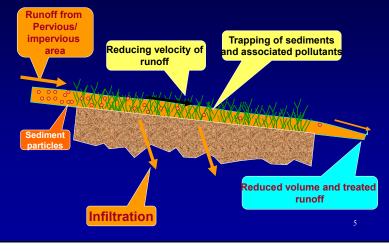


Selected Grass Swale and Filter Strip Monitoring References

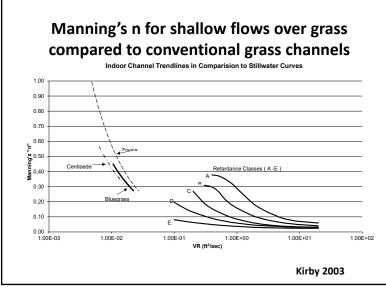
- EPA Report Infiltration Through Disturbed Urban Soils and Compost (Pitt 1999)
- Alabama Highway Drainage Conservation Design Practices (Nara and Pitt 2005)
- HEC-15, Design of Roadside Channels with Flexible Linings, 2005
- Results of Tests on Vegetated Waterways (Cox and Palmer 1948

Grass Swale and Filter Strip Topics


- Main findings from grass swale and grass filter research
- Mechanisms in swales and filters affecting stormwater quantity and quality
- Case studies of grass swale and filter performance
- Univ. of Alabama grass swale research
- Modeling sediment transport in grass swales
- Design of stable open channels
- General design procedures of grass-lines channels
- Conclusions

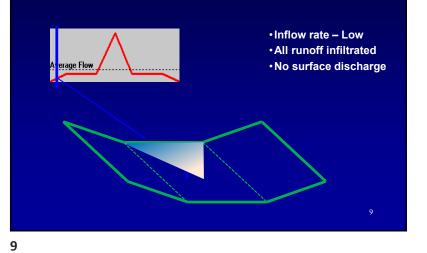
2

Selected Research Results

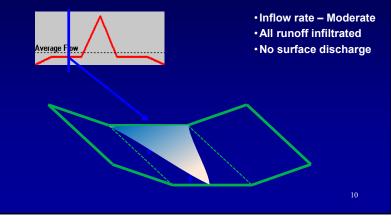

- IJC (1979) found swale drained areas had up to 95% less flows and pollutant yields compared to curb and gutter.
- NURP (1983) found soluble and particulate heavy metals reduced by 50% and COD, nitrate and ammonia nitrogen reduced by about 25%.
- Pitt & McLean (1986) found about 50% reductions in pollutants and runoff volume; for small frequent rains, very little runoff was observed.
- Johnson, *et al.* (2003) at the Univ. of Alabama identified hydraulic characteristics of stormwater swales under typical flows and plant bioremediation benefits in swales for heavy metal trapping (report available through WERF).
- Research (Nara and Pitt 2005) at the Univ. of Alabama identified significant factors affecting particulate transport in grass swales and developed suitable model algorithms. Modeled procedure joins particle settling with swale hydraulics.

Particulate Removal in Shallow Flowing Grass Swales and in Grass Filters

5

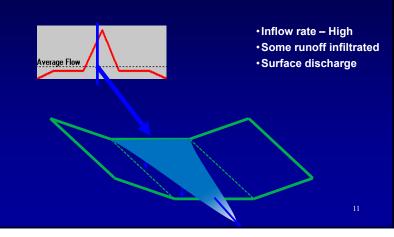

Dynamic Wetted Width Calculation

- Calculate event volume
- Convert volume to flow with:
 Runoff duration = 1.2 times
- rainfall duration
- Complex triangular hydrograph peak to average ratio = 3.8
- Flow rate calculated for each time interval set by user
- Calculate the wetted width from the flow rate and swale geometry using Manning's open channel flow equation for each time step

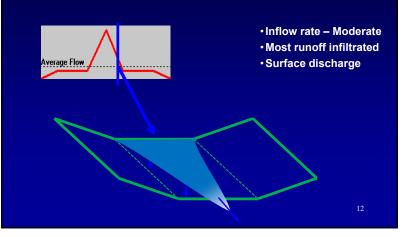

Flow Average Flow	\bigwedge
Time (1.2	* Rainfall Duration)
Width	≻ Slope
► Side	> Manning's r
slope	from

