Selection of Critical Sources of Stormwater Pollutants

Robert Pitt, Ph.D., P.E., BCEE Emeritus Cudworth Professor of Urban Water Systems Department of Civil, Construction, and Environmental Engineering University of Alabama, Tuscaloosa, AL USA Many types of runoff monitoring have been used to understand transport and fate. from small source areas to

2

1

Other Source Area Sampling Methods

Controlled tests in small areas were used in conjunction with long-term rainfall/runoff monitoring at larger parking lot areas to develop actual hydrological relationships for paved areas, the most significant source of runoff for most urban areas during small to intermediate-sized rains.

This is an example of a rainfall-runoff plot from one of many controlled street washoff and runoff tests. About 1/3 of the rainfall is infiltrated through the street pavement for many of these events (up to 20 mm rains in this plot). No further infiltration was observed for larger events, resulting in classical pavement Rv values of 0.8 to 0.95 for large rains of interest for drainage design.

5

Paved areas become less important flow sources when landscaped areas start to contribute flows during later periods of the event (in this case, after about 0.5 in or 10 mm of rain)

6

Stormwater particulate iron concentrations compared to soil iron concentrations from different source areas

Similar plot comparing stormwater dioxin particulate

Subarea Ranking Methodology

- Statistical methodology (using binomial distribution) developed to rank the sites based on threshold comparisons while accounting for the number of usable data available at each site
- "Weighting factors" were calculated for each site for metals (cadmium, copper, and lead), dioxins (TCDD TEQ and 2,3,7,8-TCDD), and TSS.
 - Multi-constituent "score" was produced from metals and dioxin weighting factors to allow for relative ranking amongst potential stormwater control sites.

11

Follow-up Studies: Dioxin soil concentrations at different distances from treated wood utility poles compared to background soils and impacted soils

Stormwater Control Subarea Ranking Methodology

- Innovative, statistically rigorous approach
- Rank potential stormwater control subarea monitoring sites based on comparisons of:
 - Stormwater subarea concentrations with NPDES permit limits
 - Stormwater <u>subarea particulate strengths</u> with stormwater <u>background particulate strengths</u>
- Monitoring locations were scored based on number and percent of samples above NPDES permit limits and/or background
- Locations then ranked based on scores, and top locations identified
- Best professional judgment for stormwater control recommendations
- Process repeated annually through 2014

13

Example:Based on weight alone, Site A would beSite A: $n = 10, m = 7 \rightarrow Weight_A = 0.83$ prioritized over Site B.										be						
Site B: n = 14, m = 2 \rightarrow Weight _B = 0.01																
Total		Total Number of Critical Values in Data Set (m)														
Number of Observations (n)	1	Ç	2	3	4	5	6	C	7	8	9	10	11	12	13	14
1	50	T						Г	1							
2	50		5													
3	50		þ	87												
4	31)	69	94											
5	19		þ	50	81	97										
6	11		Ł	50	66	89	98									
7	6		3	50	50	77	94									
8	4		Ł	36	50	64	86		3	99						
9	2			25	50	50	75	Ż	Ł	98	99					
10	<u> </u>) X	8	3	95	99	99				
П	1			11	27	50	50	7.	3	89	97	99	99			
12	0			7	19	39	50	6	3	81	93	98	99	99		
13	0	K	5	5	13	29	50	5	0	71	87	95	99	99	99	
14		1		3	9	21	40	5	0	61	79	91	97	99	99	99
15	0	0		2	6	15	30	5	0	50	70	85	94	98	99	99

