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Abstract: Traditional effluent and ambient water column toxicity tests have been used widely for
evaluating the contamination of stormwaters and sediments. These assays consist of a routine
bioassay exposure design of 1 to 9 days using freshwater and marine/estuarine species known to be
sensitive to a wide range of toxicants. While effluent toxicity may be indicative of sediment or
stormwater toxicity in the receiving system, the exposure is different, and therefore toxicity cannot
be readily predicted. Traditional, standardized, whole effluent toxicity (WET) test methods have been
used effectively and also misused in evaluations of whole sediments, pore (interstitial) water,
elutriates (extracts), and stormwaters. Results show these methods to be very sensitive to sediment
and stormwater toxicity. These traditional toxicity tests are predictive of instream sediment or
stormwater effects where significant contamination exists or where exposure concentrations are
similar. Modifications of these standardized test methods to include sediments or pore waters have
been shown to be as sensitive as short-term, whole sediment toxicity tests using benthic species.
However, the added complexity of sediments and stormwaters (e.g., partitioning, high Kow com-
pound bioavailability, suspended solids, sporadic exposures, multiple exposure pathways) dictates
that traditional toxicity test applications be integrated into a more comprehensive assessment of
ecologically significant stressors. The limitations of the WET testing approach and optimized sample
collection and exposure alternatives are frequently ignored when implemented. Exposure to sporadic
pulses of contaminants (such as in stormwaters) often produce greater toxicity than exposure to
constant concentrations. Lethality from short-term pulse exposures may not occur for weeks after the
high flow event due to uptake dynamics. Pore water and elutriate exposures remove sediment
ingestion routes of exposure and alter natural sorption/desorption dynamics. Traditional toxicity tests
may not produce reliable conclusions when used to detect the adverse effects of: fluctuating stressor
exposures, nutrients, suspended solids, temperature, UV light, flow, mutagenicity, carcinogenicity,
teratogenicity, endocrine disruption, or other important subcellular responses. This reality and the
fact that ecologically significant levels of high Kow compounds may not produce short-term responses
in exposures dictates that additional and novel assessment tools be utilized in order to protect aquatic
ecosystems. This inablilty to predict effects is largely a result of the complex biological response
patterns that result from various combinations of stressor magnitudes, duration, and frequency
between exposures and also the interactions of stressor mixtures, such as syngergistic effects of
certain pesticides, metals, and temperature. In watersheds receiving multiple sources of stressors,
accurate assessments should define spatial-temporal profiles of exposure and effects using a range
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of laboratory (such as WET tests) and novel in situ toxicity and bioaccumulation assays, with
simultaneous characterizations of physicochemical conditions and indigenous communities.

KEY WORDS: stressors, indigenous communities, in situ, bioassays.

I. INTRODUCTION

Should standardized effluent toxicity test methods be used in evaluations of
sediment and storm water contamination? A growing body of literature suggests
they are useful assessment tools when used correctly, and in a multicomponent
assessment approach. The most widely used effluent toxicity tests are the acute and
chronic toxicity test methods currently used by the U.S. Environmental Protection
Agency (USEPA) (USEPA, 1991a,1993a, 1994a). They comprise one of three
primary approaches (including chemical-specific and bioassessments) used for
water quality-based toxics control (USEPA 1991a). While these methods were
designed for whole effluent toxicity (WET) testing, they are, in fact, simplistic
assays that measure the toxicity responses of surrogate species. The exposure
media they reside in during the assay (whether it be effluent, ambient water, pore
water, elutriate, whole sediment, or stormwater) is perhaps of less importance in
a discussion of their relevance than the manner in which they are exposed is and
its applicability to the receiving water system. The traditional WET test, when
properly conducted, measures the chemical toxicity of a media during constant
conditions and can provide useful information on various compartments of the
receiving water system, such as mixing zones, sediments, pore waters, and
stormwaters. The following discussions present the critical issues, strengths, and
weaknesses of using these traditional toxicity test methods and novel alternatives
for use in assessments of stormwater and sediment contamination.

II. ASSUMPTIONS OF WET TEST METHODS

The assumptions, strengths, and limitations of the USEPA’s WET test meth-
ods have been thoroughly documented (e.g., Grothe et al., 1996; USEPA, 1991a).
Briefly, the primary assumptions and methodological parameters are as follows:

• Acute toxicity = < 96 h lethality
• Chronic toxicity = 7 to 9 days (except Selenastrum capricornutum and Arbacia

punctulata)
• Effluents are collected (grab or composite) and placed in test chambers in a

defined dilution series
• Dilution water is laboratory water or receiving water
• Acceptability, performance criteria must be met (e.g., > 80% survival)
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• Threshold effect levels are calculated with associated statistical significance
from the dilution series responses

• Standardized test methods and test species must be used
• Quality assurance and quality control guidelines must be met (e.g., organism

age, health, water quality monitoring)
• Usually static-renewal; however, static or flow-through exposures used
• Assume surrogate test species are protective of 95% of resident species and

recommend 3 species be tested (fish, invertebrate, and plant); however,
usually a fish and/or invertebrate tested

• Acute-to-chronic ratio used to extrapolate to a chronic toxicity concentration

The USEPA (1991a) acknowledges several key limitations to the WET tests
that also apply to their application to stormwaters and sediments. Some of the
limitations more relevant to this manuscript include: (1) testing of only 1 to 3 test
organisms may not detect toxicants with a specific mode of action; (2)
bioaccumulative or “downstream” cumulative toxicity is not measured; (3) receiv-
ing water interactions with chemical and physical conditions may enhance or
remove toxicity; the causative agent is difficult to identify; and (4) variable effluent
toxicity requires dynamic characterization methods. Unfortunately, these limita-
tions are often ignored.