from Retardance Factor

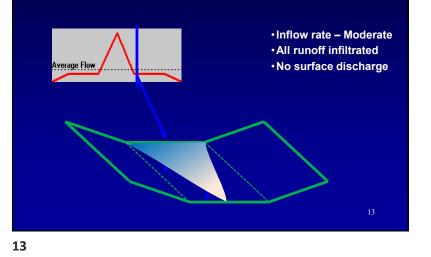
Swale Performance - Infiltration

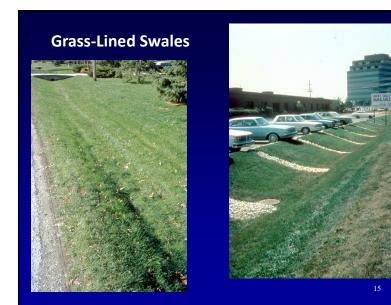


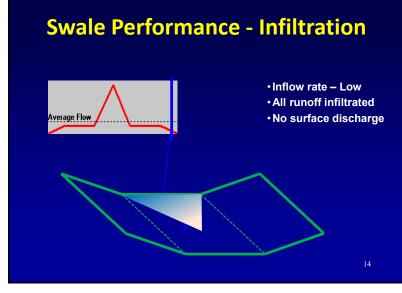
Swale Performance - Infiltration



10


Swale Performance - Infiltration




Swale Performance - Infiltration

Swale Performance - Infiltration

14

Large capacity grass swales and channels designed for both conveyance and water quality objectives.

Grass Filtering of Stormwater Sediment

Grass Swales Designed to Infiltrate Large Portions of Runoff (Alabama).

grass filtering before

infiltration

18

17

Elements of Conservation Design for Cedar Hills Development (near Madison, WI, project conducted by Roger Bannerman, WI DNR and USGS)

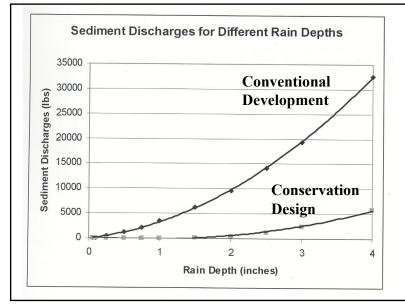
- Grass Swales
- Wet Detention Pond
- Infiltration Basin/Wetland
- Reduced Street Width

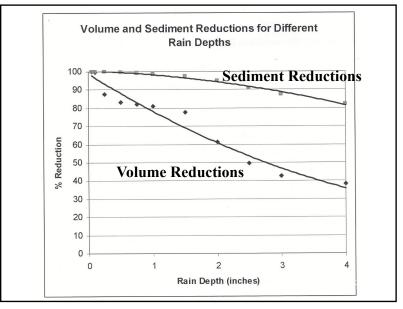
Conventional curbs with inlets directed to site swales

22

Reductions in Runoff Volume for Cedar Hills (calculated using WinSLAMM and verified by site monitoring)

Type of Control	Runoff Volume, inches	Expected Change (being monitored)
Pre-development	1.3	
No Controls	6.7	515% increase
Swales + Pond/wetland + Infiltration Basin	1.5	78% decrease,compared to nocontrols15% increase over pre-development

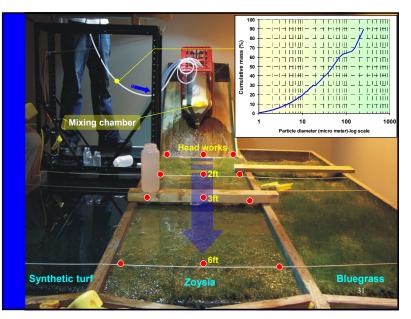



Conservation Design Elements for North Huntsville, AL, Industrial Park

- Grass filtering and swale drainages
- Modified soils to protect groundwater
- Wet detention ponds
- Bioretention and site infiltration devices
- Critical source area controls at loading docks, etc.
- Pollution prevention through material selection (no exposed galvanized metal, for example) and no exposure of materials and products.

