

Basic WinSLAMM Program Structure Runoff Volume Generation

- Generate Runoff from the Source Areas
- Sum the Source Area Runoff for each Land Use
- Route Runoff from the Land Use Areas Through the Drainage System
 - Curb and Gutter
 - Undeveloped Roadside
 - Grass Swales
- Route the Runoff from the **Drainage System** to the **Outfall** discharging to the Receiving Water

Project Strategy and Modeling

In a typical project, WinSLAMM is used to quantify benefits for different applications of many stormwater controls using long-term continuous simulations. It is also used to examine capital and maintenance costs, along with quantify the maintenance schedules needed for the different alternatives. Decision analyses, considering many project objectives, is also supported by WinSLAMM.

5

 WinSLAMM evaluates many stormwater controls (affecting source areas, drainage systems, and outfalls) together, for a long series of rains.

• WinSLAMM describes a drainage area in sufficient detail for water quality investigations, including disturbed urban soils and small and intermediate rain processes.

• WinSLAMM also applies stochastic analysis procedures to more accurately represent actual uncertainty in model input parameters in order to better predict the actual range of outfall conditions.

Control Devices Included in **WinSLAMM**

- Hydrodynamic Devices
- Development Characteristics
- Wet Detention Ponds
- Porous Pavement
- Street Cleaning

- Catchbasin Cleaning
- Grass Swales and Grass Filtering
- · Biofiltration and Bioretention
 - Cisterns and Stormwater Use
 - Media Filtration/ion exchange/sorption

6

Stormwater Infiltration Controls in Urban Areas

- **Bioretention** areas •
- Rain gardens ٠
- Porous pavement
- Grass swales •
- Infiltration basins
- Infiltration trenches •
- Disconnections of paved areas and roofs from the drainage system
- Also consider evapotranspiration and stormwater beneficial uses

Portland, OR, site having green roof, porous pavement, and biofiltration

Porous paver blocks have been used in many locations to reduce runoff to combined systems, reducing overflow frequency and volumes (Sweden, Germany, and WI).

Not recommended in areas of heavy automobile use due to groundwater contamination potential (provide little capture of critical pollutants, plus some recommend use of heavy salt applications instead of sand for ice control to minimize clogging).

13

Current Kansas City Project using Green Infrastructure to reduce CSOs

• Conventional CSO evaluations were conducted using XP_SWMM in order to identify the design storm for the demonstration area that will comply with the discharge permits.

• XP_SWMM was also used by KCMO Water Services Department, Overflow Control Program, to examine different biofiltration and porous pavement locations and storage options in the test watershed.

Basic Biofiltration Input Screen in WinSLAMM

Biofiltration Control Device							
Land Use: Outfall			Source Areas from Land Use that Contribute Runoff to Biofi	Itration Control Device(s)			
Biofilter Number 1			E Portion 1 E Playmound 1 E Large Landroaned Area				
Device Properties			Register 2 Register 2 Register 2				
Device i Toperde	74		E Bontron 3 E Driveware 1 E Lin				
Top Area (st)	160	Add Outlet/ Discharge	E Booftop 4 E Driveways 2 E Sm				
Bottom Area (st)	08	- Rutlat/Disakargo Rations -	Boottop 5 Driveways 3 Sm				
Tuning Dirfidth (B) (Cast ast anti-	3.00	C 1 Chart Crasted Wais	Paved Parking/Storage 1 Sidewalks/Walks 1 Sm				
Native Cell Infiltration Pate (in far)	0.00	C 2 Broad Created Wei	Paved Parking/Storage 2 Sidewalks/Walks 2 Oth				
Native Soil Infiltration Rate CDV	N/A	C 3 Vertical Stand Pine	Paved Parking/Storage 3 Street Area 1 Other				
Infil Pate Fraction Pottom (0.1)	1.00	C 4 Exposation	Unpaved Prkng/Storage 1 🔽 Street Area 2 🗖 Oth	er Part Crictd Imp Area			
Infil Bate Fraction-Sides (0-1)	0.50	C 5 Bain Barrel/Cistern	🔽 Unpaved Prkng/Storage 2 🔽 Street Area 3				
Bock Filed Depth (ft)	1.00	C 6 Underdrain Gutlet	🔽 Paved Land and Shoulder 1 👘 Larg	je Turf Areas			
Rock Fill Void Ratio (0-1)	0.40		F Paved Land and Shoulder 2 F Und	leveloped Areas			
Engineered Soil Type	Compost-Sand -		🔽 Paved Land and Shoulder 3 👘 Oth				
Engineered Soil Infiltration Rate (in/hr)	2.10	Edit Existing Outlet	Paved Land and Shoulder 4 Poth Paved Land and Shoulder 5 Oth	er Directly Conctd Imp er Partially Conctd Imp			
Engineered Soil Depth (ft)	1.00	Selected Outlets					
Engineered Soil Void Ratio (0-1)	0.20	1 - Broad Crested Weir	1 Fraction of Hunoff from Outfall Routed to Outfall Biofilters (0	· 1)			
Percent solids reduction due to Engineered Soil (0 -100)	N/A	2 - Underdrain Outlet	Biofilter Geometry Schematic				
Inflow Hydrograph Peak to Average Flow Ratio	12.20		-8.00 -				
Number of Devices in Source Area or Land Use	4000	Change Geometry					
Copy Biofiter Data Select Native Soil Infiltratio Sandy Sandy 25 in/hr Coamy sand - 25 in/hr Coam 0.5 in/hr Sit loam - 0.3 in/hr Sit loam - 0.2 in/hr Select Paticle C.Program Fi	Paste Biofilter D n Rate Clay loam - 0.1 in/hr Sity clay loam - 0.05 Sandy clay - 0.05 in Sity clay - 0.04 in/hr Clay - 0.02 in/hr Rain Barrel/Cistern - les/WinSLAMM\MED	Ata Route Through Wet Detenion Prof Fist Sin/fr Use Random Number Generation to Account for Infitration Rate Uncetarity IUMCPZ	3.00° 2.75° 1.00°				
Size File			Refresh Schematic Delete	Cancel <u>C</u> ontinue			