Odum (1992) stated that stress is usually first detected in sensitive species at
the population level. Natural population and community responses are not mea-
sured directly with WET tests (La Point et al., 1996; La Point et al., 2000). The
traditional surrogates (P. promelas and C. dubia) may not be as sensitive as
indigenous species (Cherry et al., 1991). Indirect effects of toxicity on species,
population, and community interactions can be important (Clements et al., 1989;
Clements and Kiffney, 1996; Day et al., 1995; Fairchild et al., 1992; Giesey et al.,
1979; Gonzalez 1994; Hulbert 1975; La Point et al., 2000; Schindler, 1987; Wipfli
and Merritt, 1994), and may not be detected by WET testing. A huge ecological
database exists showing the importance of species interactions in structuring
communities (e.g., Dayton, 1971; Power et al., 1988; Pratt et al., 1981).

It is less likely that strong relationships will exist between WET test responses
and indigenous communities at sites where there are other pollutant sources,
effluent toxicity is low to moderate, or dilution is high. Based on fish and benthic
invertebrate responses, several studies suggest that WET tests are not always
predictive of receiving water impacts (Clements and Kiffney, 1994; Cook et al.,
1999; Dickson et al., 1992, 1996; Niederlehner et al., 1985; Ohio EPA, 1987);
however, many studies have shown WET tests to be predictive of aquatic impacts
(e.g., Birge et al., 1989; Diamond et al., 1997; Dickson et al., 1992, 1996; Eagleson
et al., 1990; Schimmel and Thursby, 1996; Waller et al., 1996). These differences
should not be surprising however, as it is likely a result of WET test organisms and
field populations experiencing different exposures (USEPA, 1991a). In an efflu-
ent-dominated system, the in-stream exposure may be relatively similar to the
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constant effluent exposure characteristic of a laboratory WET test. A less degraded
watershed, one dominated by pulse non-point source (NPS) inputs, one that is not
dominated by point source effluents, and/or exposures that are highly variable may
have indigenous populations that are exposed to toxicity not detected in a WET
test. If sensitive species have already been lost from a watershed, a toxic effluent
may be inhibiting their return. In highly degraded sites, virtually any traditional
assessment tool (acute toxicity testing, chemical concentrations, indigenous com-
munities) can demonstrate a pollution problem exists with strong statistical rela-
tionships. The WET tests were not developed to evaluate all natural and anthropo-
genic stressors or to show all biological responses (such as, mutagenicity,
carcinogenicity, teratogenicity, endocrine disruption, or other important subcellu-
lar responses). In addition, highly nonpolar compounds may be elicite an effect in
short-term exposures. These issues dictate that additional assessment tools may be
utilized in order to protect aquatic ecosystems (Waller et al., 1996).

In order to determine the ecological significance of a WET response, it must
be related to the responses and interactions of species, populations, and commu-
nities in situ. This requires consideration of stressor(s) interactions, and dynamics
of exposure (magnitude, frequency, and duration). This dictates the need for a
weight-of-evidence approach that describes indigenous community responses, in
situ exposures, and physical-chemical stressors. More realistic assessments of
instream conditions (such as biosurveys of indigenous biota, exposures of caged
organisms, or studies of mesocosms) provide essential information that the WET
tests cannot (La Point et al., 1996).

III. COMPONENTS OF A HOLISTIC SYSTEM

There is a natural tendency to compartmentalize aquatic ecosystems in routine
water quality assessments, only focusing on effluent, ambient water, sediment, or
stormwater. This tendency is accentuated by the “media-based” design of most envi-
ronmental regulatory programs. In addition to this focus on individual media, most
water or effluent quality monitoring designs usually consist of a small number of
samples, collected from 1 to 4 locations, covering time periods of seconds (one grab)
to hours (24 h composite), at a frequency of 1 to 12 times a year. Even with the
maximum level of sampling that may be encountered (i.e., monthly, 24 h composites),
this would equate to 12 samples that determine the presence or absence of effluent
toxicity only 3.3% of the year. In addition to this minimal characterization are the
uncertainties of using only one to two species as surrogates of all resident species, the
unknown exposure to stress from the other unmeasured media, the fluctuating stressor
exposures occurring during high flow or loading events and stressor interactions that
occur in aquatic ecosystems. All of these uncertainties and assumptions suggest that a
more comprehensive, holistic assessment is needed of which laboratory-based effluent
or ambient water column testing is but one component.
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There are several reasons why the “water column” species used in WET tests
are useful for assessments of sediments. Aquatic organisms rarely exclusively
inhabit one media during their life cycle. Many “pelagic” organisms may graze on
surficial sediments and even encounter pore waters. For example, the often used
“water column” surrogate, the fathead minnow (Pimephales promelas) is an om-
nivore, ingesting a mixture of detritus and invertebrates (Lemke and Bowan, 1998)
and frequently feeds on sediment surfaces. The zooplankton, Daphnia magna,
grazes on surficial sediments in whole sediment toxicity assays. The responses of
WET tests have been highly predictive of indigenous benthic community re-
sponses at many sites (Dickson et al., 1996; Eagleson et al., 1990). Many vertebrate
and invertebrate species have some link to sediments and have been shown to be
adversely affected by sediment contamination through toxicity and effects of
bioaccumulation (e.g., Baumann and Harshbarger, 1995; Benson and Di Giulio,
1992; Burgess and Scott, 1992; Burton, 1989; Burton, 1991; Burton, 1992ab;
Burton, 1995a; Burton, 1999; Burton and Scott, 1992; Burton and Stemmer, 1988;
Burton et al., 1987ab; Burton et al., 1989; Burton et al., 1992; Burton et al., 1996;
Chapman et al., 1992; Lamberson et al., 1992; Landrum and Burton, 1999; Lee,
1992; Lester and McIntosh, 1994; Ludwig et al., 1993; Mac and Schmitt, 1992;
Maruya and Lee, 1998).

