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Presentation Topics

e Observed Urban Area Hydrographs
e Modeling Hydrographs in Urban Areas
e Calculated WinTR-55 Hydrographs

e Hydrograph Characteristics used in
WinSLAMM

e Analyses of Observed Urban
Hydrograph Shapes
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Observed Urban Hydrographs

Evaluated about 550 different urban area hydrographs from 8
watersheds (1, 1a, 2, and 3 rain distributions and B soils to pavement)

Bellevue, WA
Resid, med. den. 95 17 % 196
Resid, med. den. 102 17 201
San Jose, CA
Resid, med. den. 92 30 6
Resid, med. den. 195 25 8
Toronto, Ontario
Resid, med. den. 96 21 35
Industrial 381 42 60
Tuscaloosa, AL
Institutional/com 0.9 100 31
Commercial 0.9 68 17




Typical plot of Observed Curve Numbers for
calculated curve Residential Area

numbers for (39% Imperviousness)
actual site

monitoring. This 0.25 acre lots, sandy soils
date is from the (CN for A soils: 61 and CN for B soils: 75)
Univ. of Florida’s

rainfall-runoff

database that

contains

historical SCS

and COE

monitoring data

that was used to

develop TR-55.

Obviously, the

CN method is

only applicable

for the large

drainage design

storms for which

it was intended!

Observed Runoff Characteristics

Bellevue, WA
0.03-4.38 0.18(0.01-0.60) 64-100 4.4(1-14)
0.02-3.69 0.21(0.01-0.49) 73-100 5.4(1.1-19)

San Jose, CA
0.01-1.06 0.10(0.01-0.28) 88-100 3.2(2.4-3.7)
0.01-1.08 0.59(0.17-1.6) 95-100 3.8(2.7-4.9)

Toronto, Ontario

0.03-1.01 0.17(0.02-0.37) 84-99 4.0(1.4-12)

0.03-1.0 0.23(0.05-0.58) 87-99 3.1(1.3-8.3)
Tuscaloosa, AL
0.02-3.2 0.6(0.09-0.80) 95-99 4.2 (1.1-38)
0.1-1.9 0.8(0.3-1.0) 94-100 5.5(1.8-9.4)

Dade County, FL
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To Complex:

PRECIPITATION Water Samples FLaw
(in.fh) [ {eu fifsec)
| K3 | K | K5 | K6 | KT | K8 | KD [K-A0| K-11| K-12] K13 K14 |K-15|K-16| K-17|K-18]

— Flon*

o Precipitation

*$ee Figure C-4 for sampling location.

March 15 March 16

SWMM 5 Unit hydrographs and aggregate storm
hydrograph (Bend, OR, 2008)
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Figure 4. SWMDM Unit Hydrograph Description

To Large and Intense (Hurricane Katrina):
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WinTR-55 Calculated Hydrographs

Toject. Bellevue Surrey bowns TTS201T
Subareas: (SD CD &1, SD CH 87) Sform: 1-¥r
<new file=

20

.-| Bellevue, WA,
Surrey Downs,
medium |
density |
residential
area, 1inch |
rain, TR55CN |
.|8land | |
obsérved 87

Flow(cts)

Peak/avg flow rate Runoff/rain duration
ratios ratios
Bellevue, WA
1.7 0.71
2.5 0.75
San Jose, CA
5.8 0.67
8.3 0.92
Toronto, Ontario
9.7 0.58
9.5 0.58
Tuscaloosa, AL
6.4 0.09
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WinSLAMM Complex Triangular Storm Hydrograph

Complex Triangular Hydrograph
Peak to average flow ratio of 3.8
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Observed Peak to Average Flow Ratios
(non-parametric Kruskal-Wallis one way ANOVA on ranks)
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Peak to Average Runoff Rate Ratios

=

0 2 4 6

Peak to Average Flow Rate Ratios (<0.10 inch rains)

The variation in each rain/land use group can be
described using a Monte Carlo stochastic modeling
approach for long-tem continuous simulations.
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[ 5 10 15 20
Peak to Average Runoff Rate Ratios (0.30 to 4.4 inch rains)

Peak to Average Flow Rate Ratios

172 172 206
1.0 1.0 1.1
8.3 22 20
2.7 4.2 5.4
0.55 0.65 0.66

Observed Runoff to Rain Duration Ratios
(non-parametric Kruskal-Wallis one way ANOVA on ranks)
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Runoff to Rain Duration Ratio

Land Use (1: residential and commercial; 2: industrial)
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Runoff to Rain Duration Ratios

Runoff to Rain Duration Ratios
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Again, the variation in each land use group can be
described using a Monte Carlo stochastic modeling

approach for long-tem continuous simulations.

WinSLAMM Flow-Duration Analyses for Flow-Duration Curves for Different
Examining Different Control Scenarios Stormwater Conservation Design Practices

Flow Duration Curves 140

Flow Duration Curves are Ranked in Order of Peak Flows

Flow Duration Curve for Current Model Run 120
Top Set:

Flow Duration Data No Controls

ischage | Flow Rate [cfs] Flaw Rale [cfs)
an | for Current “without Swales

£ ModelFiun | Coniiols 100
& 7EN 24.70)
5 1216 FATE]
H 1621 2248 .
£ @
a 0692 08832 Z
04110 05434 <
01751 0 g
10 20 0 an 50 &0 0 il £l 006350 5 )
: 0.03605 S Middle Set:
Percent Greater Than a Discharge Rate o 2 e Pond
a

0.007611
0.007611

Flow Duration Curve for Current Model Run Without Controls o

Pond and Swales

o
100,
| 0

10 Bottom Set:

Biorentention

g
= 20 Swales and Bioretention
2 Pond and Bioretention
E Pond, Swales and Bioretention
a 0 — l
0.1 1 10 100
10 bl 30 10 50 % Greater than Discharge Rate

Percent Greater Than a Discharge Rate

24



Conclusions

e Uncalibrated, or partially calibrated runoff
models (such as only for annual runoff volume)
likely greatly distort the actual hydrograph
shapes in urban areas, especially for small to
moderate-sized events.

e Smaller events are under-represented and
larger events are over-predicted to balance
long-term flows.

* Greatly affects flow-duration analyses for
habitat assessment.

Conclusions

e WinSLAMM uses a complex triangular storm
hydrograph that can be modified based on
relatively simple data evaluations (peak to
average flow ratio, runoff to rain duration
ratio, and storm runoff volume).

¢ This flexibility allows a good match to
observed conditions for the storms of most
interest in water quality and habitat
evaluations.

Planned model improvements will include
stochastic elements to better describe
remaining variability.

Conclusions

e Simple models cannot match the hydrograph

shape and commonly use the same
mechanisms for all rains.

More complex models can be appropriately
calibrated to represent a wide range of rains
and watershed conditions.

However, if uncalibrated (and use “traditiona
model parameters representative of drainage
design), even these better models will distort
the flow-duration relationship (usually by
greatly over-predicting the peak to average
runoff ratio, especially for the smaller rains).
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