14

Interactions of Controls being Evaluated in Kansas City

The 8 x 20 ft. curb-cut biofilters are modeled as a cascading swale system where the site runoff is filtered and allowed to infiltrate. If the runoff volume, or inflow rate, is greater than the capacity of the biofilters, the excessive water is discharged into the combined sewer.

When evaluated together, cisterns capture the roof runoff first, but the excess water is discharged to the curb-cut biofilters for infiltration. Continuous simulations drain the devices between events, depending on the interevent conditions and water demand.

Single Event (Design Storm) WinSLAMM Evaluations (1.4 inch storm "D")

Bacteria Retention in Biofiltration Soil/Peat Media Mixtures

 Need at least 30% peat for most effective *E. coli* reductions

 Bacteria captured in top several inches of soil

•Continued tests to evaluate other organic amendments and longer testing periods

Cistern Calculations in WinSLAMM

WinSLAMM conducts a continuous water mass balance for every storm in the study period.

For the water tank cisterns, the model fills the tanks during rains (up to the maximum amount of runoff from the roofs, or to the maximum available volume of the tank).

Between rains, the tank is drained according to the current water demands. If the tank is almost full from a recent rain (and not enough time was available to drain the tank), excess water from the event would be discharged to down-gradient controls or to the drainage system after the tank fills.

26

The water tank cisterns modeled were about 10 ft in diameter and 10 ft tall. The expected per household water use (gallons/day) from cisterns for toilet flushing and outside irrigation (ET deficit only) for the KC study area is:

Simultaneous use of cisterns and biofilters in a 100 acre site (% annual flow discharge reductions)

29

Aerial Photo of Site under Construction (Google Earth)

On-site
bioretention swales
Level spreaders
Large regional swales
Wet detention ponds
Critical source area controls
Pollution prevention (no Zn!)
Buffers around sinkholes

North Huntsville Industrial Park showing conservation design elements

33

The economic analyses in WinSLAMM can be used to automatically calculate the capital, maintenance and operation, and financing costs for the stormwater control programs being examined.

This information can be used with the model batch processor to develop cost-benefit curves for the different control options.

Besides the unit cost rates that are already available, it is possible to enter more specific local cost data, based on site costs.

34

Decision Analysis

- With so much data available, and so many options that can be analyzed, how does one select the "best" stormwater control program?
- The least costly that meets the objective?

This is an example WinSLAMM batch processor output, showing many features (including costs, performance, habitat effects, etc.) for eight alternative programs:

	B .d	at Set Run U	athat										
	Print	Exit											
	File N	umber	File Name		Catch Area	Catchment Number Area (ac) Model F	nberof ars in Iel Run	Runc Volume	(f Rv (cf)	Bi Ci	Biological Condition		
		1 Huntsi	Hunts indus B base conditions			61.2	0.994	461	3738	0.389	Poor		
		2 Huntsi	ndus B pond bas	ond basic		61.2 0.9	0.994	994 446	1735 (0.376 Poor	Poor	-	
		3 Huntsi	ndus B pond sw	ale and site bioret		61.2	0.994	145	318.4	0.012	Good		
		4 Huntsi	ndus B pond sw	ale		61.2	0.994	921	576.3	0.078	Good		
		5 Huntsi	ndus B site biore	ŧ		61.2	0.994	151	9309	0.128	Good		
		6 Huntsi	ndus B small por	nd swale and site bio	oret	61.2	0.994	214	237.3	0.018	Good		
		7 Humboi	indus Bismall nor	nd swale		61.2	0.994	103	7077	0.087	Good		
		r nunca	trade a cittar per										
	•	8 Huntsi	ndus B swale			61.2	0.994	113	9064	0.096	Good)
Runoff Volume Percent Reduction	Particulate Solids Yield (Ibs)	Particulate Solids Yield Percent Reduction	Particulate Solids Concentration (mg/L)	Sub Basin Capital Cost	Sub Basin Land Cost	61.2 Sub Basin Maintenand Cost	0.994 Sub e T Ann C	Basin otal ualized Cost	Sub Basin Total Present Value Cost	Cost per o foot Rur Volum Reduc (\$/cf	Good cubic noff ie ed)	Cost per pound Particulate Solids Reduced (\$/lb)	
Runoff Volume Percent Reduction N/A	Particulate Solids Yield (lbs) 28605.4	Particulate Solids Yield Percent Reduction	Particulate Solids Concentration (mg/L) 99.39343	Sub Basin S Capital Cost L	Gub Basin Land Cost	61.2 Sub Basin Maintenanc Cost	0.994 Sub e Ann C	113 Basin otal ualized Cost 0	Sub Basin Total Present Value Cost	Cost per o foot Rur Volum Reduc (\$/cf	Good cubic noff ed) N/A	Cost per pound Paticulate Solids Reduced (\$/lb)	
Runoff Volume Percent Reduction N/A 3.29	Particulate Solids Yield (Ibs) 28605.4 3887.083	Particulate Solids Yield Percent Reduction N/A 86.41	Particulate Solids Concentration (mg/L) 99.39343 13.96634	Sub Basin Capital Cost U 0 146647	Sub Basin Land Cost 0 27300	61.2 Sub Basir Maintenanc Cost	0.994 e Sub T Ann C 0	113 Basin Valized Cost 0 18102	Sub Basin Total Present Value Cost 0 225593	Cost per o foot Rur Volum Reduc (\$/cf	Good cubic hoff ed) N/A 0.12	Cost per pound Particulate Solids Reduced (\$/Ib) N// 0.73	
Runoff Volume Percent Reduction N/A 3.29 96.85	Particulate Solids Yield (lbs) 28605.4 3887.083 158.1661	Particulate Solids Yield Percent Reduction N/A 86.41 99.45	Particulate Solids Concentration (mg/L) 99.39343 13.96634 17.44839	Sub Basin Capital Cost L 0 146647 454663	Sub Basin Land Cost 0 27300 37199	61.2 Sub Basir Maintenand Cost 41 257	0.994 e Sub Ann C 0 14 5	113 Basin vala ualized Cost 0 18102 65223	Sub Basin Total Present Value Cost 0 225593 812828	Cost per o foot Rum Reduc [\$/cf	Good cubic noff e ed) N/A 0.12 0.01	Cost per pound Particulate Solids Reduced (\$/lb) N// 0.7: 2.21	
Runoff Volume Percent Reduction N/A 3.29 96.85 80.02	Particulate Solids Yield (lbs) 28605.4 3887.083 158.1661 997.9495	Particulate Solids Yield Percent Reduction N/A 99.45 96.51	Particulate Solids Concentration (mg/L) 99.39343 13.96634 17.44839 17.35772	Sub Basin Capital Cost 146647 454663 187284	Gub Basin and Cost 0 27300 37199 27300	61.2 Sub Basir Maintenanc Cost 41 257 56	0.994 e Sub Ann C 0 14 5 10	113 Basin otal ualized Cost 0 18102 65223 22849	Sub Basin Total Present Value Cost 0 225593 812828 284750	Cost per o foot Run Reduc (\$/cf	Good cubic noff e ed) N/A 0.12 0.01 0.01	Cost per pound Particulate Solids Reduced (\$/lb) N// 0.77 2.21 0.83	
Runoff Volume Percent Reduction N/A 3.29 36.85 80.02 67.07	Paticulate Solids Yield (lbs) 28605.4 3887.083 158.1661 997.9495 26270.7	Particulate Solids Yield Percent Reduction N/A 86.41 99.45 96.51 8.16	Particulate Solids Concentration (mg/L) 99.39343 13.96634 17.35772 277.1968	Sub Basin Capital Cost U 0 146647 454663 187284 275570	Sub Basin and Cost 0 27300 37199 27300 9899	61.2 Sub Basir Maintenanc Cost 41 257 56 203	0.994 e Sub e T Ann C 0 0 14 15 10	113 Basin otal ualized Cost 0 18102 65223 22849 43615	Sub Basin Total Present Value Cost 0 225593 812828 284750 543538	Cost per o foot Rur Volum Reduc (\$/of	Good cubic noff ed) N/A 0.12 0.01 0.01 0.01	Cost per pound Particulate Solids Reduced (\$//b) N// 0.7: 2.2! 0.8: 18.5:	
Runoff Volume Percent Reduction N/A 3.29 96.85 80.02 67.07 95.36	Paticulate Solida Yield (lbs) 158.1661 997.9495 26270.7 459.3605	Particulate Solids Yield Percent Reduction N/A 86.41 99.45 96.51 8.16 98.39	Particulate Solids Concentration (mg/L) 99.39343 13.96634 17.44839 17.35772 277.1968 34.3733	Sub Basin Capital Cost 146647 454663 187284 279570 397317	Sub Basin and Cost 0 27300 37199 27300 9899 23549	61.2 Sub Basir Maintenanc Cost 41 257 56 203 243	0.994 e Sub T Ann C 0 14 15 10 17 14	113 Basin vatal ualized Cost 0 18102 65223 22849 43615 58125	Sub Basin Total Present Value Cost 0 225593 812828 284750 543538 724365	Cost per o foot Rur Volum Reduc [\$/cf	Good cubic noff ed) N/A 0.12 0.01 0.01 0.01 0.01	Cost per pound Particulate Solids Reduced (\$/b) N// 0.7; 2.2; 0.8; 18:5; 2.0;	
Punoff Percent Reduction N/A 3.29 96.85 80.02 67.07 95.36 77.52	Particulate Solids Yield (lbs) 28605.4 358.1661 997.9495 28270.7 4855217	Particulate Solids Yield Percent Reduction N/A 96.41 99.55 96.51 8.16 98.33 93.51	Particulate Solids Concentration (mg/L) 99.39343 13.96634 17.4839 17.35772 277.1968 34.3733 28.67783	Sub Basin Capital Cost 146647 454663 187284 279570 397317 105557	Sub Basin and Cost 0 27300 37199 27300 9899 23549 13650	61.2 Sub Basir Maintenand Cost 41 257 56 203 243 37	0.994 e Sub e Ann C 0 0 14 5 5 0 0 17 14 14	113 Basin otal ualized Cost 0 18102 65223 22849 43615 58125 13270	Sub Basin Total Present Value Cost 0 225593 81282 284750 54353 724355 74355 74355	Cost per o foot Rur Volum Reduc (\$/cf	Good cubic noff ed) N/A 0.12 0.01 0.01 0.01 0.01 0.00	Cost per pound Particulate Solids Reduced (\$//b) 0.7 2.2 0.8 18.5 2.0 0.4	

