

- Control practice used to model:
 - Biofilters
 - Rain Gardens
 - Infiltration Fields
 - Infiltration Trenches

Control Practice Overview Average Flow Inflow rate – High -10.00" Some runoff flows through engineered soil Top o Engineered Soi Native soil restricts below ground 5.00' 4.50' 3.00' discharge Water level above -0.50 ground rises Top of Rock Fill Water level below 1.00' 0.50 ground rises Water discharges through underdrain

Stormwater Constituents that may Adversely Affect Infiltration Device Life and Performance

- > Sediment (suspended solids) will clog device
- Major cations (K⁺, Mg⁺², Na⁺, Ca⁺², plus various heavy metals in high abundance, such as Al and Fe) will consume soil CEC (cation exchange capacity) in competition with stormwater pollutants.
- An excess of sodium, in relation to calcium and magnesium (such as in snowmelt), can increase the soil's SAR (sodium adsorption ratio), which decreases the soil's infiltration rate and hydraulic conductivity.

Sodium Adsorption Ratio (SAR)

The sodium adsorption ratio can radically affect the performance of an infiltration device. Soils with an excess of sodium ions, compared to calcium and magnesium ions, remain in a dispersed condition, almost impermeable to rain or applied water. 20 lb/ft² gypsum top-dressing as a soil amendment may help reduce SAR problems (used on agricultural fields, but not really shown to be useful at urban sites).

SAR value of 15, or greater, indicates that an excess of sodium will be adsorbed by the soil clay particles. This can cause the soil to:

- be hard and cloddy when dry
- crust badly
- take water very slowly

SAR values near 5 can also cause problems, depending on the type of clay present.

13

A new infiltration pond after first winter; receives snowmelt from adjacent salted parking areas (plus sediment from area construction); lost almost all of the infiltration capacity and is rapidly becoming a (poorly designed) wet pond.

Ground Water Mounding "Rules of Thumb"

- Mounding reduces infiltration rate to saturated permeability of soil, often 2 to 3 orders of magnitude (100 to 1,000X reductions) lower than dry soil infiltration rate.
- Long narrow system (i.e. trenches) don't mound as much as broad, square/round systems

17

Five Components to Modeling Biofilters

- 1. Structure Geometry
- 2. Outlet Information
- 3. Infiltration Data
- 4. Hydrograph and Flow Routing Information
- 5. Particle Size Distribution

				Y		0.41					
Lan	Land Uses Junc		ctions	Lior	trol Practu	ces	Uuttal		Oup	Ouput Summary	
File Name	c										
C:\Files\S	LAMM\Training-F	Presentations\U\	V EPD\2015 M	adison March\	JV drafts\I	Examples Used I	n Presentations	\BF Exam	nple.mdb		
,				Outfall C	utput	Summary				_	
			Runoff Volu (cu. ft.)	me Percent F Reduc	lunoff tion	Runoff Coefficient (Rv)	Particulate S Conc. (mg.	olids Pa 'L)	articulate Solids Yield (lbs)	Percent Particulat Solids Reductio	
Total of	All Land Uses with	iout Controls	33265	33	Г	0.47	16	3.3	3392		
	Outfall Total	with Controls	11419	38 65.6	7%	0.16	12	5.6	895.5	73.60	
Current	File Output: Annu	alized Total	1255	19 Year:	in Model	Run: 0	191		984.5		
										_	
	Pollu	ant	Concen- tration - No Controls	Concen- tration - With Controls	Concen- tration Units	Pollutant Yield - No Controls	Pollutant Yield - With Controls	Pollutant Yield Units	Percent Yield Reduction	-	
	Particulate Solids		163.3	125.6	ma/L	3392	895.5	lbs	73.60 %		
	Total Phosphorus		0.3073	0.2614	mg/L	6.382	1.864	lbs	70.80 %	_	
										•	
Print C Summarj Fil	utput Prin toText Summe	nt Output nary to .csv File	Total Area M	odeled (ac) 130							
Fotal C	ontrol Prac	tice Cost	5				Re		g Water In tormwator	npacts Rupof	
Capital Co:	ł	\$ 935763					Due	(CWP Im	pervious Cover h	fodel)	
Land Cost		\$ 45912								Approximat	
Annual Ma	ntenance Cost	+ 55170					1		Calculated By	Urban Strea Classificati	
Present Va	lue of All Costs	\$ 50173			F	Perform Outfall	With	ut Control	ls 0.47	Poor	
Annual and	Mahar at All Casts	\$ 1802522			Cu	riow Duration rve Calculations					
Mnnualized	value of All Costs	\$ 121157					J W	th Control	ls 0.16	Fair	