Contaminated sediments tend to be the greatest threat to organisms that reside
in or on the sediments, or feed either directly on the sediments or on benthivorous
organisims. The resuspension of sediments and release of sediment-associated
contaminants can be primarily attributed to bioturbation, diffusion, and hydraulics.
Standardized effluent or ambient water column assays and other sediment toxicity
tests can be used to ascertain whether sediment contaminants are toxic in short-
term exposures. However, these relatively short-term assays may not detect high
Kow compound effects that are more slowly desorbed and bioaccumulated. None-
theless, PCB and chlorobenze uptake and toxicity have been observed at low mg/
kg concentrations in exposures of less than a week (Burton et al., 1999)..

Fish consumption advisories have been steadily increasing in recent years
(USEPA, 1997, 1998). Over 2000 waterbodies had fish advisories in 1996 and
most identified sediments as a fish contamination source. It is interesting to note
that, based on the huge USEPA water quality criteria toxicity database, benthic and
water-column organisms often have similar sensitivity ranges. This observation
has supported the justification for using an equilibrium partitioning-based ap-
proach for sediment quality guidelines (Di Toro et al., 1991; USEPA, 1989a).
Other results have shown water-column organisms to even be more sensitive than
benthic species to sediment contamination (Burton et al., 1996; USEPA, 1994b).

The release of the USEPA Contaminated Sediment Management Strategy and
Sediment Quality Inventory compiled the limited sediment data (only 4% of
monitored sites had toxicity data) and stated that adverse effects are probable from
sediments at 26% (>5000) of sites surveyed (USEPA, 1997). A recent random
survey of sediments in North Carolina’s estuaries found from 19 to 36% had

130343.pgs 10/3/00, 11:53 AM5



6

contaminant levels known to cause toxicity and 13% had few to no living organ-
isms (Pelly, 1999). These areas are dominated by agricultural watershed inputs.
The paucity of sediment toxicity information and the focus of past sediment
surveys on industrialized waterways raises the question of whether the extent of
sediment contamination is actually much greater than envisioned.

Another essential stressor compartment of the aquatic ecosystem that must be
considered in any water quality assessment is that of stormwater runoff. Nonpoint
Source Pollution (NPS) is estimated to degrade more than half of the waterways
of the United States (Anon., 1996), with other estimates ranging from 30 to 76%
(ASIWPCA, 1984; Iivari, 1992). Moderate flows following wet weather events
account for the majority of the loading in most waterways (Pitt et al., 1999). The
primary loading of nutrients, solids, and anthropogenic chemicals originate from
nonpoint sources (Anon., 1996). The dynamics of stream biota are tied closely to
abiotic factors (Power et al,. 1988) and strongly affect species richness, nutrient
cycling, and decomposition processes (Minshall, 1988; Pringel et al., 1988; Resh
et al., 1988). Aquatic ecosystems are open nonequilibrium systems in which the
frequency and magnitude of disturbance events cannot be predicted (Carpenter et
al., 1985; Pringel, 1988; Resh et al., 1988). Despite these realities, water quality
monitoring assessments (physicochemical or biological) rarely characterize the
role of high flows as either a source of stressors or as a loading component. Rather,
permit limits and exceedances are more closely tied to periodic low flow condi-
tions (e.g., 7Q10).

In general, monitoring of urban stormwater runoff has indicated that the biologi-
cal integrity, and the beneficial uses of urban receiving waters are often affected by
habitat destruction and long-term pollutant exposures (especially to macroinvertebrates
via contaminated sediment). Documented effects associated with acute exposures of
toxicants in the water column are being reported with increasing frequency. As seen
with the recent increase in fish consumption advisories, a lack of data does not
necessarily imply a lack of contamination. The primary stressors associated with
most NPS runoff events include stream power, biochemical oxygen demand (BOD),
suspended soilds, ammonia, metals, and synthetic organic chemicals (Burton, 1994;
Burton, 1995b; Burton and Pitt, 2000; Horner, 1991; Horner et al., 1994; Pitt, 1995;
Pitt et al., 1995; Pitt et al., 1999). The levels and exposure of pollutants and toxicity
varies orders of magnitude over brief periods (Hall and Anderson, 1988; Katznelson
et al., 1995; Mancini and Plummer, 1986). A myriad of potential stressor combina-
tions are possible in waters that receive significant NPS pollutant loadings. In the
laboratory, it would be impossible to evaluate even a small number of all combina-
tions of stressors, varying the magnitude, frequency, and duration of each stressor.
Therefore, predictive modeling of NPS-related toxicity in receiving waters will be
difficult to validate from a single chemical and total maximum daily load (TMDL)
perspective. These realities require that innovative in situ approaches integrated with
traditional methods for measuring and regulating effects be attempted to reduce the
uncertainties of current approaches.
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IV. STORMWATER QUALITY: RECEIVING WATER IMPACTS