Runoff Volume for Different Rain Depths 2500000 Conventional **Development** 2000000 Runoff Volume (ft3) 1500000 1000000 Conservation 500000 Design 0 2 0 3 1 Rain Depth (inches)

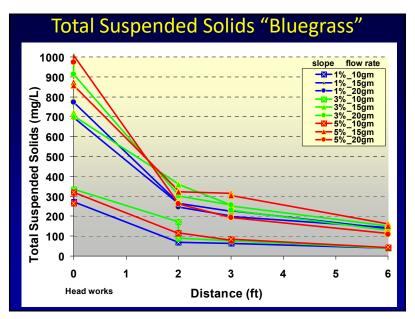
26



University of Alabama Grass Swale Research Objectives

- To understand the effectiveness of grass swales for different sized particles
- To understand the associated effects of different variables
- To develop a predictive model of sediment transport in grass swales

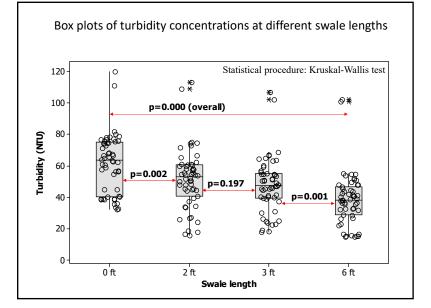
29

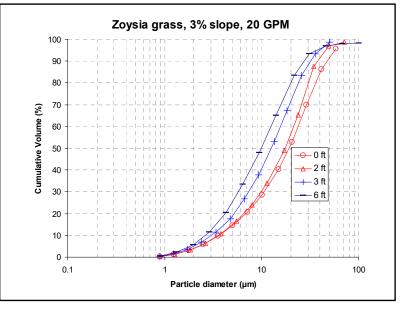


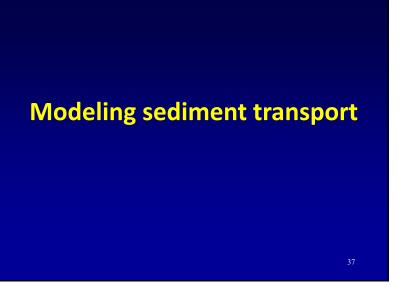
- Initial indoor grass swale experiment 108 samples collected
- Second indoor grass swale experiment 108 samples collected
- Outdoor grass swale monitoring 69 samples collected (13 storm events)

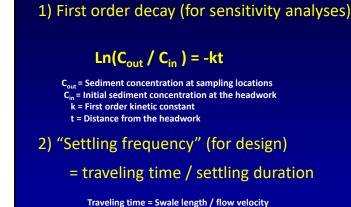
30

Variables and analytical methods

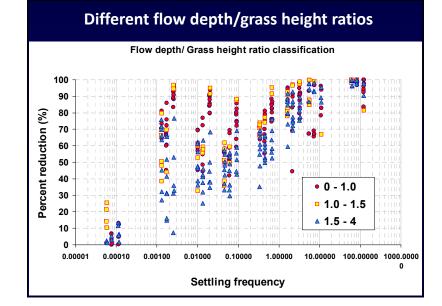

- Study of variables
 - 1) Grass types
 2) Slopes
 3) Flow rates
 4) Swale lengths
- Analytical methods
 - 1) Total solids
 - 2) Turbidity
 - 3) Total Suspended Solids
 - 4) Total Dissolved Solids
 - 5) Particle Size Distribution by Coulter Counter (Beckman[®] Multi-Sizer III)

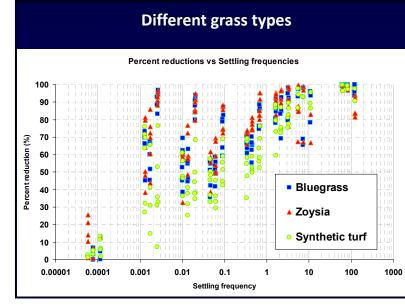


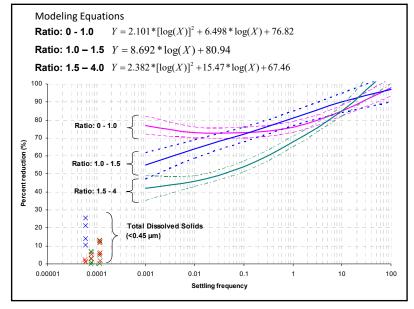

Significant factors and p-values at 6 ft


P-values were computed for constituent concentrations for each variable

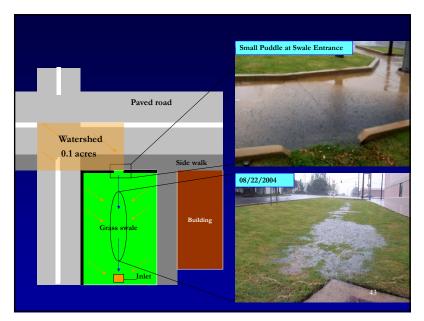
Constituent	Variable	P-value
Total Solids	Grass type	0.000
	Slope	0.006
	Flow rate	0.000
	Grass type*Flow rate	0.023
Total Solids (<106 μm)	Grass type	0.000
	Grass type*Flow rate	0.000
	Slope*Flow rate	0.006
Total Suspended Solids	Grass type	0.000
	Slope	0.047
	Grass type*Flow rate	0.005
	Slope*Flow rate	0.013
Total Dissolved Solids	Grass type*Flow rate	0.044
Turbidity	Grass type	0.000
	Slope	0.020
	Grass type*Slope	0.001
	Grass type*Flow rate	0.000

