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Selection of Statistical Tests Based on Probability 
Distribution and Other Characteristics

Comparing Paired Observations of Data

Parametric tests (data require normality and equal variance)
- Paired Student’s t-test (more power than non-parametric 
tests but only if data requirements are met)

Non-parametric tests
- Sign test (no data distribution requirements, some missing 

data accommodated) 
- Friedman’s test (can accommodate a moderate number of 

“non-detectable” values, but no missing values are allowed
- Wilcoxon signed rank test (more power than sign test, but 

requires symmetrical data distributions) 2

Comparing Two Independent Groups of Data

Parametric tests (data require normality and equal variance)
- Independent Student’s t-test (more power than non-

parametric tests, but only if data distribution requirements
are met)

Non-parametric tests
- Mann-Whitney rank sum test (probability distributions of 

the two data sets must be the same and have the same 
variances, but do not have to be symmetrical; a moderate 
number of “non-detectable” values can be accommodated)

3

Comparing many groups (use multiple comparison 
tests, such as the Bonferroni t-test, to identify which 
groups are different from the others if the group test 

results are significant)

Parametric tests (data require normality and equal variance)
- One-way ANOVA for single factor, but for >2 “locations”

(if 2 “locations, use Student’s t-test)
- Two-way ANOVA for two factors simultaneously at 

multiple “locations” 
- Three-way ANOVA for three factors simultaneously at 

multiple “locations”
- One factor repeated measures ANOVA (same as paired t

test, except that there can be multiple treatments on the 
same group) 

- Two factor repeated measures ANOVA (can be multiple 
treatments on two groups) 4
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Many Groups (cont.)

Non-parametric tests:

- Kurskal-Wallis ANOVA on ranks (use when samples 
are from non-normal populations or the samples do not 
have equal variances).

- Friedman repeated measures ANOVA on ranks (use 
when paired observations are available in many groups).
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Many Groups (cont.)

Nominal observations of frequencies (used when counts are 
recorded in contingency tables)

- Chi-square (2) test (use if more than two groups or 
categories, or if the number of observations per cell in a 
2X2 table are > 5).

- Fisher Exact test (use when the expected number of 
observations is <5 in any cell of a 2X2 table).

- McNamar’s test (use for a “paired” contingency table, such 
as when the same individual or site is examined both 
before and after treatment)
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Example 1-way ANOVA

• Is at least one member of a group significantly 
different from the other members? 

• Complement analysis with group box-whisker plot 
• This doesn’t identify which one(s) is(are) 

different.
• If a significant member, should be able to 

recognize from box-whisker plot and with 
Bonferroni T-test (multiple pair-wise 
comparisons). 

7

1-way ANOVA
Site ESite DSite CSite BSite A

12141534378
953877945

34422455463
146443254

234324
164

Are any of these sites different from the others?

8
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One-Way ANOVA Example Box and 
Whisker Plot

9

SUMMARY
VarianceAverageSumCountGroups

407.752.82645Column 1
340.333358.666671763Column 2
19161.87187.333311246Column 3

427.739.21965Column 4
128.916717.25694Column 5

ANOVA Single Factor (using Excel)

10

ANOVA

F critP-valueFMSdfSS
Source of 
Variation

2.92770.01164.4124564498255
Between 
Groups

556718100218
Within 
Groups

22198473Total

With a p = 0.012, at least one site is significantly 
different from the others. Observing the box and 
whisker plot, it is likely that sites A, B, and D form one 
group, while C and E are likely two other groups. 11

Example 2-way ANOVA
• Want to investigate the differences between 

different data strata. In this example, both rain 
depth and season are being investigated 
together.

• Are the variations between groups more 
important than the variations within the groups?

• What about interactions between different 
variables?

• ANOVA requires normally distributed data. In 
most stormwater cases, log-transformed values 
need to be used.

12
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The rain group factor and the season factor are both highly 
significant. The prior 2-way ANOVA found that the 
interaction term was not significant; the ANOVA was 
therefore re-run without that term.
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The first, third, and fourth rain categories are significant.

14

Only Fall and Summer are significant (maybe winter also). 
Therefore, lots of potential subgroups.
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ML Estimates

Further analyses resulted in only two main groups of the data, as 
show on this probability plot:
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Model Building

• If you can’t see it, it is likely not there…. (or 
certainly not very important, even if you 
have lots of data that make statistically 
significant results more likely than the 
usual handful of available data)

17

Plots of concentrations vs. rain depth typically show random patterns.

18

Concentration plots vs. time indicate possible trends. 
Lead has historically dropped significantly from the 
earliest stormwater studies to the present due to 
increased use of unleaded gasoline.

