

Up-Flo[®] Filter Developed by Pitt as part of an EPA SBIR project and marketed by HydroInternational

- Chamber Retains floatables and trash
- Angled Screens Deflects neutrally buoyant material from media interface
- Sump Stores coarse grit and gross debris
- Filter media high rate of flow due to partial bed expansion of contained media:
 - Fine sediment
 - Hydrocarbons
 - Metals
 - Organics (pesticides, herbicides)
 - Nutrients (particulate phosphorus)

© 2006 Hydro

Current Full-Scale Monitoring in Tuscaloosa, AL One acre, mostly paved drainage area

Performance Summary by Particle Size									
25 gallon/min Flow Rate and 500 mg/L Concentration									
Particle Size (µm)	Average Influent Concentration (mg/L)	Average Effluent Concentration (mg/L)	Average Reduction (%)						
< 0.45	240	120	49						
0.45 to 3	26	3.2	88						
3 to 12	92	32	65						
12 to 30	130	28	79						
30 to 120	81	3.9	95						
120 to 1180	142	0.55	100						
> 1180	30	0	100						
sum >0.45 μm	500	67.7	86						

	Anal	ysis F	Proced	dure V	Vhen S	olving	Iterat	ively
		Outp File Na	ut from Th Final TS Ime: [filen	ree Mode S Concent ame] SF#(l Runs with D ration Goals)01 -87_Itera	ifferent tions.csv		_
		Number of Iterations	Final TSS Conc.(mg/L) Goal	Number of Cartridges	Final TSS Concentration (mg/L)	Current - Previous TSS Conc. (mg/L)	Final Percent Reduction	
		1	40	12	43.64159	43.64159		
		2	40	18	39.10429	-4.537292	68.81%	
	_	3	40	15	40.41138	1.307083		
	[1	30	12	43.64159	43.64159		
		2	30	18	39.10429	-4.537292	71 70%	
		3	30	21	36.75288	-2.35141	/1./0/0	
	2	4	30	22	36.61931	-0.1335716		
	2	1	20	12	43.64159	43.64159		
		2	20	18	39.10429	-4.537292	71 70%	
		3	20	21	36.75288	-2.35141	/1./0/0	
		4	20	22	36.61931	-0.1335716		
2.	Final iteratio	on concent	ration una	ble to me	et goal in this	s example b	ecause se	lected media
	unable to re	move fine	r particles	needed to	o reach the go	oal, even if	all the wat	er passed
	through the	media filt	er with no	bypass. Se	edimentation	of particul	ates in filte	er chambers (or
	upstream ste	orage unit	s) is also ca	alculated a	nd will affect	t results. Ho	owever, th	ere is a
	maximum ni	umber of	filter units	ner acre r	ecommender	hy the ma	nufacture	s so verv large
	systems are	not consid	lorod		e contraction de la contractica de la contractic	, and the me		s so ter, large
	systems are	not consit	iereu.					

File	Na	It from The Final TS me: [filen	ree Mode S Concent ame] SF#(l Runs with D ration Goals 001 -87_Itera	ifferent tions.csv	
Numbe Iteratio	r of ons	Final TSS Conc.(mg/L) Goal	Number of Cartridges	Final TSS Concentration (mg/L)	Current - Previous TSS Conc. (mg/L)	Final Percent Reduction
1		40	12	43.64159	43.64159	
2		40	18	39.10429	-4.537292	68.81%
3	_	40	15	40.41138	1.30/083	
2		30	12	39.10429	-4.537292	
3		30	21	36.75288	-2.35141	71.70%
4		30	22	36.61931	-0.1335716	
1		20	12	43.64159	43.64159	
2		20	18	39.10429	-4.537292	71.70%
3	_	20	21	36.75288	-2.35141	

Selected Grass Swale and Filter Strip

• EPA Report - Infiltration Through Disturbed Urban

Alabama Highway Drainage Conservation Design

• HEC-15, Design of Roadside Channels with Flexible

• Results of Tests on Vegetated Waterways (Cox and

Monitoring References

Linings, 2005

Palmer 1948

Soils and Compost (Pitt 1999)

Practices (Nara and Pitt 2005)

Five Components to Modeling Grass Swales

- Swale Density
- Swale Infiltration Rate
- Swale Geometry
- Grass Characteristics
- Runoff Particle Size
 Distribution