	Co	ont	rol	P	rac	ctio	ce	Sı	JN	n	na	ar	ſV	/	
	~ •				.	- l- '		•					,		
					Iĕ	aD	le								
Data File:	C:\Files\SLAMM\Trai	ning-Presentat	ions\UW EF	PD\2015 Ma	dison March\J	V drafts\Exa	mples Used	In Presentat	ions\BF Ex	ample.m	db				_
Rain File:	CO Denver Stapelton	AP 4899.RAN													
Date: 03-	02-15 Time: 7:05:53 P	М													
Site Desc	ription: Calgary, AB LID	Example, with	Biofilters ar	nd Wet Deter	tion Pond										
Control Control Practice Practice No. Type			Control Practice Name or Location		Total Inflow Volume (cf)	Total Dutflow Volume (cl	Percer Volum f) Reducti	nt Tota e Influe ion Load	al 1 ent Ef (Ibs) Lov	'otal fluent ad (lbs)	Perce Loa Reduc	cent Flo bad Weig uction Influ Conc		Flow Flow Weighted Wei Influent Eff anc (mg/L) Conc	
1	Biofilter	DS Biofilters	#1		332695	3 11415	38 6!	5.67	3392	895.5		73.60	1	63.3	125
Data rile: Rain File: Date: 03-1 Site Desc	CO Deriver Stapelton A 02:15 Time: 7:05:53 Pl ription: Calgary, AB LID	δ δ													
Control Practice No.	Control Practice Type	Percent Conc. Reduction	Influent Median Part. Size (microns)	Effluent Median Part. Size (microns)	Note	85	Maximum Stage (ft)	Hydraulic Volume Out (cf)	% of Clogging Factor	a Mas Su Po Tim	ximum rface nding ie (hrs)	Maxi Subsu Pon Time	.mum .irface iding e (hrs)	Volume Infiltrated (cf)	Ui D
1	Biofilter	23.098	7.8	.0 5.5	55 No Biofilter	Overflows	4.01	110421		_	0.0		24.66	134066.3	10
Data File: Rain File: Date: 03-0 Site Desc	C:\Files\SLAMM\Train CO Denver Stapelton A 02-15 Time: 7:05:53 PN ription: Calgary, AB LID 1														
Control Practice No.	Control Practice Type	Maximum Subsurface Ponding Time (hrs)	Volume Infiltrated (cf)	Underdrain Discharge Vol. (cf)	Evapo- Transpir. Vol. (cf)	Minimum Soil Moist. (frac)	Surface Discharge Bypass Vol. (cf)	Evap. Vol. (cf)	Volume Supplemti Irrig.(cf)	Surf- Pon- Event hrs (C	ace ding ts>72 Count)	Runol Produci Event Ttl. Rai	ff ing :s/ ins		
		04.00	101000.00	407000	440504 50						0		o IEE		

	Additional Output														
			Bic	ofilt	er E	ver	nt b	y Ev	ven	t Oı	ıtpι	ıt			
Biofilter W Biofilter W Sources Number	Product of the state														
>	Stoc	chas	tic s	eepa	age r	ates									