Residential Land Use Lead Concentrations

19

Model building/equation fitting (these are 
parametric tests and the data must satisfy 

various assumptions regarding behavior of the 
residuals)

Linear equation fitting (statistically-based models)

- Simple linear regression (y=b0+b1x, with a single 
independent variable, the slope term, and an intercept. It is 
possible to simplify even further if the intercept term is not 
significant).

- Multiple linear regression The equation is a multi-
dimensional plane describing the data).

20
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- Stepwise regression (a method generally used with 
multiple linear regression to assist in identifying the significant 
terms to use in the model.) 

- Polynomial regression (y=b0+b1x1+b2x2+b3x3+…+bkxk, 
having one independent variable describing a curve through the 
data).

21

Non-linear equation fitting (generally developed from 
theoretical considerations, usually through the solution of a 
partial differential equation)

- Nonlinear regression (a nonlinear equation in the 
form: y=bx, where x is the independent variable. Solved by 
iteration to minimize the residual sum of squares: Newton-
Rast).

22

Model Building Steps
1) Re-examine the hypothesis of cause and effect (an original 

component of the experimental design previously conducted and 
was the basis for the selected sampling activities). 

2)  Prepare preliminary examinations of the data, as described 
previously (most significantly, prepare scatter plots and grouped 
box/whisker plots).

3)  Conduct comparison tests to identify significant groupings of data. 
As an example, if seasonal factors are significant, then cause and 
effect may vary for different times of the year.

4)  Conduct correlation matrix analyses to identify simple relationships 
between parameters. Again, if significant groupings were 
identified, the data should be separated into these groupings for 
separate analyses, in addition to an overall analysis. 23

Modeling Building (cont.)
5) Further examine complex inter-relationships between 

parameters by possibly using combinations of hierarchical 
cluster analyses, principal component analyses (PCA), and 
factor analyses.

6) Compare the apparent relationships observed with the 
hypothesized relationships and with information from the 
literature. Potential theoretical relationships should be 
emphasized. 

7) Develop initial models containing the significant factors 
affecting the parameter outcomes. Simple apparent 
relationships between dependent and independent 
parameters should lead to reasonably simple models, while 
complex relationships will likely require further work and 
more complex models.

24
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Initial Analyses and Plots to Assist 
in Model Building

• Simple Correlation Matrices
• Hierarchical Cluster Analyses 
• Principal Component Analyses (PCA) and 

Factor Analyses 

25

Simple Data Associations

- Pearson Correlation (residuals, the distances of the data 
points from the regression line, must be normally 
distributed. Calculates correlation coefficients between all 
possible data variables. Must be supplemented with 
scatterplots, or scatter plot matrix, to illustrate these 
correlations. Also identifies redundant independent 
variables for simplifying models).

- Spearman Rank Order Correlation (a non-parametric 
equivalent to the Pearson test).

26

Pearson Correlations

27

Complex Data Associations (typically only 
available in advanced software packages; 

also in MiniTab)

- Hierarchical Cluster Analyses (graphical presentation of 
simple and complex inter-relationships. Data should be 
standardized to reduce scaling influence. Supplements 
simple correlation analyses).

- Principal Component Analyses (identifies groupings of 
parameters by factors so that variables within each factor 
are more highly correlated with variables in that factor than 
with variables in other factors. Useful to identify similar 
sites or parameters).

28
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Dendogram (tree) 
from a cluster 
analysis of data 
previously shown 
on Pearson 
Correlation 
matrix. Shows 
similar urban 
hydrology “data 
structure” for 
these two very 
different sites.
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Principal Component 
Analysis (PCA) is a 
sophisticated 
procedure where 
information is sorted 
to determine the 
constituents needed 
to explain the 
variance of the data. 
This plot indicates 
how much of the 
data variability occurs 
in each combination 
of principal 
components.

30

Regression Analyses
1) Formulate the objectives of the curve-fitting exercise (a 

subset of the experimental design previously conducted). 

2)   Prepare preliminary examinations of the data, as described 
previously (most significantly, prepare scatterplots and 
probability plots of the data, plus correlation evaluations to 
examine independence between multiple parameters that 
may be included in the models) 

3)   Identify candidate and alternative models from the literature 
that have been successfully applied for similar problems 
(part of the previously conducted experimental design 
activities in order to identify which parameters to measure, 
or to modify or control).

4)   Evaluate the data to ensure that regression is applicable and 
make suitable data transformations. 

31

Regression (cont.)
5) Apply regression procedures to the selected alternative 

models.

6) Evaluate the regression results by examining the coefficient of 
determination (R2) and the results of the analysis of variance 
of the model (standard error analyses and p values for 
individual equation parameters and overall model).

