Expected Performance of Stormwater Controls

Robert Pitt, Ph.D., P.E., BCEE Emeritus Professor of Urban Water Systems University of Alabama Tuscaloosa, Alabama 35487

Presentation Topics

- Stormwater control performance as reported by the International BMP Database
- Wet detention pond expected performance
- Monitored biofilter performance to meet strict Numeric Effluent Limits as demonstrated at a large industrial site
- Biofilter underdrain monitoring at Kansas City Green Infrastructure demonstration project to quantify performance by particle size
- Conclusions
- Acknowledgements

2

Stormwater Control Performance as Reported by the International BMP Database

International BMP Database Overview

- The International BMP Database includes about 600 stormwater control monitoring studies
- Database and analysis available at www.bmpdatabase.org
- Since 2008, a key focus has been to better integrate green infrastructure through:
 - Monitoring Guidance
 - Reporting Protocols
 - Updated Analysis Protocols

Urban Stormwater BMP Performance Monitoring

Prepared by Geosyntec Consultants and Wright Water Engineers, Inc.

International BMP Database Summary

- 17 general stormwater control categories
- Most recent version posted
 December 2014
- Most recent categorical analysis
 July 2012
- 20-30 more study entries entered during 2015-2016
- Over 200 Green Infrastructure stormwater control studies

	BMP Category					
BR	Bioretention	43				
BI	Biofilter - Grass Strip	45				
BS	Biofilter-Grass Swale	44				
CO	Composite	26				
DB	Detention Basin/Vault	43				
GR	Green Roof	17				
IB	Infiltration Basin	2				
LD	LID Site (multiple BMPs)	4				
MD	Manufactured Device	104				
MF	Media Filter	39				
MP	Maintenance Practice	29				
ОТ	Other	6				
PP	Porous Pavement/PFC	41				
РТ	Percolation Trench	13				
RP	Retention Pond	77				
WB	Wetland Basin	35				
WC	Wetland Channel	19				
То	Total BMPs 587					
СХ	Control/Ref. Sites	22				

5

7

 Manufactured devices (hydrodynamic devices) and media filters had about the same median influent TSS concentrations, but the media filters had substantially lower effluent TSS concentrations

TSS influent and effluent for different stormwater practices; retention (wet) ponds provided much better effluent quality than detention (dry) ponds, with similar influent quality.

Grass filter strips, grass swales, and bioretention total phosphorus effluent concentrations are larger than the influent concentrations due to TP leaching from soils, media, or from fertilizer applications (orthophosphate and dissolved phosphorus show same pattern).

Why is there such a large difference in performance between a dry and a wet pond?

- Usually due to scour
 - Need at least 3 ft for wet ponds to protect previously captured silt ______
 - Grass filters may look like dry ponds (and the grass filters can work well, but require lengthy sheetflows with level spreaders, low slopes, good grass stands, no pilot channels, etc.)
 - Terminology issues (in many areas, dry ponds are actually percolation ponds or infiltration ponds with no surface discharges). HIGs

10

The High P Index Lesson (soil and media having high P leach to underdrain flows); Wisconsin DNR now recommending sand media with no compost or soil additions (maybe peat additions)

Study average relative percent volume reduction versus the ratio of stormwater control surface area to tributary area (International BMP Database, 2012). "No underdrain" results in larger runoff volume reductions compared to controls with underdrains. "Small" controls provide less runoff volume reductions than relatively larger controls.

13

14

Three Categories of Data Needed for Calculating Wet Detention Ponds

- 1. Pond Geometry
- 2. Flow, Initial Stage and Particle Size Data
- 3. Outlet Information

Particulate Settling

- Ideal settling can be modeled
 - Using Stokes Law (laminar flow) for smaller particles
 - Settling velocity as a function of Reynolds number and particle size for larger particles under turbulent flow conditions
 - Water temperature and particle density also affect settling rates

17

The Monroe St. detention pond in Madison has been monitored by the WI DNR and USGS for many years. The data have been used to verify the wet detention pond routines in WinSLAMM and Detpond (amongst other ponds). Retrofitted to result in 90% SS control, the long-term monitored results were 87%.