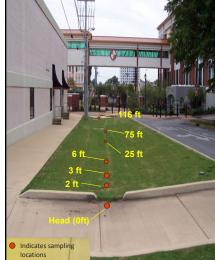


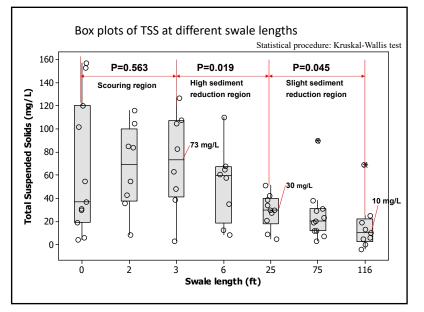


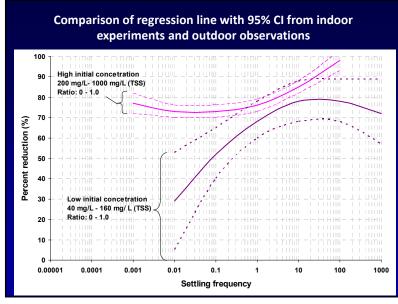


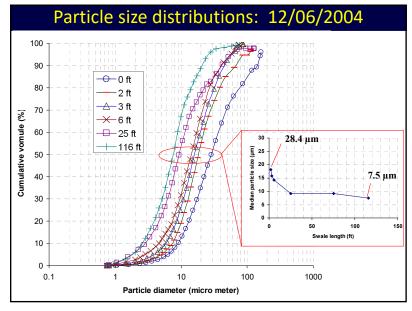
Settling duration = flow depth / settling velocity (Stoke's Law)

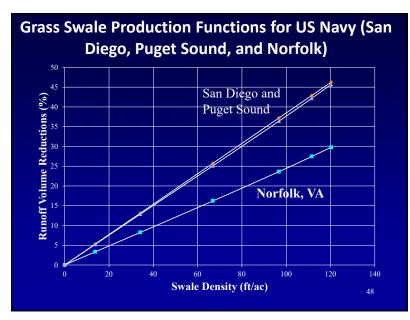

Concepts:

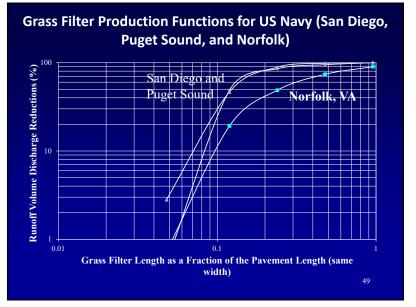


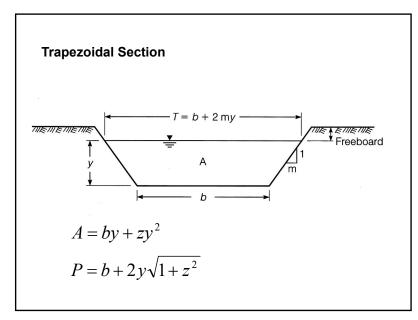

Outdoor Grass Swale Observations

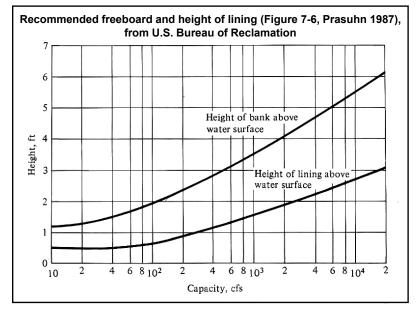


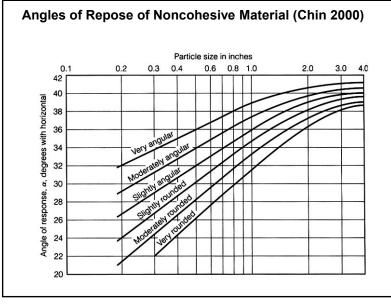

Description of the testing site Length of swale: 116 ft Type of grass: Zoysia Approx. watershed area: 4200 ft² = 0.1 acres Events: 13 storm events from 8/22 to 12/08/04 Soil texture: compacted loamy sand


