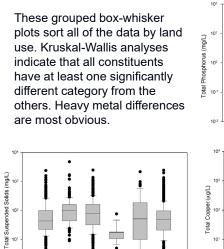
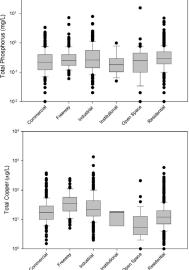

The Updated National Stormwater Quality Database (NSQD), Version 3

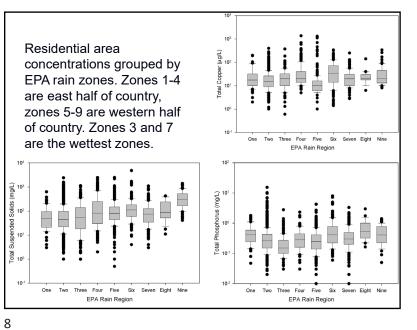
Robert Pitt, Cudworth Professor of Urban Water Systems The University of Alabama, Tuscaloosa, AL 35487 Alex Maestre, GeoSyntec Consultants, Jacksonville, FL Hunter Hyche, CH2M-Hill, New Orleans, LA Noboru, Togawa, PhD student, University of Alabama

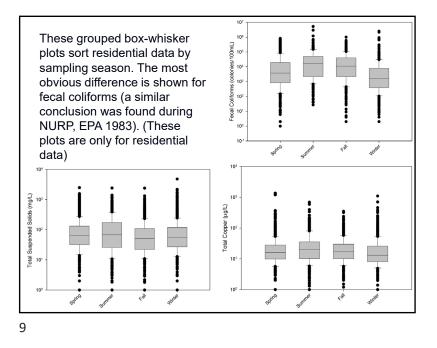
Stormwater NPDES Data Collection and Evaluation Project

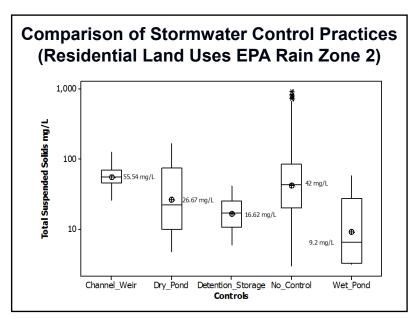
- The University of Alabama and the Center for Watershed Protection were awarded an EPA 104(b)3 grant in 2001 to collect, review, and analyze selected Phase 1 NPDES stormwater permit data.
- We received an extension of the project in 2005 to expand the database to include under-represented areas. We recently completed 3.1 of the database (version 2 was not posted as it was an interim version that had not undergone complete QA/QC reviews).
- The National Stormwater Quality Database (NSQD) is available on the Internet.


2




N	umber of Events and Geographic	cal Coverage	e in NSQD ver. 3		
	RAIN ZONE	TOTAL EVENTS	PERCENTAGE		
	Zone 1- Great Lakes and Northeast	1,271	15		
	Zone 2- Mid Atlantic	3,984	46		
	Zone 3- Southeast	744	9		
	Zone 4- Lower Mississippi Valley	301	4		
	Zone 5- Texas	799	9		
	Zone 6- Southwest	417	5		
	Zone 7- Northwest	865	10		
	Zone 8- Rocky Mountains	24	0.3		
	Zone 9- Midwest	197	2		
	TOTAL	8,602	100		