25

Wet Detention Pond Performance Calculation Data Requirements

- Surface area of pond
- Water quality volume (live storage above lowest pond water surface elevation, usually the pond volume between the water quality outlet and the emergency spillway)
- Depth of water over the sediment to prevent scour
- Stage-discharge relationship for all outlets
- Particle size distribution of inflowing particulates
- Hydrograph of influent flows

26

Conceptual Issues – Pond Geometry and Scour

The "dead" storage is needed to prevent scour of previously deposited material and should be at least 3 ft. deep over the sediment. Sediment storage volume is also needed and can be estimated using the program, or should be at least 2 ft. deep.

Monitored Biofilter Performance to Meet Strict Numeric Effluent Limits

Santa Susana Field Laboratory Site Introduction

- 2800-acre former federal government rocket engine testing and energy research facility (1950-1988)
- Owned by the Boeing Company (post-1966) and the U.S. Government
- Activities currently limited to demolition, remediation, and restoration
- Future parkland and open space

SSFL Surface Water Expert Panel work products can be found at: http://www.boeing.com/aboutus/environment/santa_susana/water_quality.html

Regulation of SSFL Stormwater

- Stormwater discharges are regulated by the Los Angeles Regional Water Quality Control Board (LARWQCB) through an individual NPDES permit, which requires:
 - Composite discharge sampling during storms, and
 - Compliance with very protective Numeric Effluent Limits (NELs)
- NELs for a wide range of constituents, including:
 - Dioxins (TCDD TEQ): 2.8x10⁻⁸ μg/L
 - Total Lead: 5.2 μg/L
 - Total Copper: 14 μg/L

Source Controls

- NPDES pollutant sources include impacted surface soils, impervious areas, and natural background soils.
- ISRA, pavement/building removal, and erosion controls address all three sources.

ELV Treatment Train having Sedimentation and Media Filtration (all pumped control)

Basic Culvert Modifications (typically under-sized biofilters): CM-1, CM-9, and B-1 Statistical Analysis

_	TSS (mg/L)		Dioxin	(µg/L)	Lead (µg/L)	
	Influent	Influent Effluent		Influent Effluent		Effluent
Average	82	37	5.2E-06	2.7E-07	7.5	4.4
Total pairs of		2	1	E	E.	n
observations	5	2	4	5	5.	2
Number of influent						
samples having						
larger	3	1	30		37	
concentrations than						
effluent samples						
p-value by paired						
nonparametric sign	0.0)59	0.0011		<0.001	
test						
Average percent change	55%		95%		42%	

Log-normal Probability Plot of Influent and Effluent Dioxins at ELV Stormwater Treatment Train

ELV Treatment Train Performance Data – Influent to Final Media Tank Effluent

	TSS (mg/L)		Dioxin	(µg/L)	Lead (µg/L)	
	Influent	Effluent	Influent	Effluent	Influent	Effluent
Average	32	51	3.6E-08	7.5E-09	5.0	2.4
Total pairs of				-		_
observations	t)	6		ť	0
Number of influent						
samples having larger			_		c	
concentrations than	1	-	5		6	
effluent samples						
p-value by paired	0.4	1 1	0.11		0.010	
nonparametric sign test	0.11		0.11		0.016	
Average percent change	-56% (washout of					
(minus sign indicating	media during		79%		53%	
higher effluent results)	initial e	events)				

P values relatively high due to few data collected so far at this location (new control)

50

Log-normal Probability Plot of Dioxins at Lower

Lower Lot Biofilter Performance Data – Influent Runoff to Biofilter Outlet

	TSS (mg/L)		Dioxin	(µg/L)	Lead (µg/L)	
	Influent	Effluent	Influent	Effluent	Influent	Effluent
Average	54	34	1.4E-07	8.7E-09	4.3	3.3
Total pairs of	1	c	1	c	1	c .
observations	1	5	15		15	
Number of influent						
samples having larger	0		45		C	
concentrations than	2	5	15		t	0
effluent samples						
p-value by paired	0	-0	-0.001		0.40	
nonparametric sign test	0.50		<0.001		0.40	
Average percent change	37%		94%		22%	

Influent and Effluent Summary as compared to the Outfall 009 Permit Limits (Lower Lot Biofilter), 2012-2016