Stormwater runoff is a major cause of receiving water quality degradation
(Burton and Pitt, 2000). The effects are most severe for receiving waters draining
heavily urbanized watersheds (Horner, 1991; Horner et al., 1994; Pitt, 1995).
However, some studies have shown important aquatic life impacts for streams in
watersheds that are less than ten percent urbanized where agriculture predominates
(Kuivila and Foe, 1995). A wealth of literature exists documenting a strong
relationship between degree of urban and agricultural runoff and degradation of
aquatic life (Benke et al., 1981; Cook et al., 1983; CTA, Inc., 1983; Dreher, 1997;
Ebbert et al., 1983; Ehrenfeld and Schneider,1983; Garie and McIntosh, 1986; Gast
et al., 1990; Handova et al., 1996; Heaney and Huber, 1984; Heaney et al., 1980;
Klein, 1979; Lenet and Eagleson, 1981; Lenet et al., 1981; Maltby et al., 1995ab;
Masterson and Bannerman, 1994; Moore and Burton, 1999; Mulliss et al., 1996;
Pedersen, 1981; Perkins, 1982; Pitt and Bissonnette, 1983; Pitt and Bozeman,
1982; Pratt et al., 1981; Richey, 1982; Richey et al., 1981; Schueler, 1996; Scott
et al., 1982; Spawn et al., 1997; Stein et al., 1995; Tucker and Burton, 1999;
Weaver and Garman, 1994; Willemsen et al., 1990). However, most of these
studies were not comprehensive and simply measured indigenous biological com-
munities and related degradation to urban storm flows. Runoff impacts were found
to most likely to be associated with small- to moderate-sized receiving waters,
while most of the existing water quality monitoring information exists for larger
bodies of water (Heaney et al., 1980). A study of over 40 northeastern Illinois small
to moderate-sized streams and rivers found that nearly all streams in urban and
suburban watersheds having population densities greater than about 300 people per
square mile showed signs of considerable impairment to their fish communities
(being in fair to very poor condition) (Dreher, 1997). Acute toxicity to Daphnia
pulex showed the following land use relationships: commercial > industrial >
residential > open space (Hall and Anderson, 1988).

A number of water-quality characterisitcs dominate as stressors in stormwater
runoff (e.g., suspended solids) and must be considered in the use of standardized
laboratory toxicity test methods. These characteristics include low dissolved oxy-
gen (e.g., Heaney et al., 1980; Keefer et al., 1979; Lammersen, 1996; Seidel et al.,
1996), high turbidity and pathogens (Bolstad and Swank, 1997; Pitt and Bozeman,
1982), ammonia (Widera and Podraza, 1996), bioavailable metals, pesticides and
polycyclic aromatic hydrocarbons (PAHs) (Boudries et al., 1996; Estebe et al.,
1996; Field and Cibik, 1980; Handova et al., 1996; Kuivila and Foe, 1995; Maltby
et al., 1995ab; Morrison et al., 1993; Mulliss et al., 1996) and flow (Borchardt and
Sperling, 1997). Recent studies have detected the highly toxic organophosphate
diazinon in virtually 100% of stormwaters at levels ranging from 0.5 to 5 µg/L, and
was acutely toxic to C. dubia (Connor, 1995; Schueler, 1995; Waller et al., 1995).
Chlorpyrifos was acutely toxic in several runoff samples at ng/L levels (Connor,
1995; Vlaming et al., 2000). Another problem chemical in stormwater is zinc,
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particularly in commercial and industrial areas. Concentrations during wet weather
events were often above toxicity threshold levels in a Fort Wort, Texas, survey, but
were highly variable (Waller et al., 1995). The primary source of zinc appears to
be galvanized metals, with roof gutters producing highly toxic runoff (Pitt, 1995;
Pitt et al., 1995). Amphipod uptake of PAHs from sediment extracts in urban
waterways was directly related to exposure and sediment manipulation identified
hydrocarbons, Cu and Zn as potential toxicants (Maltby et al., 1995b).

The stream habitat itself (e.g., refugial space, bed stability) was seen to play
a major role in the degree of effect and stressor interaction (Borchardt and Statzner,
1990). Suspended sediment and depressed dissolved oxygen concentrations pro-
duced strong synergistic effects in some fish species, as did contaminants and
temperature (Burton and Rowland, 1999; Cairns et al., 1978; Horner et al., 1994;
Moore and Burton, 1999), none of which would be predicted in traditional stormwater
quality or standardized toxicity assessments.

Long-term biological impacts in receiving waters affected by stormwater must
also be considered. Snodgrass et al. (1998) reported that ecological responses to
watershed changes may take between 5 and 10 years to equilibrate. Therefore,
receiving water investigations conducted soon after disturbances or mitigation may
not accurately reflect the long-term conditions that will eventually occur. They
found that the first changes due to urbanization will be to stream and groundwater
hydrology, followed by fluvial morphology, then water quality, and finally the
aquatic ecosystem. They also reported that it is not possible to predict biological
responses from stream habitat changes or conditions, although habitat changes may
be the most severe stressor in urban waterways.

The NPS loading of contaminants is highest during storm events and occurrs
as both dissolved and and suspended solids fractions. For this reason, downstream
depositional zones will tend to accumulate contaminants that may result in chronic
exposures to contaminated sediment. Contaminated sediments have often been
linked to point sources; however, nonpoint sources are likely a greater source of
contamination (as discussed above). So, investigations of stormwater contamina-
tion should always be linked to assessments of sediment quality.

Relationships between observed receiving water biological effects and pos-
sible causes have been especially difficult to identify, let al.one quantify. It is
expected that all of these above stressors are problems, but their relative impor-
tance varies greatly depending on the watershed and receiving water conditions.