Infiltration rate: < 1 (in/hr)

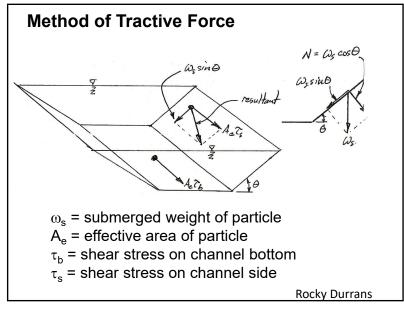




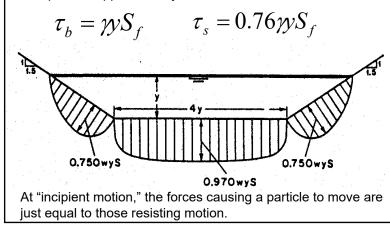




<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



Channel Material	Mean Channel Velocity (ft/sec)
Fine Sand	2.0
Coarse Sand	4.0
Fine Gravel	6.0
Earth	
Sandy Silt	2.0
Silt clay	3.5
Clay	6.0


Minimum velocity should be 2 to 3 ft/sec. Also check Froude number (≤ 0.8 , to ensure subcritical flow)

Туре	Characteristics	Minimum n	Normal n	Maximum n	
Cement	neat surface	0.010	0.011	0.013	
	mortar	0.011	0.013	0.015	D I
Concrete	trowel finish	0.011	0.013*	0.015	Roughness
	float finish	0.013	0.015	0.016	-
	finished, with gravel on bottom	0.015	0.017	0.020	Coefficients in
	unfinished	0.014	0.017	0.020	Lined Open
	gunite, good section	0.016	0.019	0.023	Channela (Tabl
	gunite, wavy section	0.018	0.022	0.025	Channels (Tabl
	on good excavated rock	0.017	0.020	_	4.14, Chin 2000
	on irregular excavated rock	0.022	0.027	_	4.14, Chin 2000
Concrete bottom float	U				
finished with sides of:	dressed stone in mortar	0.015	0.017	0.020	
	random stone in mortar	0.017	0.020	0.024	
	cement rubble masonry, plastered	0.016	0.020	0.024	
	cement rubble masonry	0.020	0.025	0.030	
	dry rubble or riprap	0.020	0.030	0.035	
Gravel bottom with					
sides of:	formed concrete	0.017	0.020	0.025	
	random stone in mortar	0.020	0.023	0.026	
	dry rubble or riprap	0.023	0.033	0.036	
Brick	glazed	0.011	0.013*	0.015	
	in cement mortar	0.012	0.015*	0.018	
Masonry	cemented rubble	0.017	0.025	0.030	
	dry rubble	0.023	0.032	0.035	
Dressed ashlar	— —	0.013	0.015	0.017	
Asphalt	smooth	0.013	0.013	_	
Vegetal lining	_	0.030	_	0.500	
Source: Chow (1959).					

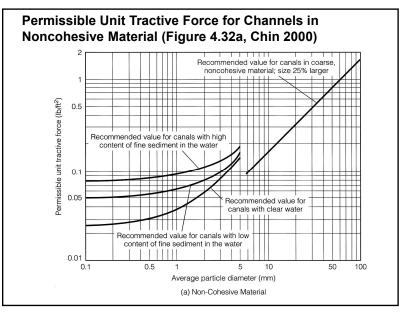
Grass-lined Earth (Slopes less than 5%)	
Bermuda Grass	
Sandy Silt	6.0
Silt Clay	8.0
Kentucky Blue Grass	
Sandy Silt	5.0
Silt Clay	7.0
Poor Rock (usually sedimentary)	10.0
Soft Sandstone	8.0
Soft Shale	3.5
Good Rock (usually igneous or hard metamorphic)	20.0

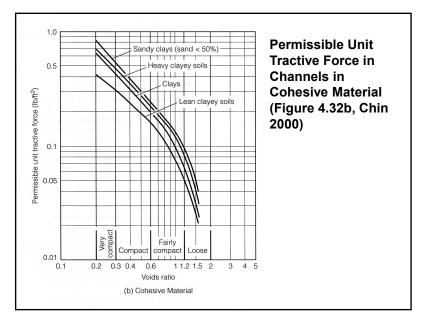
Research by the USBR has shown that the distribution of the shear stress is not uniform and that the maximum values of shear stress on the channel bottoms and side slopes are approximately:

Average Shear Stress on Channel Boundary (the Tractive Force): $\tau_{o}=\gamma RS$

US customary units of lb/ft^2

where:


 γ = specific weight of water (62.4 lbs/ft³)


R = hydraulic radius (ft)

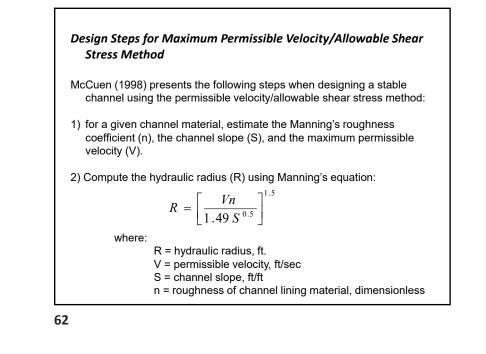
 S_o = hydraulic slope (ft/ft) for uniform flow; this is substituted with S_f for non-uniform flow conditions

If the channel is very wide (B>>y), such as for sheetflow conditions, the hydraulic radius (R) is substituted by the flow depth:

$$\tau_o = \gamma \gamma S_f$$

3) Calculate the required cross-sectional area, using the continuity equation and the previously determined design storm peak flow rate (Q):

A = cross-sectional area of channel (wetted portion), ft^2 Q = peak discharge for design storm being considered, ft^3 /sec V = permissible velocity, ft/sec

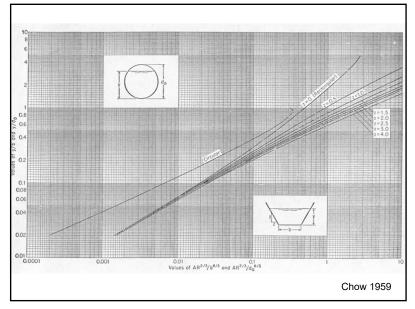

4) Calculate the corresponding wetted perimeter (P):

$$P = \frac{A}{R}$$

 $A = \frac{Q}{Q}$

where:

 $\label{eq:product} \begin{array}{l} \mathsf{P} \mbox{ = wetted perimeter, ft} \\ \mathsf{A} \mbox{ = cross-sectional area of channel (wetted portion), ft}^2 \\ \mathsf{R} \mbox{ = hydraulic radius, ft.} \end{array}$



5) Calculate an appropriate channel base width (b) and depth (y) corresponding to a specific channel geometry (usually a trapezoid channel, having a side slope of *z*:1 side slopes).

Chow's figure (1959) can be used to significantly shorten the calculation effort for the design of channels, by skipping step 4 above and more effectively completing step 5. This figure is used to calculate the normal depth (y) of a channel based on the channel side slopes and known flow and channel characteristics, using the Manning's equation in the following form:

$$AR^{\frac{2}{3}} = \frac{nQ}{1.49\,S^{\,0.5}}$$

Initial channel characteristics that must be know include: z (the side slope), and b (the channel bottom width, assuming a trapezoid). It is easy to examine several different channel options (z and b) by calculating the normal depth (y) for a given peak discharge rate, channel slope, and roughness. The most practical channel can then be selected from the alternatives.

The required cross-sectional area, using the continuity equation and the design storm peak flow rate (Q):

$$A = \frac{Q}{V} = \frac{13}{3.5} = 3.7 \, ft^2$$

Therefore, $AR^{2/3} = (3.7)(0.32)^{2/3} = 1.7$, and the wetted perimeter is A/R = 3.7/0.32 = 12 ft. There are many channel options than can meet this objective. The calculated maximum shear stress is:

γyS= (62.4 lb/ft³) (y ft) 0.01 ft/ft) = 0.62d

since the allowable shear stress is 0.15 lb/ft², the normal depth must be less than 0.24 ft (only about 3 inches). This will require a relatively wide channel.