Parameter	% of Samı than Per	oles Greater mit Limits	Average Exceedance Ratio (Result: Permit Limit)			
	Influent	Effluent	Influent	Effluent		
Lead	20%	6.7%	2.1	1.1		
TCDD TEQ no DNQ	93%	6.7%	5.4	2.7		

Influent and Effluent Summary as compared to the Outfall 009 Permit Limits (B-1, CM-9, and CM-1), 2009-2016

Parameter	% of Samp than Per	oles Greater mit Limits	Average Exceedance Ratio (Result: Permit Limit)			
	Influent	Effluent	Influent	Effluent		
Lead	38%	21%	3.2	2.6		
TCDD TEQ no DNQ	78% 57%		230	17		

62

Influent and Effluent Summary as compared to the Outfall 009 Permit Limits (ELV Stormwater Treatment Train), 2013-2016

Parameter	% of Samp than Peri	les Greater mit Limits	Average Exceedance Ratio (Result: Permit Limit)			
	Influent	Effluent	Influent	Effluent		
Lead	17%	0%	2.2	N/A		
TCDD TEQ no DNQ	50%	17%	2.3	1.6		

Other Site Controls Included Stream Stabilization: Northern Drainage Restoration, Mitigation and Monitoring Plan: Channel **Stabilization Measures** Vegetated riprap suggested for locations where armored toe Check structures within main and side channels for Energy dissipation aprons at erosiv protection is necessary nt control SECTION B-B 9223. 1. AHON SHAL, M. ST AT A ZHO GARE NO ALOUZ STRUD 2. RE ROUTD INDEX DESIGNED SOUDLE FOR HALES 3. PLANES 6 ANOTHES TO DOLE R LAKE FALL STRUCTURE MERLINES DAY. IN DISLUZI PROF. D. MT SALES IN SUB-MERLINES DAY. IN DISLUZI PROF. D. MT SALES IN SUB-67

Percent of Cumulative Sediment Loading until Clogging								
ВМР	Cumul- ative TSS load (kg)	Cumul- ative TSS load per media area (kg/m ²)	% of "sediment load to the media until initial maintenance is needed"	TSS load per media area in average rainfall year (kg/m ²)	Number of average years until media replacement is expected			
ELV Treatment Train	44.7	2.2	4.5%	2.7	17			
Lower Lot Biofilter	674	3.1	6.2%	2.0	23			
B-1	219	12	24%	4.8	7.8			
CM-1	387	65	132%	9.3	N/A			
CM-9	215	36	74%	8.7	1.5			

66

Subarea Ranking Methodology to Select Locations for Additional Subarea Stormwater Controls

- Innovative, statistically rigorous approach
- Rank potential subarea monitoring sites based on comparisons of:
 - Stormwater <u>subarea concentrations</u> with <u>NPDES permit</u> limits
 - Stormwater <u>subarea particulate strengths</u> with stormwater <u>background particulate strengths</u>
- Monitoring locations were scored based on number and percent of samples above NPDES permit limits and/or background
- Locations then ranked based on scores, and top locations identified
- Process to be repeated annually

