Infiltration Through Compacted Urban Soils and Effects on Biofiltration

Robert Pitt Department of Civil and Environmental Engineering University of Alabama Tuscaloosa, AL 35487

Shen-en Chen, Shirley Clark, and Choo Keong Ong Department of Civil and Environmental Engineering The University of Alabama at Birmingham Birmingham, AL 35226

Abstract

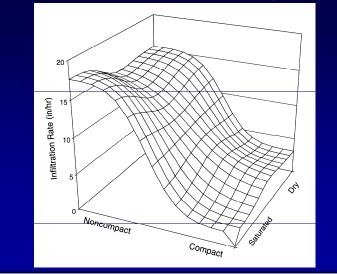
- Previous research identified significant reductions in infiltration rates in disturbed urban soils.
- More than 150 prior tests were conducted in predominately sandy and clayey urban soils in the Birmingham and Mobile, Alabama, areas.
- Infiltration in clayey soils was found to be affected by an interaction of soil moisture and compaction, while infiltration in sandy soils was affected by soil compaction alone.

1

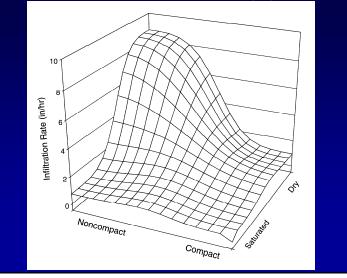
Applications of These Data

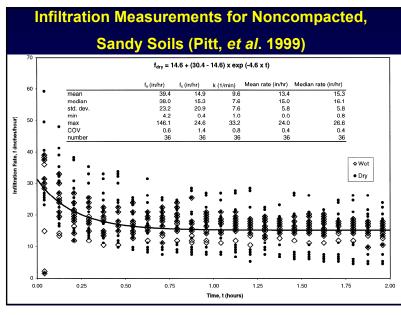
- Newer tests were conducted under more controlled laboratory conditions and represent a wider range of soil textures and specific soil density values.
- The high head conditions during these tests make these results suitable for biofiltration/infiltration devices that have 1 to 2 ft of head, but are likely too high for normal infiltration rates through urban soils.

Disturbed Urban Soils during Land Development



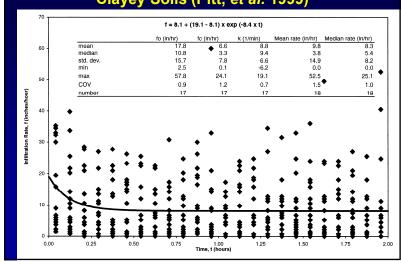
5




6

Infiltration Rates in Disturbed Sandy Urban Soils

Infiltration Rates in Disturbed Clayey Urban Soils



Infiltration Rates during Prior Tests of Disturbed Urban Soils

	Number of tests	Average infiltration rate (in/hr)	COV
Noncompacted sandy soils	36	13	0.4
Compacted sandy soils	39	1.4	1.3
Noncompacted and dry clayey soils	18	9.8	1.5
All other clayey soils (compacted and dry, plus all wetter conditions)	60	0.2	2.4

10

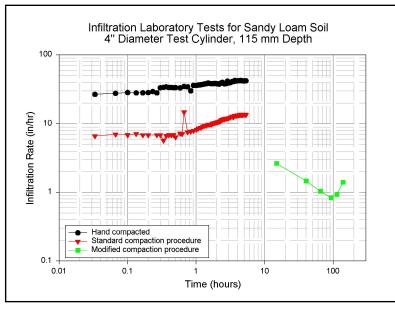
Infiltration Measurements for Dry-Noncompacted, Clayey Soils (Pitt, et al. 1999)