A. Water-Quality Criteria Comparisons

The results of stormwater quality analyses have commonly been compared to
water quality criteria in order to identify potentially toxic waters, and likely
problematic pollutants. This has led to numerous problems with the interpretation
of the data, especially concerning the “availability” of the toxicants to receiving
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water organisms and the exposure durations in receiving waters. The water quality
of stormwater, or of ambient waters immediately following high flow events, has
been shown to be degraded in many studies with chemical concentrations, which
may exceed toxicity thresholds (e.g., Horner et al., 1994; Makepeace et al., 1995;
Morrison et al., 1993; Waller et al., 1995). Stormwater toxicants are primarily
associated with particulate fractions and are typically assumed to be “unavailable”.
Typically short and intermittent runoff events can also not be easily compared to
the “long” duration criteria or standards. Chemical analyses, without biological
analyses, would have underestimated the severity of the problems because the
water column quality varied rapidly, while the major problems were associated
with sediment quality and effects on macroinvertebrates (Lenet and Eagleson,
1981; Lenet et al., 1981).

To address magnitude and duration issues, the USEPA developed “Criterion
Maximum Concentration” with an exposure period assumption of 1 h and “Crite-
rion Contiuous Concentration” with an averaging period assumption of 4 days.
Yet, these assumptions do not accurately describe most wet weather runoff expo-
sures. Tests with pentachloroethane (Erickson et al., 1989; Erickson et al., 1991)
showed that with intermittent exposures, higher pulse concentrations were needed
to affect growth, and when averaged over the entire test, effects were elicited at
concentrations lower than when under constant exposure. The simplest toxicity
model (with first-order, single-compartment toxicokinectics and a fixed lethal
threshold) could not completely describe the data. Erickson et al. (1989) concluded
that kinetic models that predict mortality were reasonable; however, chronic
toxicity effects were much more complicated and no adequate models exsisted.
Hickie et al. (1995) describe a one compartment first-order kinetics, pulse exposure
model for residue-based toxicity of pentachlorophenol to P. promelas. Pulse
exposures were of 2 min to 24 h with durations of 2 to 24 h repeated 2 to 15 times.
A comparison of three models (Cxt, Mancini, Breck 3-dimensional range repair)
showed reasonable prediction of fish toxicity following 1 to 4 monochloramine
pulses (2 h pulse, 22 h recovery). However, predictive capability decreased with
greater than four pulses (Meyer et al., 1995). Beck et al. (1991) examined the
transient nature of receiving water effects associated with stormwater, stressing the
weaknesses associated with more typical steady-state approaches. They felt that
there were still major misconceptions associated with modeling these effects.

V. ASSESSING STORMWATER TOXICITY WITH TRADITIONAL
TOXICITY TESTS

A. General Applications

Traditional toxicity testing (e.g., WET) testing has been shown to be useful for
evaluating stormwaters. The use of toxicity tests on stormwater and receiving
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waters, especially in situ and side-stream tests that also reflect changing conditions
for extended periods, have added greatly to our knowledge of toxicant problems
associated with stormwater. While some stormwaters may not be toxic, there is a
large body of evidence that suggests many are toxic. Laboratory testing of runoff
samples has shown acute and chronic toxicity to a variety of species (Bailey et al.,
2000; Connor, 1995; Cook et al., 1995; Dickerson et al., 1996; Hatch and Burton,
1999; Ireland et al., 1996; Katznelson et al., 1995; Kuivila and Foe, 1995; McCahon
and Pascoe, 1990; McCahon and Pascoe, 1991; McCahon et al., 1990; McCahon
et al., 1991; Medeiros and Coler, 1982; Medeiros et al., 1984; Mote Marine
Laboratory, 1984; Tucker and Burton, 1999; Werner et al., 2000; Vlaming et al.,
2000). Pesticide pulses have been followed through watersheds, remaining toxic
for days from agricultural runoff (Kuivila and Foe, 1995; Werner et al., 2000).
Diazinon has been implicated as the primary toxicant in runoff causing acute
toxicity to C. dubia, P. promelas, and in situ Corbicula fluminea assays (Bailey et
al., 1997; Kuivila and Foe, 1995; Connor, 1995; Waller et al., 1995; Cooke et al.,
1995). C. dubia reproduction and growth of C. fluminea in situ closely paralleled
the health of the indigenous communities (Dickson et al., 1992; Waller et al.,
1995). A simulation of farm waste effluent (increased ammonia and reduced
dissolved oxygen) found amphipod precopula disruption to be the most sensitive
indicator of stress (McCahon et al., 1991). Mortality only occurred when D.O. fell
to 1 to 2 mg/L and feeding rates recovered after exposure to ammonia (5 to 7 mg/
L) ended. Elevations of major ion concentrations were toxic to C. dubia and P.
promelas in some irrigation drainage waters (Dickerson et al., 1996).

Toxicity may also be reduced in runoff. When turbidity increased during high
flow, photo-induced toxicity of PAHs was reduced in situ, when compared with
base flow conditions (Ireland et al., 1996). A recent study of the chronic toxicity
of fenoxycarb to Daphnia magna showed a realistic single pulse exposure resulted
in a MATC of 26 µg/L, as compared to 0.0016 µg/L from a standard, constant
exposure study (Hosmer et al., 1998).

WET tests have also been used to evaluate the toxicity of effluents from
stormwater runoff treatment systems. An evaluation of an urban runoff treatment
marsh found strong relationships between C. dubia time-to-death, conductivity,
and storm size, and time from storm flow initiation (Katznelson et al., 1995).
Airport runoff containing glycol-based deicer/anti-icer mixtures was toxic to P.
promelas and D. magna during high use winter months; however, during summer
months runoff toxicity only coincided with fuel spills (Fisher et al., 1995). Anti-
icer was more toxic to P. promelas, D. magna, D. pulex and C. dubia than deicer.
Additives were more toxic than glycols (Hartwell et al., 1995). Stormwater deten-
tion ponds reduced P. promelas and MicrotoxTM toxicity 50 to 90% when particles
greater than 5 µm were removed (Crunkilton et al., 1997; Pitt et al., 1999).