rainage System Control Practice Gra	ss Swale Num	ber 1	Grass	etice
Grass Swale Data	30.000	Select infiltration rate by se	soil type	51105
Traction of Drainage Area Served by Swales (0-1) wale Density (ft/ac) Total Swale Length (ft)	1.00 350 10500	C Loamy sand - 1.25 in/hr C Sandy Ioam - 0.5 in/hr C Loam - 0.25 in/hr C Silt Ioam - 0.15 in/hr		
verage swale Lengm to Uutlet (t) 'ypical Bottom Width (tt) 'ypical Swale Side Slope (ft H : 1 ft V) 'ypical Longitudinal Slope (ft/ft, V/H) wale Retrained Fater	4	Enter Grass Distribution to	Height and Particle Si to Determine Particle S	ze Size
wate Hetardance Factor 'ypical Grass Height (in) Swale Dynamic Infiltration Rate (in/hr) 'ypical Swale Depth (itt) for Cost Analysis (Optional) Les Tetal Swale Learth Leater of Curals	4 0.1 0.0	C Silty clay - 0.02 in/hr Clay - 0.01 in/hr	Filtering	
Density for Infiltration Calculations Select Particle Size Distribution File Particle Size Distribution	Total ar File Name	Total area (acres): 30.00 Total area (acres): 30.00 View Retardance	Particle S	ize
WinSLAMM FilesWURP.CPZ		Table	Distribution not accessi	File ble if
C Low density residential - 240 ft/ac Medium density residential - 350 ft/ac C High density residential - 375 ft/ac Strip commercial - 410 ft/ac	C Shopping c C Industrial - 2 C Ereeways (s C Freeways (c	enter - 90 ft/ac 260 ft/ac shoulder only) - 480 ft/ac senter and shoulder) - 540 ft/ac	Flows and Pa Sizes transfe through t	article erred he
Copy Swale Data Paste Swale Data		Delete Cancel	<u>Continue</u> drainage sy	stem

Additional Output											
Rain No.	Rainfall Depth (in)	Step Count	Qln	QCalc	Diff	h	Wetted Perimeter	Swale Vol Reduction	Runoff Vol Before Swales	Runoff Vol After Swales	
39 39	0.21	1	0.659558	15.88515	15.22559	0.5					
20	0.04	-	0.0000000	0 706467	0 40004	0.12	Iter	ative c	alcula	tion to	
Detailed	Detailed Hydraulics By Time Step 562! determine swale height										
Hydraulics And Concentration By Event									ator fo		
Increme	ental Pe	rforma	nce			414'	anu	weileu	perim	etel 10	
man dura			tion			697	e	acn ru	norf ev	/ent	
rreauc		ncentra	ition			4116					
Particul	late Ree	duction	i by Par	ticle Si	ze		2.525232	0.673294	10497.38	3429.561	
40	0.3	1	0.43074	15.88515	15.45441	0.5					
40	0.3	2	0.43074	3.332024	2.901284	0.25					
40	0.3	3	0.43074	0.796467	0.365727	0.125					
	Swale	2 = 1.48	6 / n * (h * Bot	tomWic	lth + Si	deSlop	e * h ^ :	2) ^ (5 /	3) /	
	(Botte	omWid	th + h *	Sqr(Sid	teSlope	e * Side	Slope +	- 1) * 2)	^ (2 / 3)*	
				Sq	r(Long	Slope)					
	0.0		0.10074	0.404507	1.00L-00	0.102020		_			
	0.3	9	0.43074	0.481597	5.09E-02	0.186899					
40	0.2	10		11/10 5 / 4 5		0.161059			1		
40	0.3	10	0.43074	0.435235	2.20E-02	0 102000					
40 40 40 40	0.3	10	0.43074	0.439498	3.99E-03	0.183888					
40 40 40 40	0.3 0.3 0.3 0.3	10 11 12	0.43074 0.43074 0.43074	0.439498	3.99E-03 8.76E-03 2.26E-03	0.183888 0.182451 0.181026					
40 40 40 40 40 40	0.3 0.3 0.3 0.3 0.3	10 11 12 13 14	0.43074 0.43074 0.43074 0.43074 0.43074	0.433293 0.426746 0.439498 0.432998 0.426599	3.99E-03 8.76E-03 2.26E-03 4.14E-03	0.183888 0.182451 0.181026 0.181733					
40 40 40 40 40 40 40 40	0.3 0.3 0.3 0.3 0.3 0.3 0.3	10 11 12 13 14 15	0.43074 0.43074 0.43074 0.43074 0.43074 0.43074	0.433293 0.426746 0.439498 0.432998 0.426599 0.429767	3.99E-03 8.76E-03 2.26E-03 4.14E-03 9.73E-04	0.183888 0.182451 0.181026 0.181733 0.182443					

50

Filter Strip Control Device **Grass Filter Strips** Land Use: Commercial 2 Total Area: 4.00 Source Area: Paved Parking 2 Filter Strip No. 1 Total Area: 4.000 acres First Source Area Control Practice Device Properties Assumptions: 4.000 l otal Area in Source Area (a Area Fraction Served by Filter Strips (0-1) Total Filter Strip Width (ft) 0.50 Effective Flow Length (it Infiltration Rate (in/hr) •Flow over surface modeled as 0.050 Typical Longitudinal Slope (0-1 Typical Grass Height (in) 0.100 4.0 • sheet flow Grass Retardance Factor Use Stochastic Analysis to account for Infiltration Rate Uncertainty •All particle sizes are treated Surface Clogging Load (lbs/sf) 3.50 Filter Strip Area to Drainage Area Ratio = 0.092. ratio must be greater than 0.05 to activate the filte •Effective treatment length reduced based upon slope • <0.02 ft/ft – 3 ft reduction</p> Select Particle Size File C:\Program Files (x86)\WinSLAMM v10\NURP.CP • >0.05 ft/ft – 10 ft reduction Select Native Soil Infiltration Rat ີ Sand -8 in /hr ີ Loamysand -2.5 in /hr C Clay loam - 0.1 in/hr Sity clay loam - 0.05 in/hr C Sandy clay - 0.05 in/hr C Sity clay - 0.04 in/hr Sandy loam - 1.0 in/hr else – 6 ft reduction Loam - 0.5 in/hr Silt loam - 0.3 in/hr Clay - 0.02 in/hr Sandy silt loam - 0.2 in/hr Irreducible concentration a Paste Filter Strip Data Copy Filter Strip Data function of particle size Cancel Continue Delete Control Practice # : 1 Land Use # : 3 Source Area # : 14