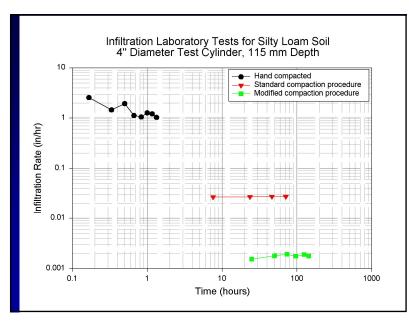
Method

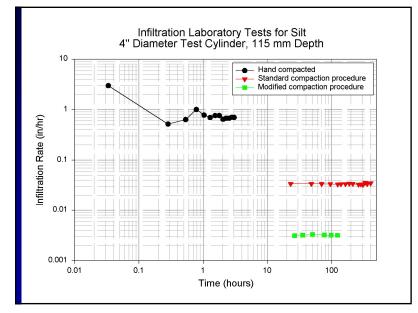
- These newer tests were run for up to 20 days, although most were completed (when steady low rates were observed) within 3 or 4 days.
- Initial soil moisture levels were about 8% (sand was about 3%), while the moisture levels after the tests ranged from about 20 to 45%.
- Three methods were used to compact the test specimens: hand compaction, plus two Proctor test methods.
- Both Modified and Standard Proctor Compactions follow ASTM standard (D 1140-54).

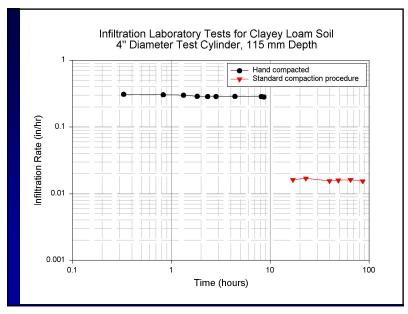
Method (cont.)

- Hand compaction (gentle hand pressing to force the soil into the mold with as little compaction as possible),
- Standard Proctor Compaction (24.4 kN hammer dropped 25 times form 300 mm on each of 3 soil layers).
- Modified Proctor Compaction (44.5 kN hammer dropped 25 times from 460 mm on each of 5 soil layers).


14


Method (cont.)


- A total of 7 soil texture types were tested representing all main areas of the standard soil texture triangle.
- Three levels of compaction were tested for each soil.
- Only 15 tests resulted in observed infiltration. The Standard and Modified Proctor clay tests, the Modified Proctor clay loam, and all of the clay mixture tests did not result in any infiltration, even after several days.


Test Mixtures for Laboratory Tests

	Sand	Clay	Silt	Sandy Ioam	Clayey Ioam	Silty Ioam	Clay mix
% sand	100			72.1	30.1	19.4	30
% clay		100		9.2	30.0	9.7	50
% silt			100	18.7	39.9	70.9	20

Lo	Long-Term Sustainable Average Infiltration Rates								
Soil Texture	Compaction Method	Dry Bulk Density	Effects on Root Growth	Long-term Average Infilt.					
Texture		(g/cc)	(per NRCS)	Rate (in/hr)					
Silt	Hand	1.508	May affect	0.7					
	Standard	1.680	May affect +	0.034					
	Modified	1.740	Restrict	0.0030					
Sand	Hand	1.451	Ideal	Very high					
	Standard	1.494	Ideal	0.5 ?					
	Modified	1.620	May affect -	3.2					
Clay	Hand	1.241	May affect	0.12					
	Standard	n/a	n/a	0					
	Modified	n/a	n/a	0					

Long-Term Sustainable Average Infiltration Rates (cont.)

Soil Texture	Compaction Method	Dry Bulk Density (g/cc)	Effects on Root Growth (per NRCS)	Long-term Average Infilt. Rate (in/hr)
Sandy	Hand	1.595	May Affect	35
Loam	Standard	1.653	May Affect	9
	Modified	1.992	Restrict	1.5
Silt Loam	Hand	1.504	May Affect	1.3
	Standard	1.593	May Affect	0.027
	Modified	1.690	May Affect +	0.0017
Clay	Hand	1.502	May Affect	0.29
Loam	Standard	1.703	Restrict	0.015
	Modified	1.911	Restrict	0

The Source Loading and Management Model (SLAMM)

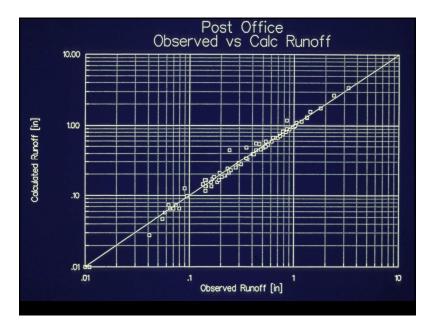
- Developed during past 25 years during EPA, state, and Canadian funded research.
- Identifies pollutant sources during different rain and climatic conditions.
- Prioritizes subwatersheds and critical source areas.
- Evaluates alternative development scenarios, pollution prevention, and combinations of source area and outfall control options.