As an example, assume the following conditions: Noncolloidal alluvial silts, water transporting colloidal silts:

Manning's roughness coefficient (n) = 0.020 maximum permissible velocity (V) = 3.5 ft/sec (the allowable shear stress is 0.15 lb/ft²)

The previously calculated peak discharge (Q) = 13 ft³/sec Channel slope = 1%, or 0.01 ft/ft

Therefore: The hydraulic radius (R) using Manning's equation:

$$R = \left[\frac{Vn}{1.49S^{0.5}}\right]^{1.5} = \left[\frac{3.5(0.020)}{1.49(0.01)^{0.5}}\right]^{1.5} = 0.32 ft.$$

General Design Procedure for Grass-Lined Channels

- The design of a grass-lined open channel differs from the design of an unlined or structurally lined channel in that:
- (1) the flow resistance is dependent on channel geometry and discharge,
- (2) a portion of the boundary stress is associated with drag on individual vegetation elements and is transmitted to the erodible boundary through the plant root system, and
- (3) the properties of the lining vary both randomly and periodically with time. Each of these differences requires special consideration in the design process.

69

$$\tau_e = \gamma DS \left(1 - C_f \right) \left(\frac{n_s}{n} \right)^2$$

where:

- $\tau_{\rm e}$ = effective shear stress exerted on soil beneath vegetation
- γ = specific weight of water (62.4 lbs/ft³)
- D = the maximum flow depth in the cross section (ft)
- S = hydraulic slope (ft/ft)
- C_{f} = vegetation cover factor (this factor is 0 for an unlined channel)
- n = roughness coefficient of underlying soil
- n = roughness coefficient of vegetation

Design using Vegetated Channel Liner Mats

Current practice is to design channel linings based on shear stress and not on allowable velocity. Shear stress considers the weight of the water above the lining and therefore does a better job of predicting liner stability compared to only using velocity.

Turf reinforcement mats (TRM) design must consider three phases:

- (1) the original channel in an unvegetated state to determine if the matting alone will provide the needed protection before the vegetation is established,
- (2) the channel in a partially vegetated state, usually at 50% plant density, and
- (3) the permanent channel condition with vegetation fully established and reinforced by the matting's permanent net structure. It is also important to base the matting failure on soil loss (usually 0.5 inch of soil; greater amounts greatly hinder plant establishment) instead of physical failure of the matting material. The basic shear stress equation can be modified to predict the shear stress applied to the soil beneath a channel mat.

70

69

As an example, consider the following conditions for a mature buffalograss on a channel liner mat:

 $\begin{aligned} \tau_{o} &= \gamma DS &= 2.83 \text{ lb/ft}^2 \text{ (previously calculated), requiring a NAG P300} \\ \text{permanent mat, for example} \\ &n_{\text{s}} \text{ for the soil is } 0.016 \\ &n \text{ for the vegetated mat is } 0.042 \\ &C_{\text{f}} \text{ for the vegetated mat is } 0.87 \\ &\text{The permissible shear stress for the underlying soil is} \\ &0.08 \text{ lb/ft}^2 \end{aligned}$

Therefore:

$$\tau_e = 2.83 (1 - 0.87) \left(\frac{0.016}{0.042}\right)^2 = 0.053 \text{ lb/ft}^2$$

The calculated shear stress being exerted on the soil beneath the liner mat must be less than the permissible shear stress for the soil. In this example, the safety factor is 0.08/0.053 = 1.5 and the channel lining system is therefore expected to be stable.

Example Problem:

Determine the normal depth in a trapezoidal channel with side slope of 1.5 to 1.0 (z = 0.667), a bottom width of 25 ft, a channel slope of 0.00088, if the discharge is 1510 ft³/sec, and the Manning's n is 0.017. Also, calculate the shear stress for this channel condition.

Redesign this channel using a grass liner (changing the side slope to z = 2).

 $\begin{array}{l} n_{s} \text{ for the soil is } 0.024 \\ n \text{ for the vegetated mat is } 0.048 \\ C_{f} \text{ for the vegetated mat is } 0.83 \\ \text{The permissible shear stress for the underlying soil} \\ & \text{ is } 0.095 \text{ lb/ft}^{2} \end{array}$

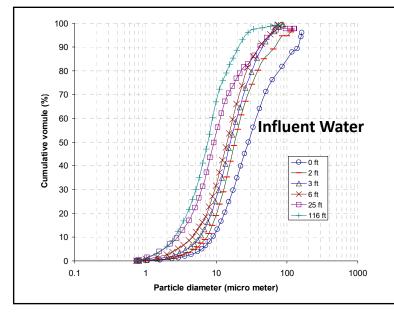
73

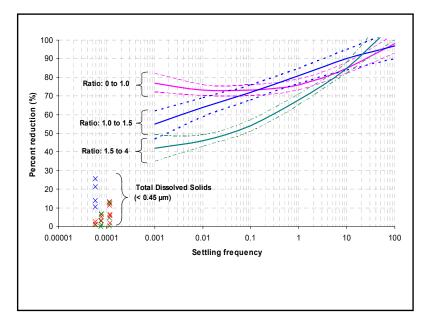
Sediment Capture in Grass Swale

- the discharge rate is 29 ft³/sec (0.80 m³/sec)
- the channel bottom width is 5 ft (1.5 m) wide, with 3 (H) to 1 (V) side slopes
- the calculated normal depth is 0.7 ft (210 mm, 21 cm) and the velocity is calculated to be 5.8 ft/sec (1.8 m/sec) after mature vegetation is established
- the swale length for this area is 1250 ft (378 m)