Medeiros and Coler (1982) and Medeiros et al. (1984) used a combination of
laboratory and field studies to investigate the effects of urban runoff on fathead
minnows. Hatchability, survival, and growth were assessed in the laboratory in
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flow-through and static bioassay tests. Growth was reduced to one-half of the
control growth rates at 60 % dilutions of urban runoff. The observed effects were
believed to be associated with a combination of toxicants.

B. Pulse Exposures

Seasonal pulses of toxicity (e.g., metals in snow melt), observed during ex-
tended wet weather conditions, may be reflected in benthic communities (Clementa,
1994) and likely detected in traditional laboratory toxicity tests (Liess, 1996;
Crunkilton et al., 1997; Tucker and Burton, 1999). However, localized stormwater
events may only produce short-term exposures (minutes to hours) to toxicants and
therefore are more difficult to assess (Burton and Pitt, 2000).

Some have suggested that relatively short periods of exposures to the toxicant
concentrations in stormwater are not sufficient to produce the receiving water
effects that are evident in urban receiving waters, especially considering the
relatively large portion of the toxicants that are associated with particulates (Lee
and Jones-Lee, 1995ab, 1996). Lee and Jones-Lee (1995b) suggest that the biologi-
cal problems evident in urban receiving waters are mostly associated with illegal
discharges and that the sediment bound toxicants are of little risk. This opinion,
however, is not supported by field studies. Others have found sediments to be
frequently contaminated at toxic levels (Burton and Pitt, 2000; Burton and Moore,
1999; EPA, 1997). Mancini and Plummer (1986) have long been advocates of
numeric water quality standards for stormwater that reflect the partitioning of the
toxicants and the short periods of exposure during rains. Unfortunately, this
approach attempts to isolate individual runoff events and does not consider the
accumulative adverse effects caused by the frequent exposures of receiving water
organisms to stormwater (Davies, 1986; Davies, 1991; Davies, 1995; Herricks,
1995; Herricks et al., 1996).

A growing preponderance of data, however, is showing that toxicity is com-
monly observed during stormwater runoff events and that short-term pulse expo-
sures can be more toxic than long-term continuous exposures (e.g., Brent and
Herricks, 1998; Crunkilton et al., 1997; Curtis et al., 1985). Short pulse exposures
in stormwater produced lethality several days to weeks later (Abel, 1980; Bascombe
et al., 1980; Bascombe et al., 1989; Brent and Herricks, 1998; Ellis et al., 1992;
Liess, 1996). Some of this apparent response delay may be a result of uptake and
accumulation kinetics (Bascombe et al., 1989; Bascombe et al., 1990; Borgmann
and Norwood, 1995; Borgmann et al., 1993). Recent investigations have identified
acute toxicity problems and the importance of an adequate post-exposure observa-
tion period in side-stream studies with P. promelas in urban streams (Crunkilton
et al., 1997), and in laboratory spiking studies (Cd, Zn, phenol) with Ceriodaphnia
dubia, Pimephales promelas, and Hyalella azteca (Brent and Herricks, 1998; Van
Der Hoeven and Gerritsen, 1997). Other laboratory studies have also shown acute
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and chronic toxicity of short-term exposures using fish and amphipods exposed to
chloroamines, metals, and pesticides (Abel, 1980; Abel and Gardner, 1986; Holdway
et al., 1994; Jarvinen et al., 1988ab; McCahon and Pascoe, 1991; Meyer et al.,
1995; Parsons and Surgeoneer, 1991ab; Pascoe and Shazili, 1986). In general, it
appears that exposure to higher concentrations of toxicants for brief time periods
is more important that exposure to lower concentrations for longer time periods
(Brent and Herricks, 1998; Liess, 1996; McCahon and Pascoe, 1990; Meyer et al.,
1995). However, increased amphipod depuration or metallothionein induction in
the presence of Zn allowed greater tolerance (Borgmann and Norwood 1995; Brent
and Herricks 1998).

Griffin et al. (1991) state that traditional toxicity testing is inappropriate for
time-scale studies of runoff effects due to the exposure design of constant toxicant
concentrations. Even the traditional exposure time used in toxicity tests may be
inadequate to predict long-term effects. Lifetime C. dubia reproduction was unre-
lated to water quality conditions and more related to food-related factors (Stewart
and Konetsky, 1998). This suggests assumptions of the short-term chronic toxicity
tests may be questionable in some situations.

Several other studies have shown that fluctuating pulse exposures produce
greater uptake and toxicity than continuous exposures, the magnitude of which were
dependent on interactions with other stressors (Abel, 1980; Abel and Gardner, 1986;
Brent and Herricks, 1998; Borchardt and Statzner, 1990; Curtis et al., 1985; Holdway
and Dixon et al., 1986; Ingersoll and Winner et al., 1982; Jarvinen et al., 1988ab;
Kallander et al., 1997; Mancini and Plummer, 1986; Siddens et al., 1986; Siem et al.,
1984; Thurston et al., 1981), thus pointing to the inadequacy of current water quality
criteria. Several of these studies showed significant toxicity effects occurring from
exposures of 0.25 to 5 h that equated to continuous LC50 level effects.