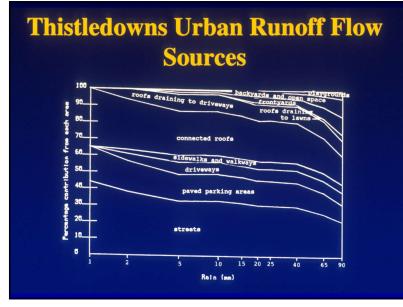
Example SLAMM Land Use Screen

	Durid Cote E	ondean	.ω <u>c</u>	puors	Run	<u>U</u>	ilities <u>H</u> elp							
	<u>R</u> esidentia	1						Area	Π	Т	Т	Т	Т	Sourc
SLA	Institution	al					Source Area	(acres)		w۱	PO	S	В	Area Parame
bilfil	<u>C</u> ommerc	ial					oofs 1			-		-		Falallie
	Industrial						oofs 2		-	+	+	+	+	
Cum	Open Spac	e					oofs 3			-	t	t	t	
C.	Freeways						oofs 4							
Curr							oofs 5			-	+	+	-	
	Land Use I	Biofiltra	ation			•	aved Parking/Storage 1 aved Parking/Storage 2		++	+	+	+	+	
	Pre-Devel		+ Dum	- 66 - 0 - 10	million		aved Parking/Storage 3		-	+	+	+	+	
	re-Deven	opmen	unun	on Qua	nuues		npaved Prkng/Storage 1							
	⊂atchbasiz	1 or <u>D</u> r	ainag	e Conta	ol		npaved Prkng/Storage 2							
	Outfall					•	layground 1			-	+	+	-	
					13	D	layground 2 riveways 1		+	+	+	+	+	
					14		riveways 2		-	+	+	+	+	
	Land Us				15		riveways 3							
					16		idewalks/Walks 1							
	ential Area:			Acres	17		idewalks/Walks 2 treet Area 1			-	+	+	-	
	itional Area: ercial Area:			Acres	19		treet Area 2		-	+	+	+	+	
	ercial Area: trial Area:			Acres	20		treet Area 3		-	-	+	t	+	
	Space Area:			Acres	21		arge Landscaped Area 1							
	av Årea:			Acres	22		arge Landscaped Area 2			_	_			
	Total Area:		0.00	Acres	23		Indeveloped Area mall Landscaped Area 1			+	+	+	-	
					25		mail Landscaped Area 1 mail Landscaped Area 2		+	+	+	+	+	
					26		mall Landscaped Area 3		-	+	+	t	1	
	Exit Pro	noram			27		solated Area							
	<u> </u>	Jana			28		Ither Pervious Area Ither Dir Cnotd Imn Area			_	_			