7) Conduct an analysis of the residuals (as described below).

8) Evaluate the results and select the most appropriate model(s).

9)  If not satisfied, it may be necessary to examine alternative 
models, especially based on data patterns (through cluster 
analyses and principal component analyses) and re-
examinations and modification of the theoretical basis of 
existing models. Statistical based models can be developed 
using step-wise regression routines. 32
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Possible cause and effect 
confusion from correlation tests 
(Box, et al. 1978)

33 The use of the index of determination (R2) alone can be misleading 
(data from Anscombe, in Draper and Smith 1981)

This plot is what we 
visualize for an R2 value 
of 0.67

34

Regression Example with ANOVA

• Performance of TSS control of the Multi-
Chamber Treatment Train (MCTT)

• Examining overall treatment effects with 
regression and associated plots with 
ANOVA

35 36
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Total Suspended Solids mg/L
OUTLETINLETSTORM

551371
372
683
8384
6175
4166

<2.5237
6758

<2.5779
54110
810311

<2.54112 37

Data plotted in real 
space, emphasizing 
unusual conditions (this 
unusual data value can 
only be removed for 
cause; likely due to scour 
of media during first 
event; left in for these 
example analyses)

38
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1212N

912
Detected 
Observations

11.2248.6Mean

5.539.5Median

16.541.1StDev

5.511.9SE Mean

37Minimum

55137Maximum

2.716.3Q1

776.5Q3

Influent Effluent

41 42

Lousy overall R2 and insignificant P values for both constant and 
slope terms. Re-ran without intercept term (forcing the regression 
through the zero), but slope term was still not significant. 
Therefore, no regression relationship and the effluent is a constant 
value (with some uncertainty) [and with one unusual value]. 43

Residual Analyses of Regression 
Models

• the residuals must be independent
• the residuals have zero mean
• the residuals have a constant variance (S2)
• the residuals have a normal distribution 

(required for making F-tests) 

44
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Plots to Check Residuals
• Check for normality of the residuals (preferably by 

constructing a probability plot and having the 
residuals form a straight line,

• plot the residuals against the predicted values,

• plot the residuals against the predictor variables, 
and

• plot the residuals against time in the order the 
measurements were made. 

45 From Draper and Smith, 1981

Histogram of residuals (and/or probability plot):

Residuals vs. predicted values:

Residuals vs. order of data collection:

46

Desired pattern (random band of residuals):

Fanning out of residuals indicated need for log transformation::

Slope implies a higher level of polynomial needed:

Curve indicates a data squared transformation needed:

47 48
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Analyses for Data Trends
- Graphical methods (simple plots of concentrations versus 

time of data collection). 

- Regression methods (perform a least-squares linear 
regression on the data plot and examine ANOVA for the regression 
to determine if the slope term is significant. Can be misleading due 
to cyclic data, correlated data, and data that are not normally 
distributed). 

- Mann-Kendall test (a nonparametric test that can handle 
missing data and trends at multiple stations. Short-term cycles and 
other data relationships affect this test and must be corrected). 

49

Data Trends (cont.)

- Sen’s estimator of slope (a nonparametric test based 
on ranks closely related to the Mann- Kendall test. It is not 
sensitive to extreme values and can tolerate missing data).

- Seasonal Kendall test (preferred over regression 
methods if the data are skewed, serially correlated, or cyclic. 
Can be used for data sets having missing values, tied values, 
censored values, or single or multiple data observations in 
each time period. Data correlations and dependence also 
affect this test and must be considered in the analysis).

50

WI DNR data and slide 51
Flood Hazard News, Vol. 23 No.1

52
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Flood Hazard News, Vol. 23 No.1
53

Concentration plots vs. time indicate possible trends. Lead has 
historically dropped significantly from the earliest stormwater 
studies to the present due to increased use of unleaded 
gasoline (simple regression trend line shown).

Residential Land Use Lead Concentrations

54

Secchi disk trends by season and year in Lake Rönningesjön, Sweden 
(m), showing initial steep improvement then leveling off (Pitt 1995)55

Secchi disk trends by season 
and year in Lake 
Rönningesjön, Sweden (m) 
(Pitt 1995)

56
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Model Building Example: 
Complex Modeling of Bacteria 

Survival Data

• Factorial experiments
• Multi-point trend analyses

57

23 Factorial Experiment (temperature, 
UV light, and humidity)

Used 4 large 
incubators  
separated into 
compartments for 
test conditions. 
Used dog feces 
slurry on concrete 
blocks. Later 
experiments 
added nutrients 
to experimental 
design for survival 
in soil.