Number of Events and Lan	d Use Covera	ige in NSQD ver. 3			
LAND USE	TOTAL EVENTS	PERCENTAGE			
Residential	2,933	34			
Commercial	1,080	13			
Institutional	55	1			
Industrial	893	10			
Freeway	734	9			
Open Space	125	2			
Mixed Land Uses	2,782	31			
TOTAL	8,602	100			


					by Lan ea (mg		
		1	2	3	5	7	All
	Mean	135	86	60	67	81	118
Commercial	Count	237	454	50	40	42	916
	COV	1.2	1.8	2.0	1.6	1.1	1.7
	Mean	177	78	96	244	182	171
Industrial	Count	100	304	82	43	24	719
	COV	1.4	1.0	1.3	1.6	1.2	1.7
	Mean	140	85	107	109	100	123
Residential	Count	332	1,388	122	107	170	2,386
	COV	1.2	1.7	1.6	1.0	0.9	2.0
	Mean	155	97	95	138	126	137
ALL	Count	1,132	3,466	420	488	443	6,780
	COV	1.6	1.7	1.5	1.5	1.7	2.2

Main Factors and Interactions Affecting Outfall Concentrations									
	Land Use (LU)	Season (SN)	Rain Zone (RN)	LU*SN	LU*RN	SN*RN	LU*RN* SN		
TSS	<0.001	0.737	<0.001	0.017	<0.001	0.184	<0.001		
BOD	<0.001	0.155	<0.001	0.001	<0.001	0.001	0.221		
COD	<0.001	0.134	<0.001	0.034	<0.001	0.014	0.009		
TP	<0.001	0.687	<0.001	0.055	<0.001	<0.001	<0.001		
NO2+NO3	<0.001	0.108	<0.001	0.052	<0.001	0.034	0.057		
Cu	<0.001	0.112	<0.001	0.623	<0.001	0.038	0.141		
Pb	<0.001	0.765	<0.001	0.420	<0.001	0.285	0.012		
Zn	<0.001	0.910	<0.001	0.936	<0.001	0.014	<0.001		

10

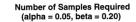
Why Monitor as Part of MS4 Permits?

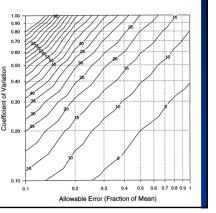
- "Characterization" monitoring may not be necessary unless in under-represented areas or land uses.
- Monitoring at small scales (having homogeneous characteristics) more useful than for large multiland use locations.
- More efficient to require monitoring to learn about processes (sources, transport, control, and effects) and for program assessment/validation.
- A coordinated monitoring program for an area would be much more efficient than a standardized "one-size-fits-all" approach.

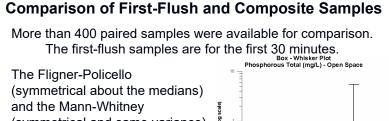
Recommendations for Improved Future Regulatory Monitoring Activities

- Better site descriptions (drainage area delineation, effective percentage impervious area, transient and adjacent activities that may affect water quality) are always needed.
- Adequate on-site rain gauges and flow monitoring critical.
- Monitor for the complete event duration (not just "first flush," or only for 3 hours)

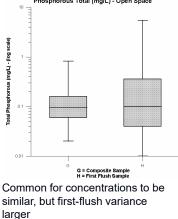
Statistical analyses indicated differences between automatic and manual sampling. Automatic flow-weighted composite sampling may be preferred in most cases, supplemented with bed load and floatables sampling.

