

Evaluation and Demonstration of the Performance of Stormwater Dry Wells and Cisterns in Millburn Township, New Jersey

Leila Talebi¹ and Dr. Robert Pitt² February, 2013

¹ PhD Candidate, Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama. Email: Italebi@crimson.ua.edu

² Cudworth Professor of Urban Water Systems, Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, Alabama Email: rpitt@eng.ua.edu

Education

- B.S., Civil Engineering, Polytechnic University of Tehran, Iran, 2004
- M.S., Civil Engineering, Khajeh Nasir Toosi University of Technology, Iran, 2007

 Ph.D. Student, Civil Engineering, University of Alabama, 2010present

1

Dry Wells in Millburn, NJ

Objectives

To investigate the effectiveness of Millburn's stormwater management practices that rely on the use of dry wells limiting stormwater discharges into the local drainage system.

5

New Jersey State Dry Well Regulations

- A or B soils needed with associated minimum 5 to 12 mm/hr (0.2 to 0.5 in./hr) infiltration rates
- Depth to the seasonal water table or bedrock: at least 2 ft below the infiltration system
- Restrict the source waters for infiltration to be roof runoff only.

9

Hydrologic Soil Group Index of the Township of Millburn for Shallow Subsurface Soils 2 ft Deep

Mann-Whitney Test

- Non-parametric tests: If the data are not normally distributed, or the distribution is unknown or mixed
- The probability of two populations' medians being the same (within the confidence interval) is calculated.
- Assumptions: the data are independent random samples from two populations that have the same shape

13

Standing Water Conditions in Dry Wells 142 Fairfield 120 0.5 2 100 No standing water after 1.5 🚊 some events 2 **t** 2.5 - **L** 3.5 142 Fairfield water stag in dry well (in.) Same site: Possible mounding of water table conditions after some events (very 1/13/2011 wet period) Time

18

Water Table Conditions in Dry Wells

- Sites having no standing water after the events (completely drained with no apparent high water table conditions): 11 Woodfield Dr, 15 Marion, 258 Main St, 1 Sinclair Terrace (only one observation), 8 South Beechcroft Rd, 11 Fox Hill Lane (only one observation), 36 Farley Place
- Sites having a few standing water conditions after the events (standing water of several inches, or more, indicating possible seasonal high water table conditions): 2 Undercliff Rd, 383 Wyoming Ave., 142 Fairfield Dr.
- Sites with all or most events having high water conditions: 260 Hartshorn Dr, 87/89 Tennyson Dr, 7 Fox Hill Lane, 9 Fox Hill Lane

21

Observed Infiltration Coefficient Values Compared to Literature Values

	f _o (in./hr)	f _c (in./hr)	K (1/min)
Surface A and B soils well drained A subsurface soils (average and COV)	44.6 (0.53)	5.6 (0.2)	0.06 (0.22)
Surface C and D soils well drained A and B subsurface soils (average and COV)	4.3 (0.64)	0.45 (0.85)	0.01 (0.63)
UDFCD (2001) A soils (average)	5.0	1.0	0.04
UDFCD (2001) B soils (average)	4.5	0.6	0.11
UDFCD (2001) C and D soils (average)	3.0	0.5	0.11
Pitt, et al. (1999) Clayey, dry and non-compacted (median)	11	3	0.16
Pitt, et al. (1999) Clayey, other (median)	2	0.25	0.06
Pitt, et al. (1999) Sandy, compacted (median)	5	0.5	0.1
Pitt, et al. (1999) Sandy, non-compacted (median)	34	15	0.08
Akan (1993) Sandy soils with little to no vegetation	5		
Akan (1993) Dry loam soils with little to no vegetation	3		
Akan (1993) Dry clay soils with little to no vegetation	1		
Akan (1993) Moist sandy soils with little to no vegetation	1.7		
Akan (1993) Moist loam soils with little to no vegetation	1		
Akan (1993) Moist clay soils with little to no vegetation	0.3		

Water Quality SOIL SOIL $\overline{}$ Ο O 2" dia PVC pipe Gravel perfororated on the horizontal section and up to 2' on $\overline{\mathbf{O}}$ \cap vertical Seepage

- Three dry wells: a shallow monitoring well and a deep monitoring well
- A new water storage cistern: sampled at the inlet and from the outlet.
- 8 to 10 storms were sampled (all samples were analyzed in duplicate.)

