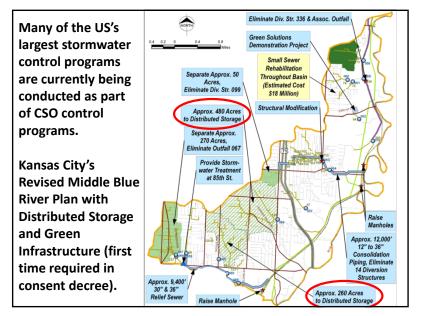
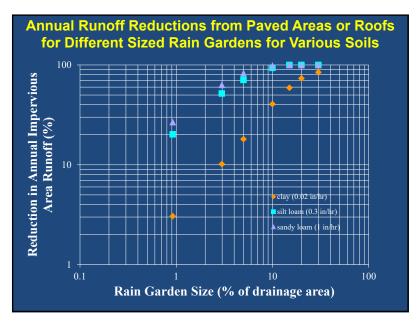


Urban Stormwater Management in the United States, 2009. **Technical Committee Report** Prepared under the Water Science and Technology Board, National Research Council

Welty, Chair, University of Maryland, Baltimore County Lawrence E. Band, University of North Carolina Roger Bannerman, Wisconsin Department of Natural Resources Derek B. Booth. Stillwater Sciences. Inc. Richard R. Horner, University of Washington Charles R. O'Melia (NAE), Johns Hopkins University Robert E. Pitt, University of Alabama Edward T. Rankin, Midwest Biodiversity Institute Thomas R. Schueler, Center for Watershed Protection Kurt Stephenson, Virginia Polytechnic Institute and State University Xavier Swamikannu, CalEPA, Los Angeles Regional Water Board Robert G. Traver, Villanova University Wendy Wagner, University of Texas School of Law William E. Wenk, Wenk Associates, Inc.

Federal Regulations, State Programs, and Local Codes (Chapter 2)


EPA Stormwater Program: 100,000s permits for municipalities, industries, construction Committee survey to better understand monitoring requirements, compliance, staffing, etc.


Distribution of stormwater utility fees (Western Kentucky University Stormwater Campbell and Back 2008). Up to \$35 per month; typical costs are \$3 to 5 per month.

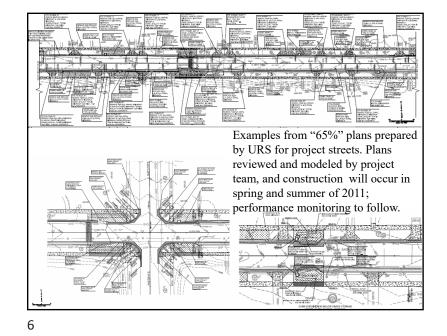

Stormwater	
Control Measures	DRIVE
(SCMs)	
(Chapter 5)	
 20 broad categories of SCMs 	
Characteristics,	
applicability, goals,	
effectiveness, cost	
Organized as they might	
be applied from rooftop to stream	

	TABLE 5-1 Summary of St	ormwater Control Measu	res—When, Where,	and Who
	Stormwater Control Measure	When	Where	Who
	Product Substitution	Continuous	National, state, regional	Regulatory agencies
	Watershed and Land-Use Planning	Planning stage	Watershed	Local planning agencies
	Conservation of Natural Areas	Site and watershed planning stage	Site, watershed	Developer, local planning agency
	Impervious Cover Minimization	Site planning stage	Site	Developer, local review authority
ETHR	Earthwork Minimization	Grading plan	Site	Developer, local review authority
	Erosion and Sediment Control	Construction	Site	Developer, local review authority
2	Reforestation and Soil Conservation	Site planning and construction	Site	Developer, local review authority
	Pollution Prevention SCMs for Stormwater Hotspots	Post-construction or retrofit	Site	Operators and local and state permitting agencies
	Runoff Volume Reduction— Rainwater harvesting	Post-construction or retrofit	Rooftop	Developer, local planning agency and review authority
1	Runoff Volume Reduction- Vegetated	Post-construction or retrofit	Site	Developer, local planning agency and review authority
	Runoff Volume Reduction— Subsurface	Post-construction or retrofit	Site	Developer, local planning agency and review authority
	Peak Reduction and Runoff Treatment	Post-construction or retrofit	Site	Developer, local planning agency and review authority
16 P	Runoff Treatment	Post-construction or retrofit	Site	Developer, local planning agency and review authority
No. of Concession, Name	Aquatic Buffers and Managed Floodplains	Planning, construction and post-construction	Stream corridor	Developer, local plan- ning agency and review authority, landowners
	Stream Rehabilitation	Postdevelopment	Stream corridor	Local planning agency and review authority
	Municipal Housekeeping	Postdevelopment	Streets and storm- water infrastructure	MS4 Permittee
	Illicit Discharge Detection and Elimination	Postdevelopment	Stormwater infrastructure	MS4 Permittee
-	Stormwater Education	Postdevelopment	Stormwater infrastructure	MS4 Permittee
	Residential Stewardship	Postdevelopment	Stormwater infrastructure	MS4 Permittee
2 200	Note: Nonstructural SCMs are	in italics.		

