

WinSLAMM

Storm Water Modeling Tool for Navy Facilities

SoCal SETAC Annual Meeting 14-15 April 2011

Chuck Katz – Space and Naval Warfare Systems Center Pacific Ryan MacLure – Naval Facilities Engineering Command Southwest Robert Pitt – University of Alabama

Background

- Navy facilities are typically areas of high imperviousness, condensed industrial operations, and high vehicular traffic
- Navy industrial storm water commonly exceeds endof-pipe concentration benchmarks for copper and zinc (63.6 and 117 ppb, respectively)
- End-of-pipe storm water toxicity was found to be primarily a result of elevated copper and zinc
- Sources of elevated copper and zinc in Navy facility runoff have not yet been identified or quantified

Navy Facilities Characteristics

Project Goals

Identify and quantify potential sources of metals in Navy facility storm water runoff

Develop a modeling tool that provides facility managers a link between sources, landuses, and storm water concentrations

Implement the ability to quantify reductions in copper and zinc concentrations as a result of applying Best Management Practices (BMPs)

Planned Efforts

Work with Bob Pitt (PV & Associates) to enhance and validate his Source Loading and Management Model (WinSLAMM) for use at Navy Facilities

- Conduct intensive site characterization evaluations
- Identify and quantify source strengths of various landuses
- Develop Navy facility-specific calibration files for use in WinSLAMM
- Use WinSLAMM's built-in BMP files for assessing efficacy of implementation for different landuses

Site Characterization

- Identify drainage boundaries from facility datasets
- Divide drainages into landuse areas to aid in site visit
- Calculate plan-view areas of buildings, streets, parking lots, etc. using Google Maps Tools (<u>http://www.freemaptools.com/area-calculator.htm</u>)
- Perform site visit inventory materials and characteristics

Drainage Boundaries

Sub-Area Delineations

""

Area Calculations with Google Maps Tool

Measure an Area

Area Output

2130.738 m² 0.002 km² 0.527 Acres

Site Visit Inventory

□ Walk site, measure, and note:

- Building types (office, industrial, commercial)
- Building materials, roof slopes, and connectivity
- Pavement type, slope, wear
- Differentiate loading docks, parking lots, streets, sidewalks
- Lay-down areas and type of materials present
- Activity level (traffic, parking, operations)

Examples – pavement surfaces

Examples – Roof Connectivity

Example – Operational Activities

Example Characterization Summary

Summary of Aerial Coverage			
Land-use	Area		
	Sq. Ft.	Acres	total Area
Asphalt	1278028	29.3	57.7%
Building	735423	16.9	33.2%
Concrete	134870	3.1	6.1%
Pervious Surfaces	46822	1.1	2.1%
Concrete Walkway	9416	0.2	0.4%
Concrete Sidewalk	3449	0.1	0.2%
Brick/Pavers	1982	0.0	0.1%
Secondary Containment	2763	0.1	0.1%
Artificial Turf	364	0.0	0.0%
Totals	2213117	50.8	100.0%

Possible Contaminant Source Materials	Quantity	Unit
Galv. Roof	6736	sq. ft.
Galv. Fence	4834	LF
Galv. Guard Rails	314	LF
Galv. Hand Rails	163	LF
Galv. Turnstile	2	ea
Galv. Light Poles	29	ea
Galv. stop/street pole	19	ea
Galv. Bike Racks	3	ea
Galv. Picnic Tables	1	ea
Galv. Trash Cans	5	ea
Galv. Scaffolding	1	ea
Large Galv. Light	1	ea
Metal Cabinets	4	ea
Scrap Metal Bin	5	ea
Conex Boxes	960	sq. ft.
Dumpsters	17	ea
Roll-off Bins	5	ea

All ground slopes 0-2%

Source Strength Quantitation

X-Ray Fluorometery Screening**
Perform leachate testing of common materials

Use standardized methods to assess

- Relative leachability vs. runoff "truth"
- Variability of materials (wear)
- Leachability over time

WinSLAMM Calibration-Validation

 Develop Navy facility-specific calibration files from site characterizations, and source strength and runoff data
Conduct WinSLAMM modeling calibration datasets
Validate WinSLAMM with additional drainage area datasets

Planned Timeline

Jun 2011 – Complete Site Characterizations
Jul 2011 – Complete leachability studies
Sep 2011 – Complete model calibration runs
Jun 2012 – Complete model validation runs
Sep 2012 – Begin implementation
Sep 2013 - Complete implementation

''''

Acknowledgments

This work is supported by the Navy's Environmental Sustainability Development to Integration Demonstration-Validation Program.