Rank from Average Weights	Potential BMP Subarea (Co-location(s))	Watershed	Description	Approx. Upstream DA (ac)	Events Sampled	Multi- constitue nt Score	Rank from Max Metal Weight	Rank from Max Dioxin Weight	Rank from TSS Weight
1	EVBMP0003 (A2SW0001) ^{sb}	Outfall 009	ELV road runoff/CM-1 upstream west	11.8	14	0.94	1	1	32
2	B1BMP0004 (B1SW0015)*	Outfall 009	B-1 media filter inlet north	3.7	2	0.72	9	5	74
3	ILBMP0001 ^b	Outfall 009	Lower parking lot 24" stormdrain	23	10	0.68	14	4	39.5
4	EVBMP0001-A ^b	Outfall 009	ELV culvert inlet (helipad road and ELV ditch, composite)	2.5	5	0.67	16.5	3	15
5.5	EVBMP0002 ^b	Outfall 009	Helipad (pre-sandbag berms)	4.1	6	0.66	15	6	31
5.5	ILBMP0002®	Outfall 009	Road runoff to CM-9	2.5	7	0.66	3	12	15
7	A15W0009-A	Outfall 009	CM-9 downstream-underdrain outlet (post- building 1324 parking lot asphalt removal, pre- filter fabric over weir boards)	16.4	1	0.63	2	19.5	74
8	APBMP0001	Outfall 009	Ashpile culvert inlet / road runoff	34	2	0.60	4	19.5	74
9	LPBMP0001-A ^b	Outfall 009	Lower Parking Lot sheetflow (post-gravel bag berms)	5.1	6	0.52	30	2	27
12.5	LPBMP0001 ^b	Outfall 009	Lower Parking Lot sheetflow (pre-gravel bag berms)	5.1	2	0.50	9	19.5	15
15.5	A2SW0002-A	Outfall 009	CM1 effluent (post-filter fabric over weir boards)	52.8	4	0.43	18.5	19.5	28.5
15.5	S A1SW0009-8 Outfall000 CM-9 downstream-underdrain outlet (post-filter fabric ver wei boards, post-building 1324 16.4 4 0.43 18.5 19.5 1						15		
17	B1BMP0003 (B1BMP0002)	Outfall 009	B-1 parking lot / road runoff to culvert inlet	5.2	12	0.43	38	7	33
27	B15W0014-B	Outfall 009	B-1 media filter effluent (post-media filter reconstruction)	4.7	4	0.27	32.5	19.5	74
28	LXBMP0004 ^b	Outfall 009	LOX southwest downstream of sandbag berm	10.6	5	0.26	9	40.5	1
34	EVBMP0001 ^b	Outfall 009	ELV culvert inlet (helipad road gutter)	1.8	3	0.11	25	31.5	15
36	EVBMP0002-A ^{ab}	Outfall 009	Helipad (post-sandbag berms)	4.1	5	0.09	40	29.5	74
Notes 1) Potenti 2) (*) Thes 3) (*) Thes 4) (**) NP 5) The rou	Control Control <t< td=""></t<>								

2011/2012 Dapking Docult

6) Approximate drainage areas based on the cumulative drainage area of the SWMM catchment in which the monitoring loc

17

Water Quality Improvements

- Demonstrated by ranks, pre- and post-stormwater control modification (filter fabric added to CM weir boards; helipad sand bag berm constructed)
- Limited to sites with at least 2 samples

monitoring point is upstream of the catchment outfall a "<" sign is used. 7) Bolded locations indicate that both the NPDES permit limit and 95th percentile background particulate strength threshold we

⁷⁾ Bolded locations indicate that both the NPDES permit limit and 95th percentile background particulate strength threshold were exceeded for any one COC

Another special studies component examined particulate strength by particle size.

Pavement solids particulate strengths for different particle ranges:

21

Identifying Dioxin Sources using Congener "Fingerprinting" Techniques

The sources used in the calculations were the same for each outfall set:

- Outfall stormwater (separately for OF001, 002, 003, 008, 009, 011, and 018)
- RFI soil for the same watersheds as the outfall, <75 μ m
- Pavement solids <75 μm
- Atmospheric deposition
- Background stormwater
- Paved area sheetflow near treated wood

23

Example scatterplot comparing <75 µm particle range dioxin congener data to bulk sample particulate strength data.