Geometry **Five Components to Modeling Filter Strips** Geometry -The filter strip area to And the second s drainage area ratio must be greater than 0.05 Infiltration Rate Fraction of Calculated Filter Strip Treatment Efficiency 7 0 9 0 8 0 8 0 • Geometry • Grass Characteristics • Clogging and Runoff Particle 0.2 0.4 0.6 Size Distribution

53

Additional Output										
SALL Reading Non- Filters Reading Non- Non- Reading Non- Non- Non- Non- Reading Non- Non- Non- Non- Non- Non- 1 3.22707 1.22707 1.22707 1.22707 Non- 1 1.322707 1.22707 1.22707 1.22707 Non- 1 1.32707 1.22707 1.22707 1.22707 Non- 1 1.322707 1.22707 1.22707 1.22707 Non- 1 1.32707 1.22707 1.22707 1.22707 Non- 1 1.322707 1.22707 1.22707 1.22707 Non- 1 1.928.239 1.92721 1.9273 1.9273 1.9273 Non- 1.928.239 7.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239 1.928.239	Invertif IS Total Volume Effect filter in 0.129297 0 0 0 0.129297 0 0 0 0.129297 0 0 0 0.129297 0 0 0 0.129297 0 0 0 0.129297 0 0 0 0.129297 0.00 0 0 0.129297 0.00 0 0 0.129297 0.00 0 0 0.129297 0.00 0 0 0.129297 0.00 0 0 0.119210 10.119 0.00 0 0.119210 10.119 0.00 0 0.119210 10.119 0.00 0 0.119210 10.119 0.00 0.00 0.119210 10.119 0.00 0.00 0.119210 10.00 0.00 0.00 0.00000000000000000	Will, Bate Congregated. 0 130 0.0000 0 130 0.0000 0 130 0.0000 0 130 0.0000 0 130 0.0000 0 130 0.0000 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 130 0.0002 0 <td< th=""><th>T55.117 EFF 8420 AC 4000 8420 AC 400000 0.0446 0.00000 0.0446 0.00000 0.0446 0.00000 0.0446 0.00000 0.0446 0.00000 0.0445 0.00000 0.0445 0.00000 0.0446 0.000000 0.0446 0.000000 0.0446 0.000000 0.0446 0.0000000000000000000000000000000</th><th>Lurat Pical X 60 Februari 15 0 0 0.0044 15 0 0.0044 15</th><th>Effluent Load Cum. O Ioso (I (Iba) Load (I 0 0.000 0 0.000 0 0.000 1 0.000 1 1.000 1 1.001 1 1.217 1 1.237 1 1.238 1 1.238 1 1.238</th><th>Nationum Leging 0.0050 0.0000 0.0050 0.0000 0.0051 0.0000 0.0051 0.0000 0.0051 0.0000 0.0051 0.0000 0.0051 0.0007 0.0052 0.0070 0.0072 0.0070 0.0073 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074</th><th>Maximum M Douge III 30 00000 00000 00000 00000 00000 00000 0000</th><th>nsimun (4) 00052 00055 00052 0005000000</th></td<>	T55.117 EFF 8420 AC 4000 8420 AC 400000 0.0446 0.00000 0.0446 0.00000 0.0446 0.00000 0.0446 0.00000 0.0446 0.00000 0.0445 0.00000 0.0445 0.00000 0.0446 0.000000 0.0446 0.000000 0.0446 0.000000 0.0446 0.0000000000000000000000000000000	Lurat Pical X 60 Februari 15 0 0 0.0044 15	Effluent Load Cum. O Ioso (I (Iba) Load (I 0 0.000 0 0.000 0 0.000 1 0.000 1 1.000 1 1.001 1 1.217 1 1.237 1 1.238 1 1.238 1 1.238	Nationum Leging 0.0050 0.0000 0.0050 0.0000 0.0051 0.0000 0.0051 0.0000 0.0051 0.0000 0.0051 0.0000 0.0051 0.0007 0.0052 0.0070 0.0072 0.0070 0.0073 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074 0.0070 0.0074	Maximum M Douge III 30 00000 00000 00000 00000 00000 00000 0000	nsimun (4) 00052 00055 00052 0005000000		