39

A multi-attribute decision analysis procedure can be used to examine many conflicting objectives. One example is by Keeney and Raiffa (*Decision Analysis with Multiple Conflicting Objectives*). This method uses utility curves to describe the benefits of varying levels of control and tradeoff coefficients that compare the different objectives. The first step is to determine the outcomes for several alternative stormwater control programs using the WinSLAMM batch processor:

38

Attribute Range of attribute value Trade-offs for acceptable options between remaining attributes Total annual cost (\$/year) \$40.217 to 83.364 0.20 Land needs (acres) 2.3 to 4.5 acres 0.08 Rv 0.06 to 0.29 0.30 % of time flow >1 cfs 0.5 to 4 % 0.05 % of time flow >10 cfs 0 to 0.05 % 0.18 Particulate solids yield 2,183 to 10,192 lbs/y 0.07 (lbs/y) Part. Phosphorus yield 5.5 to 25 lbs/y 0.12 (lbs/y) Sum = 1.0

Utility curves are also developed for each attribute

Example ranges of attributes, and trade-offs:

Calculation of Factors for Each Option (utility for modeled outcome times tradeoff); Sum of Factors, and Overall Rank									
Stormwater Control Option	Rv utility	Rv factor	Mod flow utility	Mod flow factor	High flow utility	High flow factor	Sum of factors	Over- all Rank	
Tradeoff Value	0.30		0.05		0.18				
Option 1 Pond	0.25	0.075	0.25	0.0125	0.75	0.135	0.2225	5	
Option 5 Pond and reg. swale	0.75	0.225	0.75	0.0375	1.0	0.18	0.7455	4	
Option 6 Pond, reg. swale and biofilter	1.0	0.30	1.0	0.05	1.0	0.18	0.8540	2	
Option 7 Small pond and reg. swale	0.75	0.225	0.75	0.0375	0.75	0.135	0.7555	3	
Option 8 Small pond, reg. swale and biofilter	1.0	0.30	1.0	0.05	1.0	0.18	0.9290	1	

Combinations of Controls Needed to Meet Many Stormwater Management Objectives

- Smallest storms should be captured on-site for use, or infiltrated
- Design controls to treat runoff that cannot be infiltrated on site
- Provide controls to reduce energy of large events that would otherwise affect habitat
- Provide conventional flood and drainage controls