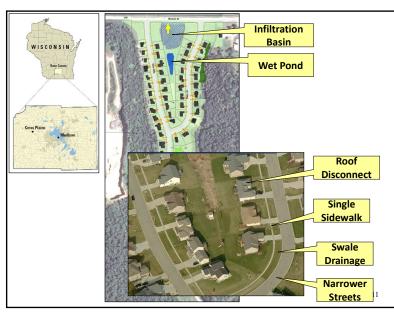
5

Economic Viability of Green Infrastructure in Kansas City (\$21,700/acre; other watersheds in area can cost \$50,000/acre, but still less than gray controls) Control Components for One Example Est. Storage Unit Capital Subarea in Kansas City (preliminary Capital Provided Cost costs, project going out to bid early Cost (\$M) (M gal) (\$/gal 2011): Stored) Only Outfall 059 (475 acres; 19% imperviousness): 1 M gal Storage Tank Controls 0.5 MGD Pumping Station 20.0 1.0 20.00 17 MGD Screening 2,000 ft 48-in. Sewer Gray 500 ft 8-in. Force Main Odor Control Stormwater Inlet Retrofits 0.7 2.00-7.00 0.1 Porous Pavement Parking Lots 1.9 0.325 5.50 4.1 0.30 **Curb Extension Swales** 11.00 Porous Pavement in Street ROW 3.6 0.40 11.00 **Green Solution Totals** 10.3 1.125 9.00

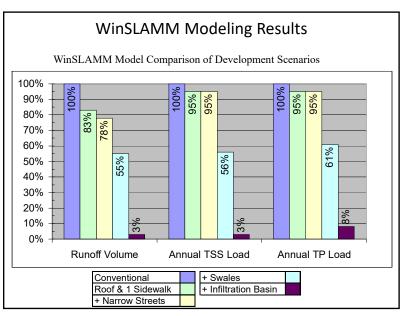
In cooperation with the Wisconsin Department of Natural Resources

A Comparison of Runoff Quantity and Quality from Two Small Basins Undergoing Implementation of Conventionaland Low-Impact-Development (LID) Strategies: Cross Plains, Wisconsin, Water Years 1999–2005

The most

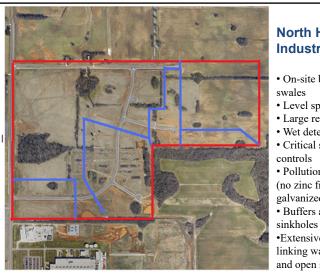

comprehensive fullscale study comparing advanced stormwater controls available.

Available at: http://pubs.usgs.gov/si r/2008/5008/pdf/sir_2 008-5008.pdf


Scientific Investigations Report 2008-5008

U.S. Department of the Interior U.S. Geological Survey

9



Monitored Performance of Controls at Cross Plains Conservation Design Development

Water Year	Construction Phase	Rainfall (inches)	Volume Leaving Basin (inches)	Percent of Volume Retained (%)
1999	Pre-construction	33.3	0.46	99%
2000	Active construction	33.9	4.27	87%
2001	Active construction	38.3	3.68	90%
2002	Active construction (site is approximately 75% built-out)	29.4	0.96	97%
		V	VI DNR and	USGS data

13

North Huntsville Industrial Park

- On-site bioretention
- Level spreadersLarge regional swales
- Wet detention pondsCritical source area
- Pollution prevention (no zinc from galvanized metals!)
 Buffers around sinkholes
- •Extensive trail system linking water features and open space

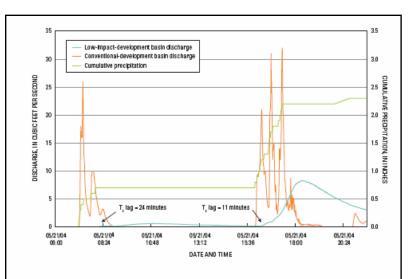
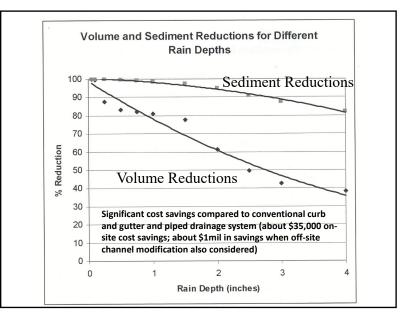
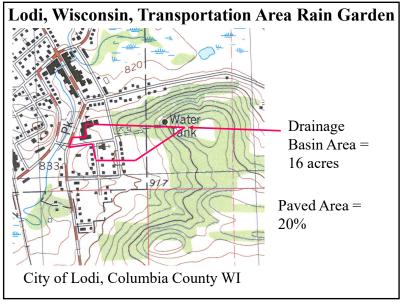
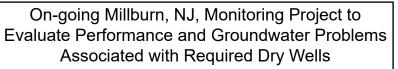
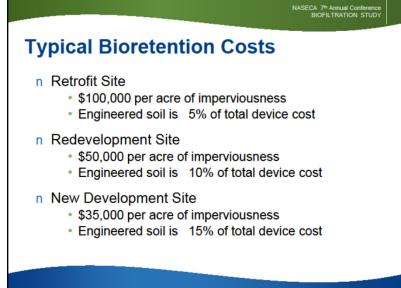