58

Individual Treatments Modeled by 
Segmented Regression with Unknown 

Breakpoints

• MLE=Min SSE [Hudson’66]
• Unstationarity of MLE at T(obs) [Feder, 75]
• Grid-search method for edited and identified 

models [Lerman,’80)
• Sequential Search - sup(Ft) test [Bai and 

Perron,’98]
• Multiple linear regression (each segment) of 

environmental factors on rate constant k
59
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Warm, moist, and dark conditions resulted in slowest decrease in 
populations (and no initial breakpoint). Significant re-growth 
observed for all other conditions after several days.
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Material Exposure Metal 
Release Rate Modeling Example

• Many clustered laboratory analyses, data 
analyses tools, and chemical modeling 
evaluations.

Many pipe and gutter 
materials (several plastics, 
concrete, aluminum, 
copper, and galvanized 
steel) examined over 
several month exposure 
periods in different pH and 
ionic strength water. 61

Analysis Components for Model Development

1
• Time Series plots

• To illustrate metal release with the exposure time.

2

• Spearman Correlation
• To identify simple relationships between water quality parameters 

and contaminants

3

• Principal Component and Cluster Analysis
• To evaluate complex associations between water quality parameters 

and contaminant releases and to identify groupings of samples with 
similar characteristics

4

• Full Factorial Analyses
• To determine significant factors and their interactions on pollutant 

releases

5

• Empirical models were developed
• to predict pollutant releases for different materials and uses, water 

types and exposure times.

6

• Chemical Modeling
• To identify different chemical speciation and associations under 

different conditions and exposure periods
62

63
64

Spearman Correlation Matrices
Performed:
• On the samples collected during controlled and natural pH tests.
• To determine the association between

– Pb, Cu, and Zn concentrations
– pH
– Conductivity
– Toxicity of the samples at 5, 15, 25, and 45 min of bacteria exposure
– Time of material exposure to the experimental water
– For each pipe and gutter material.

TimeTox.
45min

Tox.
25min

Tox.
15min

Tox.
5min

Cond.pHZn

-0.496-0.427-0.462-0.462-0.508-0.4060.413-0.175Pb
0.9050.8600.8460.8460.8530.000-0.0699Zn

-0.0283-0.413-0.399-0.399-0.399-0.902pH
0.0000.3990.3990.3990.392Cond.
0.8620.9720.9860.986Tox. 5min
0.8200.9861.000Tox. 15min
0.8200.986Tox. 25min
0.806Tox. 45min

Example: Galvanized steel pipe during the natural pH tests

61 62
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65

Cluster Analyses
• For each pipe and gutter material using the data for buffered 

and natural pH tests.
• For the same data that were used to compute the correlation 

matrices
• To identify more complex relationships between the 

parameters.

Zn
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Steel Pipe. Natural pH Test

Principal Components Analyses

66

• PCA was performed for 
all samples

• Score plot of the first 
two Principal 
Components shows 
groupings of samples 
having similar water 
quality characteristics.
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pH 8, Other

Water & Material

Score Plot

pH 8, Other

 1st PC (toxicity) 
accounts for  57% of 
the total variance in 
the data.

 2nd PC (Pb, Zn, and 
time) accounts for 
the next 12% of the 
total variance.

Circled group:
 Mostly concrete, PVC, HDPE, vinyl, and 

aluminum materials under controlled pH 8 
conditions

 Low loadings of toxicity and metals

Detailed Analyses Flow Chart

1
• Kruskal-Wallis Test

• To combine data into similar populations 
before the following analyses

2
• Full Factorial Analyses

• To identify significant effects of pH, salinity, 
and exposure time

3
• Based on Factorial Analyses results 

• Combine into groups

4
• Mann-Whitney Test

• To compare the groups

67

Factorial Analyses for Material Exposures

• During  the first testing stage to estimate the effects of
– Exposure time (short and long)
– pH value (5 and 8)

• During  the second testing stage to evaluate the effects of
– Exposure time (short and long)
– Salinity (high and low)

• The factorial analyses were used to identify the significant 
factors and their interactions.

• Conducted several series of 22 and 23 Factorial Analyses to 
isolate missing conditions that were impossible to obtain 
(such as low pH and low conductivity).

68
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Group Box Plot for zinc releases in mg/m2 for various gutter 
and pipe materials immersed in bay and river waters.

Zinc releases were the 
largest from galvanized steel 
materials.

As the exposure time 
increased, the zinc releases 
also increased.

 During long exposure 
times, there was no 
difference between 
galvanized pipe and gutter 
samples.

The box plot for other 
materials represents all the 
data combined (for bay and 
river waters and for short 
and long exposure times).