Solution to Example Problem

$$AR^{\frac{2}{3}} = \frac{nQ}{1.49S^{0.5}} = \frac{(0.017)(1510cfs)}{1.49(0.00088)^{0.5}} = 580.76$$


$$b^{8/3} = (25ft)^{8/3} = 5344$$


$$\frac{AR^{2/3}}{b^{8/3}} = \frac{580.76}{5344} = 0.109$$

therefore, for $z = 0.667$, $\frac{y}{b} = 0.27$
 $y = 0.27(25ft) = 6.75ft$
Check with full Manning's equation, Q = 1478 cfs

74

Water is assumed to enter the swale at the midpoint location, resulting in an effective treatment swale length of 625 ft (189 m). With a water velocity of 5.8 ft/sec (1.8 m/sec), the average travel time is 189 m/1.8 m/sec = 105 sec (1.8 m) for this length.

The mature grass is about 3 inches (75 mm) in height, so the flow depth to grass height ratio is 210 mm/75 mm = 2.8. The suspended solids concentration is determined to be 250 mg/L and the particle size distribution of the water entering the swale is typical.

Particle Size Range	Approx. % of Suspended Solids in Range	Particulate Concentratior in Size Range
0.45 to 2 µm	0.5	1.3
2 to 5 µm	2.7	6.8
5 to 10 µm	9.2	23.0
10 to 30 µm	40.4	101.0
30 to 60 µm	21.8	54.4
60 to 106 µm	10.6	26.5
106 to 425 µm	14.8	37.0
Total:	100.0	250 mg/L

Particle Size Range	Approx. Settling Rate (cm/sec)	Settling Time for 21 cm Flow Depth (sec)	Settling Frequency for Swale (105 sec travel time)	Percent Reduction in Size Range
0.45 to 2 µm	1.52 x 10 ⁻⁴	138,000	0.00076	42
2 to 5 µm	1.10 x 10 ⁻³	19,000	0.0055	44
5 to 10 µm	5.05 x 10 ⁻³	4,160	0.025	48
10 to 30 µm	3.59 x 10 ⁻²	585	0.18	57
30 to 60 µm	0.182	115	0.91	68
60 to 106 µm	0.619	33.9	3.1	74
106 to 425 µm	6.22	3.38	31	96

Particle Size Range (µm)	Influent Particulate Conc. in Size Range	Irreducible Conc. for Size Range (mg/L)	Particulate Conc. for Size Range after Treatment (mg/L)	Final Resultant Conc. for Size Range (mg/L)
0.45 to 2	1.3	7	0.8	1.3*
2 to 5	6.8	5	3.8	5**
5 to 10	23.0	5	12.0	12.0
10 to 30	101.0	10	43.4	43.4
30 to 60	54.4	5	17.4	17.4
60 to 106	26.5	5	6.9	6.9
106 to 425	37.0	10	1.5	10**

* the influent concentration for this particle size range is less than the irreducible concentration, so the influent concentration is not reduced by the swale treatment. ** the treated concentration for these particle size ranges are less than the irreducible concentrations, so the treated concentrations are not reduced to values smaller than the irreducible concentrations.

81

Particle Size (μm)	% smaller than size indicated (Dec. 6, 2004 influent)	Concentration smaller than size indicated (treated), mg/L	% smaller than size indicated, treated
0.45	0	0	0
2	0.5	1.3	1.4
5	3.2	6.3	6.6
10	12.4	18.3	19.1
30	52.8	61.7	64.3
60	74.6	79.1	82.4
106	85.2	86.0	90.0
425	100.0	96.0	100.0

82

Conclusions

- Grass swales are relatively robust stormwater controls
- In most low and medium density urban areas, sufficient space is available alongside roads to provide effective grass swales
- Harder to locate in high density urban areas
- Traditional design approaches can be used in conjunction with additional features to support water quality and infiltration objectives.