However, not all pulsed exposures are more toxic. If there is adequate time for
organism recovery between pulsed exposures to toxicants, then the effects of the
pulsed exposure of some toxicants are diminished (Brent and Herricks, 1998;
Kallander et al., 1997; Mancini, 1983; Wang and Hanson, 1985). This difference
may be attributed to the mechanism of toxicity. For example, organophosphates are
relatively irreversible inhibitors of acetylcholinesterase (AChE), while carbamate
inhibition may be reversible (Kuhr and Dorough, 1976; Matsumura, 1985). So
little difference is observed between continual exposures and pulsed exposures
(Kallander et al., 1997). Trout were observed to acclimate to ammonia if pulsed
exposures were below their toxicity threshold (Thurston et al., 1981). Fenoxycarb
was four orders of magnitude less toxic in a single pulsed exposure to Daphnia
magna as compared to a standard WET exposure (Hosmer et al., 1998). Compli-
cating predictions of effects are syngergistic interactions that occur between some
contaminants such as pesticides and metals (Forget et al., 1999) and between
herbicides and insecticides (Pape-Lindstrom and Lydy, 1997). Organisms recov-
ered to varying degrees given adequate time in clean water following pulsed
exposures to phenol, permethrin, fenitothion, and carbamates (Brent and Herricks,
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1998; Green et al., 1988; Kallander et al., 1997; Kuhr and Dorough, 1976; Parsons
and Surgeoneer, 1991ab).

Fluctuating pulse exposure issues carry particular significance in the assessment
of pesticide (agricultural) and urban runoff. It is apparent that risk from brief toxicant
exposure cannot be adequately predicted from standard continuous exposures (e.g.,
Abel, 1980; Anderson and Shubat, 1984; Hosmer et al., 1998; Jarvinen et al., 1988ab;
Kallander et al., 1997; Kleiner and Anderson, 1984; Thurston et al., 1981). Toxicity
testing in single events may not be predictive of long-term effects in receiving waters.
It was concluded that multiple-event analyses provides necessary information of
sources and variability of toxicity that is needed for many aspects of watershed
management programs (Herricks et al., 1994; Herricks et al., 1997).

C. Toxicity Identification Evaluations (TIE)

After toxicity is identified in receiving waters, researchers commonly attempt
to identify the toxicants responsible for the observed effects through TIE studies.
Diazinon was shown to be the primary toxicant in stormwater samples using C.
dubia (Ohio EPA, 1987; Bailey et al., 2000). Anderson et al. (1991) compared
numerous stormwater outfalls in the lower San Francisco Bay, California. They
found that non-polar compounds in the most toxic stormwater found (from a small
heavily industrialized drainage area) were the most important components of the
toxicity, with lesser effects associated with suspended solids, metal chelates, and
cationic metals. In another study, stormwater (from large parking areas surround-
ing an airport and industry) toxicity was most strongly influenced by cationic
metals. Diazinon and chlorpyrifos in urban stromwater showed additive toxicity to
C. dubia in a TIE (Bailey et al., 1997).

Jirik et al. (1998) also used selected phase 1 TIE studies to identify the
toxicants most responsible for stormwater toxicity in the Santa Monica Bay area.
Sea urchin fertilization tests indicated EC50 values of stormwater of about 12 to
20%. Santa Monica Bay receiving waters were also found to be toxic, with the level
of toxicity generally corresponding to the amount of stormwater in the receiving
water. EDTA addition removed virtually all of the toxicity, implying that divalent
metals were the likely toxicant component. Spiking studies showed that zinc, and
sometimes copper, were the most likely metallic toxicants. Further studies using
EDTA vs. sodium thiosulfate for toxicity removal also strongly implicated zinc as
the likely cause of toxicity.

D. In Situ Methods

It is apparent in some situations that the complex exposure dynamics and
interactions of stormwaters cannot be mimicked in the laboratory. By exposing
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standard test species in situ, exposures are more realistic. In situ testing using caged
organisms has been shown to be an effective monitoring tool. Numerous studies
have demonstrated the approach in studies of runoff, base flow, and sediments
(e.g., Burton, 1999; Burton and Rowland, 1999; Burton et al., 1996; Chappie and
Burton, 1999). Studies of marine systems have primarily used mussels (Salazar and
Salazar, 1997) with limited testing of amphipods (DeWitt et al., 1999; Fleming et
al., 1997). Freshwater studies have consisted of a wide range of organisms, such
as fish, cladocerans, amphipods, midges, bivalves, mayflies, hydra, bryozoa, and
oligochaetes (e.g., Brooker and Burton, 1998; Burton and Rowland, 1999; Burton
et al., 1996; Hatch and Burton, 1999; Ireland et al., 1996; Lavoie and Burton, 1998;
Liess, 1996; Moore and Burton, 1999; Morgan et al., 1981; Morgan et al., 1986;
Rowland et al., 1997; Sasson-Brickson and Burton, 1991; Schulz, 1996; Tucker
and Burton, 1999; Waller et al., 1995). Exposure periods range from 48 h to weeks.
Measurement endpoints range from lethality to sublethal biomarkers and tissue
residues. Toxicity has been observed to increase and decrease during high flow
events using in situ studies (Connor, 1995; Hatch and Burton, 1999; Ireland et al.,
1996; Moore and Burton, 1999; Tucker and Burton, 1999) and better revealed
which stressors were dominating, for example, suspended solids, flow, photo-
induced toxicity of PAHs, PCBs, sediments. More specifically, in situ toxicity tests
in receiving waters (Burton et al., 2000; Greenberg et al., 2000; Ireland et al., 1996;
Moore and Burton, 1999; Sasson-Brickson and Burton, 1991; Stemmer et al.,
1990; Tucker and Burton, 1999) have illustrated the direct toxic effects associated
with exposure to contaminated sediments, stormwaters, and suspended solids.
Exposures in situ are obviously different from those in traditional bioassays, so
responses often differ between the two when compared (Sasson-Brickson and
Burton, 1991; Tucker and Burton, 1999).