69 Material

Con & Plastics P.St.S. St.L.
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1e+2

1e+3

1e+4

1e+5 St = galvanized steel material
P = pipe
G = gutter
S = short exposure time
L = long exposure time
Con = concrete

70

Model Building with Linear Regression
Objective:
• To predict metal releases from the exposure times for all test 

conditions.
• The regression requirements (normally distributed, zero 

mean, constant variance, independent) revealed that first 
order polynomials can be fitted to the log of metal releases 
vs. log of time.

Conducted on:
• For different pipe and gutter materials under controlled and 

natural pH conditions.
• Metals: Cu, Zn, Pb

71

Zinc releases from galv. steel gutter immersed in 
bay water.

• ANOVA analyses tested the significance of the slope and 
intercept terms and the overall model. Residual analyses 
were all acceptable (considering the few data). 72

Model for Galv. Steel Pipe under Natural pH 
Conditions

 Quantifying the expected contaminant releases

p-valueGalvanized Steel Pipe. Natural pH ConditionsConstituent

0.014 (for 

Cond.*Time)

L.R.: Avg.= 0.42 

(COV = 0.79)

L.B.: Avg.= 0.1 

(COV = 0.02)

S.R.: Avg.= 0.1 

(COV = 0.02)

S.B.: Avg.= 0.4 

(COV = 0.22)Pb, mg/m2

ND in bay and river watersCu, mg/m2

0.002 (for Time)L.: Avg.= 2230 (COV = 0.51)S.: Avg.= 208 (COV = 0.65)Zn, mg/m2

69 70
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Histogram Versus Order

Residual Plots for log10(Zn) Releases. Steel Pipe. Contolled pH

Final Plot of Fitted vs. Observed Values for Zinc Releases 
from Steel Pipe under Natural pH Conditions
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Subarea Ranking Methodology
• Statistical methodology (using binomial 

distribution) developed to rank the sites based 
on threshold comparisons while accounting for 
the number of usable data available at each site 

• “Weighting factors” were calculated for each 
site for metals (cadmium, copper, and lead), 
dioxins (TCDD TEQ and 2,3,7,8-TCDD), and TSS.

• Multi-constituent “score” was produced from metals and 
dioxin weighting factors to allow for relative ranking 
amongst potential stormwater control sites.

75 76

Locations of Sub-Area Sampling for Ranking for 
Stormwater Controls
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Example:
Site A: n = 10, m = 7
Site B: n = 14, m = 2

Based on weight alone, Site A 
would be prioritized over Site B.  WeightA = 0.83 

WeightB = 0.01

77

Basic Approach (example)

78

Highest priority

Second 
priority

Third 
priority

Not priority

Example: Dioxin (TCDD TEQ)

79

TCDD TEQ (ug/L)

• Background subareas 
occasionally exceed 
NPDES permit limit

• Water concentrations 
and particulate strengths 
at potential treatment 
subareas generally 
greater than at outfalls

TCDD TEQ Particulate Strength (mg/kg)

2012/2013 Ranking Results

80
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Total Suspended 
Solids % reduc

Total Suspended 
Solids efl

Total Suspended 
Solids inf

mg/Lmg/L

618.621.899/15/15
993.222012/22/15
571534.891/5/16
661750.023/7/16
8724179.023/11/16
957140.464/9/16

-392316.545/6/16
885.846.7212/16/16
75520.0512/30/16
892.118.421/7/17
883.327.681/12/17
854.429.981/20/17
625.414.252/3/17
981.8104.062/17/17
371727.131/9/18
549.320.073/2/18

161616count
-391.814.25minimum
9924220maximum
699.561average
806.429median
347.364stdev

0.490.771.1COV

South Detention Bioswale
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Sign Test: 1 of 16; p = 
0.0003
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Regression Analysis: log efl versus log inf
Analysis of Variance

P-ValueF-ValueAdj MSAdj SSDFSource
0.8430.040.0055590.005561Regressi

on
0.8430.040.0055590.005561log inf

0.1358741.9022414Error
1.9077915Total

Model Summary

R-sq(pred)R-sq(adj)R-sqS
0.00%0.00%0.29%0.36861

Coefficients
VIFP-ValueT-ValueSE CoefCoefTerm

0.0382.290.4050.928Constant
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Regression Equation
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Conclusions
• Statistical tools need to be selected based 

on data characteristics (presence of non-
detected values, data distributions, 
redundancy, objectives, etc.)

• A stepped approach is needed, from 
exploratory data analyses, to multivariate 
analyses, and to model building

• Residual analyses are required to confirm 
correct tool selection and utility of results
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