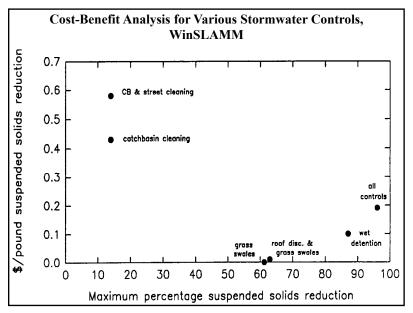
Figure 10. Hydrologic response of low-impact-development (LID) and conventional-development basins to two consecutive precipitation events, Cross Plains, Wis. [7, time of concentration]



\$3,000
\$2,200
\$450
\$11,600
\$2,200
\$3,850
\$3,500
\$27,500

Lodi WI Rain Garden Costs*


Home restoration using underground water storage tanks for landscaping irrigation instead of dry wells. Monthly water costs of \$500 allow payback in about 5 years.



21

e View	Y					
Runoff Volume	Particulate Solids		Polluta		Output Sur	nmary
	Outpu	it Si	ımm	arv		
File Name: C:\Files\SLAMN\\WinS						
	Drainage System	n and Ou	tfall Output	Summary		
	Runoff	Percent Bunoff	Runoff Coefficient	Particulate	Particulate Pa	Percent articulate
	Volume (cu. ft.)	Reduction	(Rv)	Solids Conc. (mg/L)		Solids eduction
Source Area Total			0.70	114.6		ent Reduction
Outfall Tota		eduction Basis alue		1	37756 <== E	
Current File Output: Total Before [Orainage System 5.282E+06	0.01 %	0.70	114.6	37755	
Current File Output: Total After I	Drainage System 5.282E+06	0.01 %	0.70	114.6	37755	
Current File Output: Total Afte	r Outfall Controls 5.240E+06	0.80 %	0.69	23.46	7669	79.69 %
Current File Out	put: Annualized 5.255E+06			1	7690	
	r Outfall Controls 5.255E+U6 0 Years in Model Run: 1.00	<u></u>		I	7030	
Total Alea Modeled (ac) 65.0	U reastrimodernan j 1.00	,				
Print Dutput Summary to Text File			-			-
File			Coct A	nalysis F	oculto	То
Total Control Practice	e Costs		CUSL A		coulto	х.
Capital Cost	\$ 366535			Perform Flow Duration Curve	0	Biological ondition of
,	\$ 300000			Calculations		Receiving Water
Annual Maintenance Cost	\$ 7124			Without Controls		Poor
	\$ 755327					
Annualized Value of All Costs	\$ 60609			With Controls	0.69	Poor

	Costs (capital costs in parentheses)	Effectiveness
Inappropriate discharge control (designed for retrofit)	Low	High
Erosion control	Low to mod.	Low to moderate
Floatable and litter control	Low to mod.	Low to high
Public works practices (street and catchbasin cleaning)	Moderate to high	Usually low
Critical source control (designed for retrofit)	High (\$10,000 to \$50,000 per paved acre)	Low to high
Low impact development (costly to retrofit)	Low to high (cost savings to \$50,000 per watershed acre)	Moderate to high
Public education (on-going)	Low to mod.	?????
Wet detention ponds (costly and hard to retrofit)	Mod. To high (\$1,000 to \$10,000 per watershed acre)	Usually high

25

Appropriate Combinations of Controls

- No single type of control is adequate for all problems
- Only infiltration reduces water flows, along with soluble and particulate pollutants. Only applicable in conditions having minimal groundwater contamination potential.
- Sedimentation practices reduce particulate pollutants and may help control dry weather flows. They do not consistently reduce concentrations of soluble pollutants, nor do they generally solve regional drainage and flooding problems.
- A combination of biofiltration and sedimentation practices is usually needed, at both critical source areas and at critical outfalls.

Performance Data and Cost Sources for Stormwater Controls

- Costs of Urban Stormwater Control Practices (Narayanan and Pitt, 2006): <u>http://www.unix.eng.ua.edu/~rpitt/Publicatio</u> <u>ns/StormwaterTreatability/Arvind%20and%20</u> <u>Pitt%20stormwater%20cost%20report.pdf</u>
- International BMP Database (ASCE/WERF/EPA, continuously updated): <u>http://www.bmpdatabase.org/</u>