25

Water Quality – Methods and Materials Rain Depths for Monitored Events (all relatively small during this dry period, except for the record rainfall during Hurricane Irene)				
	Date	Rain Depth		
	10/20/2010	0.10 in.*		
	7/29/2011	0.15 in.*		
	8/5/2011	0.14 in.*		
	08/10/2011	0.12 in.*		
	08/16/2011	0.15 in.		
	08/17/2011	0.20 in.		
	08/18/2011	0.10 in.		
	08/22/2011	0.50 in.		
	08/25/2011	0.25 in.		
	08/28/2011**	9 in.		
*The data	a from these rains was obtained from <u>ht</u>	tp://www.wunderground.com/ w	hile the other rains were	

obtained from the on-site rain gages. **Hurricane Irene rain began about 3:00 pm on 08/27/2011 and finished at about 10:00 am on 08/28/2011, producing record rainfall for the area. (1 in. = 25.4 mm)

Water Quality – Methods and Materials

- The samples were analyzed in laboratories of the University of Alabama for bacteria: (total coliform and *E. coli* screening analyses), total nitrogen (TN), nitrate plus nitrite (NO₃ plus NO₂), total phosphorus (TP), and chemical oxygen demand (COD).
- Lead, copper, and zinc were analyzed at a commercial laboratory (Stillbrook Environmental Testing Laboratory in Fairfield, AL).
- Selected samples were also analyzed for pesticides by the EPA (not reported here).

26

Bacteria

IDEXX method within 24 hr of sampling (undiluted UDL: 2,419 MPN/100 mL, or 24,192 with 10X dilutions and 48,384 with 20X dilutions)

Chemical Oxygen Demand (COD)

Metals

- Many were below the method detection limit (BDL).
- The maximum observed concentration for lead (380 µg/L) occurred in a deep monitoring well sample under a dry well.
- The maximum observed concentration of copper (1,100 µg/L) occurred in a cistern influent sample (possibly due to copper roof gutters on the home).
- The concentrations of zinc in all samples ranged from BDL to 140 $\mu g/L.$

33

Log-normal Probability Plots and Anderson-Darling Test Statistics

- Most of the data are seen to overlap within the limits of the 95% confidence limits, indicating that the data are likely from the same population.
- The data seem to generally fit a straight line on log-normal plots, indicating likely log-normal data distributions, and as supported by the Anderson-Darling test statistic.

34

Summary of Paired Sign Test for Metal analysis

Metal	79 Inflow vs. 79 Cistern	135 Shallow vs. 135 Deep	18 Shallow vs. 18 Deep	139 Shallow vs. 139 Deep
Lead	> 0.06	> 0.06	0.18	> 0.06
Copper	0.125	*	>0.06	*
Zinc	0.45	0.45	>0.06	>0.06

* All the results are below the detection limit (BDL), therefore it is not possible to do a statistical comparison test

Groundwater Quality Criteria for the State of New Jersey Compared to Observed Water Quality from Dry Wells (mg/L)

Constituent	Groundwater Quality Criterion	Observed Range	Fraction of samples that exceed the criteria
Microbiological criteria	Standards promulgated in the Safe Drinking Water Act Regulations (N.J.A.C. 7:10-1 et seq.): 50 MPN/100 mL	Total coliform: 1 to 36,294 MPN/100 mL E. coli: 1 to 8,469 MPN/100 mL	Total coliform: 63 of 71 samples exceeded the criterion for total coliforms E. coli: 45 of 71 samples exceeded the criterion for E. coli
Nitrate and Nitrite	10	0.0 to 16.5 (one sample had a concentration of 16.5 mg/L)	1of 71 samples exceeded the criterion for nitrates plus nitrites
Nitrate	10	0.1 to 4.7	0
Phosphorus		0.02 to 1.36	
COD		5.0 to 148	
Lead	0.005	BDL to 0.38	33 of 71 samples exceeded the criterion for lead
Copper	1.3	BDL to 1.1	0
Zinc	2.0	BDL to 0.14	0

37

Conclusion

- No significant differences in water quality between the deep samples and shallow samples in dry wells (p values were > 0.05).
- If the influent water quality is of good quality, the dry wells can be a safe disposal method for stormwater quality.
- However, the bacteria and lead concentrations exceeded the groundwater disposal criteria for New Jersey
- Significant differences (p< 0.05) between the quality of inflow samples and cistern samples for total coliform and *E. coli* (increased values possibly indicating re-growth), and COD (reduced values).

Conclusion

- The Horton equation usually had a better fit to the data compared to the Green-Ampt equation for the Millburn dry well infiltration data.
- The infiltration rate characteristics were separated into three conditions:
 - A and B surface soils having well drained HSG A subsurface soils
 - C and D surface soils having well drained A and B subsurface soils
 - C and D surface soils having poorly drained subsurface soils with long-term standing water

38

Conclusion

- The deep monitoring well samples were located at least 1.3 m (4 ft) below the bottom of the dry well (at least 2 ft in the soil). This distance was not sufficient to result in observed significant reductions in the stormwater constituents.
- Rain gardens or biofilters as alternatives:
 - Provide better groundwater protection
 - Receive runoff from several of the source areas