Example Ranking Results

Rank fro Averag Weight	e Potential BMP Subarea	Watershed	Description	Approx. Upstream	Events	Multi- constitue	Rank from Max Metal Weight	Rank from Max Dioxin Weight	Rank from TSS Weight
1	EVBMP0003 (A2SW0001) ^{sb}	Outfall 009	ELV road runoff/CM-1 upstream west	11.8	14	0.94	1	1	32
2	B1BMP0004 (B1SW0015)*	Outfall 009	B-1 media filter inlet north	3.7	2	0.72	9	5	74
3	ILBMP0001 ^b	Outfall 009	Lower parking lot 24" stormdrain	23	10	0.68	14	4	39.5
4	EVBMP0001-A ^b	Outfall 009	ELV culvert inlet (helipad road and ELV ditch, composite)	2.5	5	0.67	16.5	3	15
5.5	EVBMP0002 ^b	Outfall 009	Helipad (pre-sandbag berms)	4.1	6	0.66	15	6	31
5.5	ILBMP0002*	Outfall 009	Road runoff to CM-9	2.5	7	0.66	3	12	15
7	A1SW0009-A	Outfall 009	CM-9 downstream-underdrain outlet (post- building 1324 parking lot asphalt removal, pre- filter fabric over weir boards)	16.4	1	0.63	2	19.5	74
8	APBMP0001	Outfall 009	Ashpile culvert inlet / road runoff	34	2	0.60	4	19.5	74
9	LPBMP0001-A ^b	Outfall 009	Lower Parking Lot sheetflow (post-gravel bag berms)	5.1	6	0.52	30	2	27
12.5	LPBMP0001 ^b	Outfall 009	Lower Parking Lot sheetflow (pre-gravel bag berms)	5.1	2	0.50	9	19.5	15
15.5	A2SW0002-A	Outfall 009	CM1 effluent (post-filter fabric over weir boards)	52.8	4	0.43	18.5	19.5	28.5
15.5	A1SW0009-B	Outfall 009	CM-9 downstream-underdrain outlet (post-filter fabric over weir boards, post-building 1324 parking lot asphalt removal)	16.4	4	0.43	18.5	19.5	15
17	B1BMP0003 (B1BMP0002)	Outfall 009	B-1 parking lot / road runoff to culvert inlet	5.2	12	0.43	38	7	33
27	B1SW0014-B	Outfall 009	B-1 media filter effluent (post-media filter reconstruction)	4.7	4	0.27	32.5	19.5	74
28	LXBMP0004 ^b	Outfall 009	LOX southwest downstream of sandbag berm	10.6	5	0.26	9	40.5	1
34	EVBMP0001 ^b	Outfall 009	ELV culvert inlet (helipad road gutter)	1.8	3	0.11	25	31.5	15
36	EVBMP0002-A ^{ab}	Outfall 009	Helipad (post-sandbag berms)	4.1	5	0.09	40	29.5	74
Notes 1) Pot 2) (*) 3) (*) 4) (** 5) The 6) Ap mo	Notes 1) Potential BMP subareas sorted by multi-constituent score, computed as described in Section 5. 2) (1) These potential BMP subareas monitoring subareas are upstream of existing stormwater quality treatment controls. 3) (1) These potential BMP subareas monitoring subareas are upstream of existing stormwater quality for construction) stormwater quality treatment controls. 3) (1) These potential BMP subarea monitoring subareas are upstream of existing stormwater quality for construction) stormwater quality treatment controls. 4) (1*) NPDES outfails are included for comparison and method testing purposes only, stormwater controls are not being contemplated at these locations. 5) The counding of weights may account for similar weights being ranked differently 6) Approximate drainage areas based on the cumulative drainage area of the SVMM cathment in which the monitoring location is located (Geosyntec, 2011). At locations where the monitoring joint is upstream of the cathment outfail af* c [*] sign is updt								

Biofilter Underdrain Monitoring at Kansas City Green Infrastructure Demonstration Project to Quantify Performance by Particle Size

Influent Particle Size Distribution (PSD) for Six Events (out of 79) that had Underdrain Flows (median size ranged from 13 to about 50 μm)

- Bioretention with underdrains hinders infiltration potential, but may be necessary to prevent extensive ponding of water in areas having health risks associated with mosquitoes.
- Sedimentation is a robust stormwater control.
- Complementary controls and treatment trains provide the best overall performance at complex sites having numerous and challenging numeric discharge limits.
- Performance of stormwater controls is dependent on treatment flow rate, influent concentrations, and particle size distributions.

Conclusions

- The International BMP Database contains an excellent summary of monitored performance of many categories of stormwater controls.
- Robust statistical stormwater control ranking methodology applicable to other sites!
- NEL compliance is a significant challenge with complications
 - Ubiquitous background sources (atmospheric inventory and soils)
 - Multiple landowners (NASA and Boeing)
 - Multiple jurisdictions and agency involvement (often hinders progress)
 - Unknown/variable performance of passive treatment systems
 - Implementability at point of compliance

82

Acknowledgements

- This presentation is a summary of several stormwater research and implementation projects. Primary sponsors included The Boeing Co. and the US EPA.
- Many colleagues assisted in these projects, especially Geosyntec Consultants, Inc., Wright Water Engineers, and the SSFL surface water expert panel.