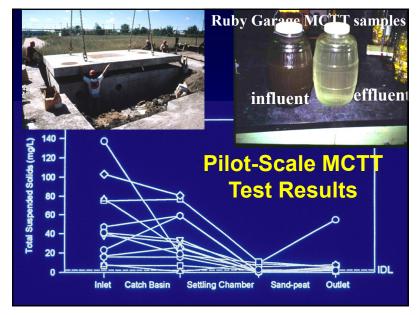

Capture of Stormwater Particulates by Different Soils and Filtering Media

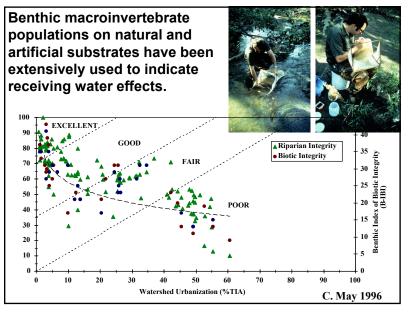

(moderate influent SSC of about 100 mg/L)

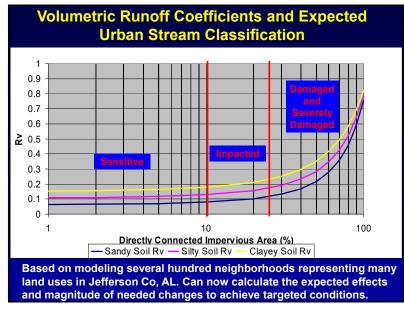

	0.45 to 3µm	3 to 12µm	12 to 30µm	30 to 60µm	60 to 120µm	120 to 250µm	>250 µm
Porous pavement surface (asphalt or concrete)	0%	0%	0%	10%	25%	50%	100%
Coarse gravel	0%	0%	0%	0%	0%	0%	10%
Fine sand	10%	33%	85%	90%	100%	100%	100%
Loam soil	0%	0%	0%	0%	25%	50%	100%
Activated carbon, peat, and fine sand	40%	45%	80%	100%	100%	100%	100%

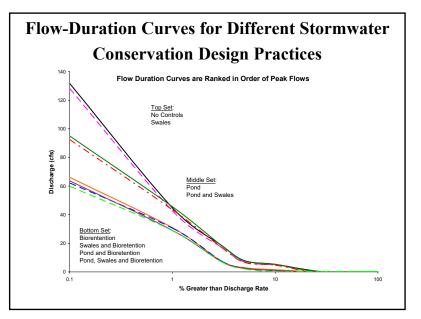


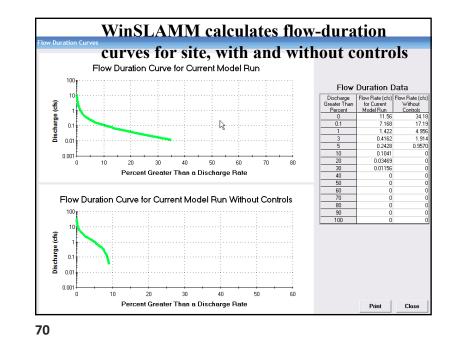












69

Appropriate Combinations of Controls

- No single control is adequate for all problems
- Only infiltration reduces water flows, along with soluble and particulate pollutants. Only applicable in conditions having minimal groundwater contamination potential.
- Wet detention ponds reduce particulate pollutants and may help control dry weather flows. They do not consistently reduce concentrations of soluble pollutants, nor do they generally solve regional drainage and flooding problems.
- A combination of bioretention and sedimentation practices is usually needed, at both critical source areas and at critical outfalls.