

© Hydro International 2009

Early Austin, TX, sand filter

1

Delaware sand filter, edge drain

Development of New Control Devices for Critical Source Areas

- Multiple treatment processes that could be incorporated into stormwater treatment units sized for various applications.
 - Gross solids and floatables control (screening)
 - Capture of fine solids (settling or filtration)
 - Control of targeted dissolved pollutants (sorption/ion exchange)

© Hydro International 2009

5

Multi-Chambered Treatment Tank

Pilot Scale Filters Examining Different Media

© Hydro International 2009

Further Work at Univ. of Alabama

 Side by Side comparision of Upflow and Downflow Filtration modes.

14

Laboratory Media Studies Rate and extent of metals capture (variable for different concentrations) Capacity studies Effect of pH Packed bed breakthrough studies Physical properties and surface area determinations

21

Important Attributes of Upflow Filtration Systems

- Should have features of a multitreatment train
 - Screening, Settling, Filtration, Absorption/ion-exchange..
- Incorporate a Sump
- Should use non-leaching media
- Media should be restrained
- Should prevent anaerobic conditions in media (i.e., drain down between events)
- Should be readily accessible for maintenance
- Should have overflow bypass capacity to prevent upstream flooding
- Have retrofit capabilities

Site of Prototype Installation

Field Monitoring of Prototype

- Data collected through extensive field testing by the University of Alabama
 - No chemical exhaustion of media after 12 months of field testing
 - Greater than 70% removal of particulate metals & nutrients and fine TSS
 - Filtration rate steady at 20 gpm/ft² after 12 months in the field

© Hydro International 2009

25

Ideal Filtration Systems

- Should have features of a multitreatment train
 - Screening, Settling, Filtration, Absorption/ion-exchange ..
- Incorporate a Sump
- Should use non-leaching media
- Media should be restrained
- Should prevent anaerobic conditions in media
- Should be readily accessible for maintenance
- Should have overflow bypass capacity to prevent upstream flooding
- Have retrofit capabilities

The Up-Flo® Filter – has these attributes

© Hydro International 2009

<image><image><image><image><section-header><text><text><text>

Designed for Maintenance

- Components fit through standard manhole access port.
- Wide central access region to facilitate maintenance.
- No lifting gear required to maintain.

Performance Verification

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text>

© Hydro International 2009

61

University of Alabama

- Unit installed (new module)
- Controlled sediment testing underway
- Storm event testing to begin this summer
- Scope to test different media types
- Protocols to both TARP & TAPE

Up-Flo[®] Filter in New Zealand

© Hydro International 2009

Servicing & Maintenance

Top Mattala

© Hydro International 2009

Replacing Bags

© Hydro International 2009

77

Spent Media - Disposal

© Hydro International 2009

78

Up-Flo[®] Filter Technology

Conclusions

- The Up-Flo[™] Filter is an advanced, novel, passive, high capacity, proprietary upflow filtration system that incorporates multiple elements of a treatment train (screening, sedimentation and high-rate filtration) in a compact modular device.
- The device uses a sedimentation sump and screening system to pre-treat stormwater runoff before it flows up through the filter media where final polishing via filtration occurs.
- A high-capacity siphoning bypass safeguards against upstream ponding or flooding during high-flow events. The siphon also serves as a floatables baffle to prevent the escape of floatable trash.