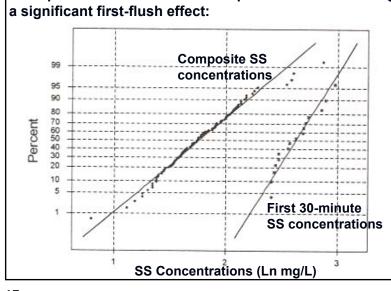

13

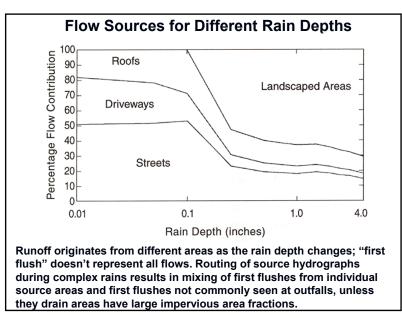


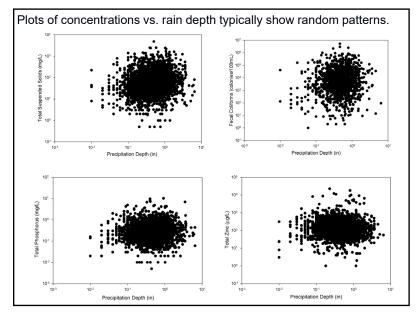

14

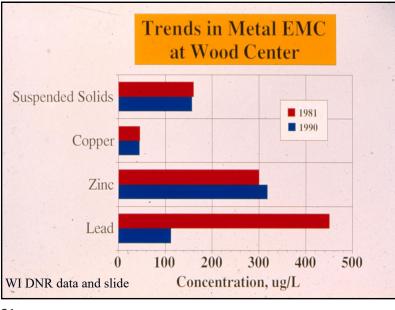
Experimental Design - Number of Samples Needed


The number of samples needed to characterize stormwater conditions for a specific site is dependent on the COV and allowable error. For most constituents and conditions, about 20 to 30 samples may be sufficient for most objectives. Most Phase 1 sites only have about 10 events, but each stratification category usually has much more.



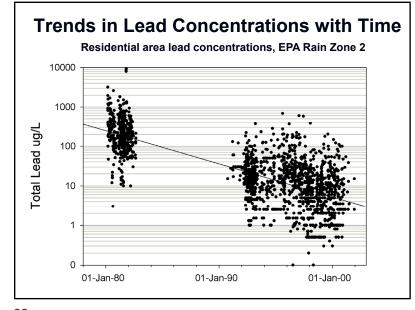

(symmetrical and same variance) non-parametric comparison tests were used to compare the paired first-flush concentrations with the whole storm composite concentrations. The Anderson-Darling test was used to test for normality.


Example for commercial area suspended solids showing


17

First-Flush Observations

- COD, BOD₅, TDS, TKN, and Zn all had significant first-flushes for all land uses (except for open space).
- The ratio of the first-flush to composite concentrations ranged from 1.3 to 1.7 for these constituents.
- Turbidity, pH, fecal coliforms, fecal strep., total N, dissolved P, and orthophosphate did not have significant first-flushes for most of the separate land uses.
- No open space, and only a few institutional data sets had significant first-flushes.



21

Conclusions

- Much concern expressed about use of Phase 1 MS4 data due to various experimental designs, different sampling and analytical procedures, etc.
- However, the large amount of data, the documentation available (although some hard to locate), and the wide range of conditions included in the monitoring programs, allow a great deal of information to be extracted and summarized.

22

Conclusions

- The database can be used to evaluate the performance of stormwater controls, type of conveyance, sampling procedures, etc.
- Phase 1 MS4 data shows significant patterns for different land uses and geographical locations for most constituents.
- More data needed in under-represented areas for more complete evaluations.

Acknowledgements

- Bryan Rittenhouse, the US EPA project officer for the Office of Water, is gratefully acknowledged.
- The many municipalities and firms who worked with us to submit data and information were obviously crucial and the project could not have been conducted without their help.
- A number of graduate students at the University of Alabama and staff at the Center for Watershed Protection were active project participants and supplied critical project assistance.

Download the NSQD and supporting information at: http://unix.eng.ua.edu/~rpitt/Research/ms4/mainms4.shtml