		Сс	ont	ro		ra	cti	ce	De	eta	il	
					Та	ab	les	5				
	Runoff Volu	me	<u> </u>	Part. Solid:	Yield (lbs)	Ĩ		Runoff Volu	ne		Part. Solids	s Yield (lbs)
Data Film C	Cal-SCI ANAM	NTesising Des	antation of the	CODV001E M	a dia an Manalat	07.4-6-5	Data City, C	ACRESCI AND	6 Table Day	antation of LB of	CDDS 201E M	
Bain File: C	Therwar Stan	elton AP 4899	BAN	EPD 12013 M	ausonmaicns	ov ulans.	Bain File: C	Derver Star	elton AP 4899	BAN BAN	EPD (2013 M	ausonmaten
Date: 03-02-1	15 Time 2:09	653 PM	a need to				Date: 02.02	15 Time 7-0	553 PM			
Site Descript	ion: Calgaru A	B LID Example	with Biofilters	and Wet Det	ention Pond		Site Descrip	tion: Calcaru é	B LID Example	with Riofilters	and Wet Det	ention Pond
ono o oounpi	on: cosgaly, A	o dio example	, man biorittera	and Wet Det	a waari ond		oxo Dosonp	son. odigdiy, /	o do example	, man pionikora		STREET ON
Control Prost	ine Tune		CO# 1 Die0	tention Aufiltent			Central Draw	line Turne		CDH 1 Diel	heating Aufilian	lian
Control Pract	ice Name / co	ation	DS Riofilters	CF# 1 - bioritration/infiltration			Control Prac	uco rype ==> tice Name / or	ntion>	DS Piofilters	H 1	1011
Rain Number	Start Date	Rain Total (in)	Influent Runoff Vol.(cf)	# 1 Effluent Runoff Vol.(cf)	Runoff Vol. Percent Reduction		Rain Number	Start Date	Rain Total (in)	Part Sol. Yield(lbs)	# I Effluent Part. Sol. Yield(lbs)	Part.Yield Percent Reduction
484	03/30/55		0	0	0		484	03/30/55		0	0	0
485	04/11/55	0.48	11059	0	100.00		485	04/11/55	0.48	109.2	0	100.00
486	05/08/55	0.02	83.39	0	100.00		486	05/08/55	0.02	1.125	0	100.00
487	05/09/55	0.11	1626	0	100.00		487	05/09/55	0.11	17.42	0	100.00
488	05/16/55	0.12	1881	0	100.00		488	05/16/55	0.12	19.59	0	100.00
489	05/18/55	1.75	53245	25056	52.94		489	05/18/55	1.75	552.3	199.6	63.86
490	05/22/55	0.07	763.9	0	100.00		490	05/22/55	0.07	9.439	0	100.00
491	05/25/55	0.40	8965	1.337	99.99		491	05/25/55	0.40	88.02	0.01313	99.99
492	06/04/55	0.43	9738	0	100.00		492	06/04/55	0.43	95.83	0	100.00
493	06/05/55	0.14	2316	0.04611	100.00		493	06/05/55	0.14	23.77	4.732E-04	100.00
494	06/08/55	0.03	187.6	1.789E-04	100.00		494	06/08/55	0.03	2.531	2.413E-06	100.00
495	06/08/55	0.01	20.85	2.112E-05	100.00		495	06/08/55	0.01	0.2812	2.849E-07	100.00
496	06/13/55	0.19	3557	0	100.00		496	06/13/55	0.19	35.36	0	100.00
497	06/14/55	0.13	2094	0.06578	100.00		497	06/14/55	0.13	21.65	6.800E-04	100.00
498	06/16/55	0.11	1626	0.001842	100.00		498	06/16/55	0.11	17.42	1.973E-05	100.00
499	06/16/55	0.23	4504	0.05530	100.00		499	06/16/55	0.23	44.52	5.466E-04	100.00
500	06/18/55	0.07	763.9	0.02714	100.00		500	06/18/55	0.07	9.439	3.353E-04	100.00
501	06/20/55	0.02	83.39	2.932E-04	100.00		501	06/20/55	0.02	1.125	3.955E-06	100.00
502	06/25/55	0.03	187.6	0	100.00		502	06/25/55	0.03	2.531	0	100.00
503	07/04/55	0.02	83.39	0	100.00		503	07/04/55	0.02	1.125	0	100.00
504	07/10/55	0.01	20.85	0	100.00		504	07/10/55	0.01	0.2812	0	100.00
505	07/12/55	0.02	83.39	0	100.00		505	07/12/55	0.02	1.125	0	100.00
506	07/20/55	0.16	2786	0.1940	99.99		506	07/20/55	0.16	28.21	0.001964	99.99