Rankings of Median Particulate Strengths of OCDD Congener Compared to Outfalls (1 lowest)

	Background soil	RFI soil	Pavement soil	Pavement soil near treated wood	Outfall
OF001	1	2	3.5 close tie	5	3.5 close tie
OF002	1	2	4	5	3
OF003	1	2	3.5 close tie	5	3.5 close tie
OF008	1	2.5 close tie	4	5	2.5 close tie
OF009	1	2	3	5	4
OF011	1	2	3.5 close tie	5	3.5 close tie
OF018	1	2	3	5	4

25

Dioxin Congener Relationships using Cluster Analyses; Outfall 009 example:

The calculated eigenvalues indicate how the different variables (the congeners here) contribute to explaining the variability in the data set. The first principal component accounts for most of the variability, while the others contribute less amounts. The loading for each variable indicates the relative significance for each variable per principal component. The scree plot shows the relative contributions for each component. Usually, the first two or three principal components contribute most of the total explanation of the variability, as indicated by the additional components contributing very little. The score plot is a scatter plot of the loadings for the first two principal components and indicates how the outfall and

*all others include: OF01, OF08, 002subarea impacted soils, pavement fines, SSFL background soils, ISRA excavated soil, and **ISRA** soil in place

29

The chemical mass balance equation which is the basis for this model is as follows:

 $\Sigma n (mn) (xpn) + \mu = Cp$

mn = the fraction of material from source type n xpn = the concentration of tracer p in source type n Cp = the concentration of tracer p at the outfall μ = error term associated with tracer p

The chemical mass balance model was used to calculate the likely contributions of the different TCDD congener sources affecting the outfall stormwater.

outfall	RFI soil	background soil	pavement	atmospheric deposition	Pavement runoff near treated wood	Reliability (based on sums)
OF 001	0.56	0.35	0.08	0.01	<0.01	good
OF 002	0.58	0.34	0.07	<0.01	<0.01	fair
OF 003	0.64	0.24	0.10	0.02	<0.01	fair
OF 008	0.77	0.15	0.06	0.01	<0.01	poor
OF 009	0.54	0.40	0.07	<0.01	<0.01	fair
OF 011	0.64	0.26	0.09	0.02	<0.01	fair
OF 018	0.42	0.45	0.11	0.02	<0.01	fair

Multivariate Analyses to Identify Sources of Stormwater Lead using Isotope Ratios

33

Pearson Correlation Matrix Showing Correlation Coefficients and p Values (significant differences highlighted)

	Pb208/204	Pb207/204	Pb206/204	Pb208/206	Pb207/206
Pb208/204		0.605	0.8	-0.421	-0.651
		1.36E-05	7.05E-11	<mark>0.00443</mark>	0.00000175
Pb207/204			0.132	0.283	0.118
			0.394	0.0627	0.447
Pb206/204				-0.881	-0.969
				<mark>3.32E-15</mark>	<mark>5.08E-27</mark>
Pb208/206					0.953
					2.08E-23
					35

Kruskal-Wallis One Way Analysis of Variance on Ranks, p = 0.006

Cluster Analysis Dendogram showing Relationships and Similarities between Lead Isotopes

Further cluster analyses found that most of the lead shot and shooting range soil ratio data are in one cluster group (1), while most of the OF 009 runoff ratio data are in another cluster group (2).

percentage in each similarity category	cluster group 1	cluster group 2	cluster group 3	cluster group 4	total
Background Soil	0	<mark>33</mark>	<mark>33</mark>	<mark>33</mark>	100
Lead Shot	<mark>75</mark>	<mark>25</mark>	0	0	100
OF009 Stormwater	0	<mark>80</mark>	20	0	100
Pavement Solids	0	0	<mark>67</mark>	<mark>33</mark>	100
Shooting Range Soil	<mark>52</mark>	14	<mark>29</mark>	5	100
Stream Sediment	17	<mark>50</mark>	<mark>33</mark>	0	100
average	24	34	30	12	100

37