2	X Cut	Artel	- 1	0 - A		that leaf	General -		Nor	mel_gry.c. Normal_S	ibert1 Nor	nal_Spr Normel_Yr		E AutoSum *	7 4
arte	Copy	B /					s · N · 14 23	Conditional Format	Nor		God		Intert Delete	Format Sc	ort & Fina
•		13	Fact				G Number S			259			Cells		iter* Sele
H1220 • (& 70243_WesleyGloss_tyde_Park													tung		
	8	e	D	- F	20	8	09 OH	9	62	OK .	α.	CM CI	4 00	CP CQ	GR
	Londate			LOCATION_ID with	Nizogen Kjeldahl Total [mgiT]	0	Phosphate Ortho (mpil) Q	Phosphorous Dissolved (mgR)	a	Phosphorous Total [mpit]	a	Antimong Total (ugif) G	Astinoos Dissolved (1997)	G Arsenic Total (apt)	9
	- R	20 82	EV-P	44						0.173606602					
		12	N90011	AUKOHP	(B) 73	10		E.41 15		14					
	12 15	58.	MiQ011					01		6.09			D		(53 LD
	16	20	NSGD 11 NSGD 11	ALHUHUPI	266			6.00		6.08		041 L 041 L	0		(53 LD
5		5.6		AH445						6.06 6.05		(44)			CD
	76 76	FA SU	NSGD 11 NSGD 11	AD-ID-ID-ID	145			609		625					
			N9Q011												
	16	FA FA	N9QD11 N9QD11	AD-ID-ID-ID	17	LD		15	LD	203	LD				
													D		13 LD
		9	NSQD11 NSQD11	ALHUMAGM	154 25			608 602		6.07		641 L 641 L	0		(53 LD
	00	FA	MIGD11 NGOD11		108			E.08		11					-
		- 10 10	NSQD 11 NSQD 11	ALHUMASM	10			6.02		12					
		80 5A	MIG011		620			13		6.8					
	00		MSGD 11	ADHIMASM		LD		2.0	10	210	LD				
		7A	NEGD11 NEGD11	AHMON	2.87			E.08		1.1			D	2	43 LD
	00	92	N90011	AURADIP	15			6.05		6.06			D		(5) LD
			N50011 N50011		105			6.05		6.06					
	00	FA.	N00011	AUNWERP				6.08		6.0					
5		50 FA	N50011 N50011	ALHARPP	637			10		6.8					
5	00	EA.	N90011	ALHANDER	(15	LD		2.10	LD	2.10	LD				
	PE_MIX PE_MIX	VI SP	NSQD11 NSQD11			LD		6.00		6.33		di t			<n ld<="" td=""></n>
	RC MR	92	N00011	TURAIN	10			625		6.27			D		1
	PIC_MIX PIC_MIX	V1 V1	NSOD11 NEOD11	TOPARI	10			8.09		0.25					
	FIG. MIX	92	N90011	DIRAIO				9.252		979					3
	PE_MIX PE_MIX PE_MIX	<u>vi</u>	NSOD11 NEOD11	TOPARCE	03			6.33		0.5		<21 L	D		2
		99 99	N60011	TORAIO	-02	LD		629		647					CE LD
	PR_MR	20	NSOD 11		43			0.17		3.605					1 10
	PE MIX	92	M60011	DIRAIN	92 14			622		652					di LD
	PE MIC	50	NSGD11		53			0.679		0.909		cii 1	D		1
	PE MIX	58.	M60011	DIRAMI D	22			6.25		6.62			D		3
	PE_MR	FA 74	NSGD 11 NSGD 11		3.6			0.22		978					1
	PIC_MIX PIC_MIX	FA FA			03			6.29 6.47		643 662		di k	D		a u
			NSGD 11 NSGD 11		12							a 1	D		4 LD
		5A 50	MIGD11 NGQD11		22			0.402		0.791					3
	RC MR D MR	¥1	N5GD11	2084/49/2		LD		5.02							3
		91 91	MIGD11 NGQD11	TIRRABO2 TIRRABO2	-02	10		602		6.0					1
	D.Mk D.Mk D.Mk		N50011	2084/987	02	w		6.06							3
	D_Mk D_Mk	30° 30°	N9QD11 N9QD11	THRASC	02	10		0.8		1000	LD				1
		5													8
	D_Ms D_Ms	8° 50	N90011	THRAAD2	02	LD		1800	LD	1.1					1
	H / Paramete	ns Datat	ase (÷	4									(C
	22														

25