

Background

 February 2001: BS in Geography from Romania

 Minor in Meteorology-Hydrology

- May 2007: MSE (Environmental) at UA
- December 2008: Ph.D. in Civil Engineering at UA
 Concentration: Water Resources / Environmental
- Graduate Research Assistant since Jan. 2002
- Engineering Math Advancement Program -Graduate Program Coordinator since Jan. 2005

1

Objectives

- 1. Determined the nature of impervious surfaces
 - How they vary for different land uses
 - How the different surface configurations affect stormwater quality and quantity
- 2. Describe the method of field data collection and data processing necessary to examine land use characteristics
 - Jefferson Co. Storm Water Management Authority (SWMA) five outfalls (40 neighborhoods)
 - Little Shades Creek Watershed (125 neighborhoods)

Main Findings of Literature Review

- Purpose of this research was to provide more detail on impervious surfaces for different land uses in the Southeast United States
- There is a general recognition that directly connected impervious areas (DCIA) are the most important feature affecting most runoff characteristics
- Very little data available and published to support the many assumptions that people have about impervious surfaces
- Impervious surfaces have not been described in enough detail to be efficiently used in association with biological condition observations

Approach

- Investigated many land uses in the Birmingham, AL, area:
 - 1 large watershed, the Little Shades Creek Watershed (125 neighborhoods / 6 land uses) (original data collected in mid 1990s by USDA *Earth Team* volunteers)
 - 5 drainage areas (40 neighborhoods having 2 -6 land uses each) which are part of the Jefferson County, AL, Stormwater Permit Monitoring Program (intensive field investigations and surveys were conducted as part of this thesis research)
- Used WinSLAMM to:
 - Calculated runoff characteristics
 - Estimated the biological conditions of the receiving waters due to quantity of runoff for different land use and development characteristics

5

Field Data Collection

- · Delineation of the watersheds and neighborhoods
- Single land use neighborhood surveys: 6 to 12 per study area land use to determine the variability of the development characteristics
- Site Inventory had 2 parts:
 - Field data collection
 - Aerial photographic measurements of different land covers
- Each site had at least two photographs taken:
 - one as a general view
 - one as a close-up of the street texture
- 6

Field Inventory Sheet Prepared for Each Neighborhood

When in the field we look for:

1. Roof types (flat or pitched)

2. Roof connections (connected, disconnected)

- 3. Pavement conditions and texture (*smooth, interm., rough*)
- 4. Storm drainage type (grass swales, curb and gutters, and roof drains)

9

Land Use Categories Examined

- <u>Residential</u>
 - High, medium, low density
 - Apartments, Multi- family units
- <u>Commercial</u>
 - Strip commercial, shopping centers
 - Office parks, downtown business district
- Industrial
 - Manufacturing (power plants, steel mills, cement plants)
 - Non-manufacturing (warehouses)
 - Medium Industrial (lumber yards, junk and auto salvage yards, storage areas)
- Institutional
 - Schools, churches, hospitals, nursing homes
- Open Space
 - Parks, cemeteries, golf courses
 - Vacant spaces, undeveloped areas
- Freeways drained by swales

Average Percent Directly Connected Impervious Area						
Land Use	Local Conditions	TR – 55 (using interpolation)				
HDR (> 6 units/ac)	21	52				
MDR (2-6 units/ac)	11	39				
LDR (< 2 units/ac)	5	23				
APARTMENTS	23	65				
COM	71	85				
IND	50	72				

• TR- 55 assumes all impervious areas to be directly connected to the drainage system

Overestimation of impervious cover for local conditions

Watershed ID	Major Land Use	Area (ac)	Pervious Areas (%)	Directly Connected Impervious Areas (%)	Disconnected Impervious Areas (%)	Vol. Runoff Coeff. (Rv)	Expected Biological Conditions of Receiving Waters
ALJC 001	IND	341	25	72	2.8	0.67	Poor
ALJC 002	IND	721	40	53	7.3	0.51	Poor
ALJC 009	Resid. High Dens.	102	54	34	12	0.37	Poor
ALJC 010	Resid. Med. Dens.	133	64	28	7.9	0.30	Poor
ALJC 012	СОМ	228	36	61	3.4	0.61	Poor
Little Shades Creek	RES	5120	67	21	12	0.29	Poor

21

	No controls	Pond Only	Swales Only	Bioretention Only	Pond, Swales and Bioretentior
Annualized Total Costs (\$/year/ac)	0	118	404	1974	2456
Runoff Coefficient (Rv)	0.61	0.60	0.54	0.26	0.20
% Reduction of Total Runoff Volume Discharges	n/a	1.4%	10%	58%	67%
Unit Removal Costs for Runoff Volume (\$/ft ³)	n/a	0.07	0.03	0.03	0.03
Expected biological conditions in receiving waters (based on Rv)	poor	poor	poor	poor	fair

Site ALJC 012

• Area 228 acres = 92.3 ha

• Bioretention devices give the greatest reduction in runoff volume discharged

• The biological conditions improved from "poor" to "fair" due to stormwater controls

Conclusions

- Literature assumptions on impervious cover are not very accurate when applied to SE US conditions
- Almost all impervious surfaces are directly connected in the Jefferson County study areas examined
- Impervious cover variability within land uses need to be considered when modeling runoff conditions
- WinSLAMM showed that stream quality in the receiving waters is in poor condition, a fact confirmed by in-stream investigations by the SWMA biologists,
- Substantial applications of complimentary stormwater controls are needed to improve these conditions.

Acknowledgments

- Storm Water Management Authority at Birmingham, AL who provided the data
- SWMA employees who helped in this research
- Jefferson Co. NRCS Office, USDA (Earth Team)
- Dr. Pitt and UA-CE graduate students who helped in the field data collection

26