26

25


Example SLAMM Data Input Screen for Biofiltration Controls


Land Use: Residential	Select Seepage Rate © Sand - 8 in/hr	Add Outlet/Discharge
Biofilter Number 2	C Loamy sand - 2.5 in/hr C Sandy loam - 1.0 in/hr C Loam - 0.5 in/hr	Outlet/Discharge Options — C 1. Sharp Crested Weir C 2. Broad Crested Weir
Device Geometry 1. Top Area (sf)	C Silt loam - 0.3 in/hr C Sandy silt loam - 0.2 in/hr C Clay loam - 0.1 in/hr C Silty clay loam - 0.05 in/hr	C 3. Vertical Stand Pipe C 4. Evaporation C 5. Rain Barrel/Cistern
2. Bottom Area (sf) 3. Depth (ft)	C Sandy clay - 0.05 in/hr C Silty clay - 0.04 in/hr	Edit Existing Dutlet
as Voids (0 - 1)	L00 Clay - 0.02 in/hr Rain Barrel/Cistem - 0.00 in/hr Use Random Number	Selected Outlets
5. Seepage Rate (in/hr) Seepage Rate COV	Generation to Account for Uncertainty in Infiltration Rate	
	1.00 6. Number of Biofiltration Control Devices in Source Area or Land Use	
Select Source Areas from Land Runoff to Biofiltration Control D	evice(s) Selected	action of Runoff From Source Areas Routed 0 d Use Biofilters (0 - 1)
Rooftop 2	Playground 1 🔽 Undeve	andscaped Area 2 ploped Area andscaped Area 1
Rooftop 4 Rooftop 5	Driveways 1 Small L Driveways 2 Small L	andscaped Area 2 andscaped Area 2 andscaped Area 3
		Vir Croctd Imp Area

Example SLAMM Output Screen

Runoff \	volume	Par	ticulate Solids	Ť.	Pollutan	ts		
R	unoff Volum	e (cu ft)		Source Are	ea Runoff Volu	ume Contributi	on	
Data File: bill	filtration examp	le.DAT						4
Rain File: BH	AMSRCE.RA	N						
Date: 04-30-0	01 Time: 15:1	9:16						
Site Descripti	on: example bi	iofiltration eva	luation					
Residential A	reas - Runoff \	/olume (cu. ft)	1					
Start Date	Rain Total	Roofs 1	Driveways 1	Street Area 1	Undevelope d Area	Small Landscaped Area 1	Small Landscaped Area 2	Land Use Totals
01/01/99	0.01	0	0	0	0	0	0	
02/01/99	0.05	0	0	378	0	0	0	377.
03/01/99	0.10	0	0	1141	0	0	0	114
04/01/99	0.25	0	279	3477	185	5820	2400	1216
05/01/99	0.50	4315	822	7672	561	17597	7257	3822
06/01/99	0.75	7426	1412	12298	971	30472	12566	6514
07/01/99	1.00	20416	1992	16657	1377	43234	17829	10150
08/01/99	1.50	37271	3239	29128	2236	70173	28939	17098
09/01/99	2.00	44645	5032	41548	3429	107634	44387	24667
10/01/99	2.50	66320	7169	53503	4909	154078	63540	34951
11/01/99	3.00	79308	9315	66084	6394	200706	82769	44457

Conclusions

- These tests indicated that both texture and compaction were important in determining the infiltration rates, with time since the beginning of rain only important for less than half of the conditions tested.
- These tests were conducted using a 1.1 m head and are most appropriate for biofiltration and infiltration designs where ponded water may occur. A series of tests were also conducted for sandy loam using 0.1 m head and the resulting infiltration rates were substantially less.

38

Conclusions (cont.)

- These results (and those from the previous tests), however, do indicate significant effects associated with soil compaction. The prior field tests of infiltration rates for disturbed urban soils provided basic rates (and COV values) that are recommended for typical urban hydrology studies.
- SLAMM can be used to quantify the benefits of alternative soil structures and modifications on infiltration and biofiltration options.

Acknowledgements

Our earlier disturbed soil tests are described in the following EPA research report. Funding for this initial work was provided by the EPA and is gratefully acknowledged. The recent tests reported in this poster were conducted as an individual research project by C.K. Ong, a soil engineering student at UAB, under the direction of Dr. Shen-en Chen. Their dedicated help is greatly appreciated.

References

- Pitt, R., J. Lantrip, R. Harrison, C. Henry, and D. Hue. Infiltration through Disturbed Urban Soils and Compost-Amended Soil Effects on Runoff Quality and Quantity. U.S. Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory. EPA 600/R-00/016. Cincinnati, Ohio. 231 pgs. December 1999.
- NRCS. Soil Quality Institute 2000, Urban Technical Note 2, as reported by Ocean County Soil Conservation District, Forked River, NJ. 2001.