A variety of automated in situ response systems have been used in natural
waters (e.g., Morgan et al., 1981, 1986; Sloof, 1979; Sloof et al., 1983). Recently,
the sublethal responses of bivalve gape has been used as a continuous monitor of
water quality in situ (Allen et al., 1996; Borcherding, 1992; Herricks et al., 1997;
Sloof et al., 1983; Waller et al., 1995). Bivalves react to poor water quality
conditions by closing their shells. The opening and closure of their shells (or gape)
can be monitored by attaching a proximity electronic sensor to the outer shell
surface. This provides method for biologically monitoring water water on a real-
time basis through the use of telemetry methods (Allen et al., 1996; Borcherding,
1992; Herricks et al., 1997; Sloof et al., 1983; Waller et al., 1995). Each bivalve
will have a unique gape response signature and the current challenge is to statis-
tically characterize these reponse patterns and determine when significant water
quality impairment is occurring. Another promising method, on-site toxicity test-
ing, was conducted with side-stream flow systems using several species, lab and
field biological assessments, and chemical measurements (Burton and Rowland,
1999; Crunkilton et al., 1997). Toxicity varied through time and ranged from acute
to chronic effects, some of which peaked 25 days after exposure. The biological
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and physical habitat assessments also supported a definitive relationship between
degraded stream ecology and urban runoff (Crunkilton et al., 1997). Similarities
were observed between side-stream and in situ toxicity response patterns between
sample stations. Elevated temperatures accentuated site water and sediment toxic-
ity (Brooker and Burton, 1998; Burton and Rowland, 1999; Lavoie and Burton,
1998). Sublethal indicators of toxicity have also been used. DNA strand length in
the Asian clam was found to be a very sensitive indicator of stormwater contami-
nation (Black and Belin, 1998).

VI. SEDIMENT QUALITY: TOXICITY ISSUES

Single species toxicity testing with sediments has been conducted with in-
creasing frequency since the 1970s. Testing has involved a wide range of organ-
isms (microbial to amphibian) covering a wide range of trophic levels (Burton
1991). Many of the sediment contamination assessments have shown water column
species to be sensitive and effective tools (Burton, 1991; Burton, 1992b; Burton et
al., 1996; Burgess and Scott, 1992; Carr et al., 1996; Kemble et al., 1994; Padma
et al., 1998). While responses measured generally have focused on lethality and
growth, more sensitive sublethal effects are the focus of more recent studies (e.g.,
Burton, 1991, Day et al., 1997; Ingersoll et al., 1998). Standard methods exist for
several marine and freshwater species (ASTM 1995a-c; USEPA 1994c-d). Test
phases have included whole sediments, pore waters, and elutriate phases primarily
(Burton, 1991).

Pore waters have been shown to be a dominant exposure pathway of sediment
contaminants to many benthic invertebrates (Di Toro et al., 1991). Some have
suggested that pore water is a reasonable surrogate test fraction for whole sedi-
ments (Carr and Chapman, 1995; Giesy and Hoke, 1989). However, others have
disagreed, pointing to the importance of sediment and overlying water consump-
tion (e.g., Hare and Shooner, 1995; Lee et al., 2000). Pore water toxicity evalua-
tions with WET test methods have shown relationships with benthic communities
(Ankley et al., 1992). A three-phase partitioning model predicts the distribution of
hydrophobic chemicals between sediment organic matter, pore water dissolved
organic carbon, and freely dissolved aqueous phases (Mitra and Dickhutt, 1999);
however, a large fraction of the most nonpolar high-molecular-weight organics
present in pore water are colloidally bound and not truly dissolved (Burgess et al.,
1996). In addition, the partitioning of hydrophobic chemicals into pore water has
been shown to increase when anoxic pore waters are oxidized, allowing for greater
bioavailability (Hunchak-Kariouk et al., 1997). The sediment collection process
has also been shown to increase ammonia concentrations in pore water (Sarda and
Burton, 1995). These factors have tremendous implications for the interpretation
of WET and TIE test results that evaluate pore waters. The commonly used
methods of pore water collection and testing may significantly decrease or increase
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organism exposure by allowing exposure to colloid and altering bioavailability due
to sediment disruption and/or oxidation. These issues suggest the role of pore water
exposure and uptake in situ may be less than many have suggested and difficult to
assess accurately.

Several studies have attempted to determine dose-response relationships of
contaminants either with field collected contaminated samples or through spiking
(dosing) at multiple concentrations (Giesy et al., 1988; Nelson et al., 1993). This
has proven to be quite difficult, with nonlinear responses frequently resulting no
matter which dilution method is used (Nelson et al., 1993). This is likely due to the
disruption of contaminant partitioning to sediments and colloidal materials with
the introduction of the clean diluent (whether it is water or sediment).

Toxicity testing of sediments has several advantages that chemical character-
ization and biosurveys do not. Toxicity testing provides unique information on
whether adverse levels of chemicals are bioavailable. Toxicity testing is unaffected
by habitat or natural disturbances such as high flows, temperature, or turbidity or
D.O. sags. Testing is relatively inexpensive, can be conducted with less expertise,
and can be conducted throughout the year. The results are relatively easy to
interpret, particularly if the responses of the test organisms are severe and occur in
multiple species. There are numerous publications that have shown WET tests to
be predictive of benthic macroinvertebrate effects (e.g., reviews in Grothe et al.,
1996; Ingersoll et al., 1997). Benthic macroinvertebrates are typically exposed to
both sediments and overlying waters. Most of the studies showing benthic commu-
nity and WET test response correlations did not focus on sediment contamination;
however, undoubtedly it was a factor at many sites. WET and other sediment
toxicity tests results have been “validated” by some and shown to be predictive of
population and community-level responses (Canfield et al., 1994, 1996; Clements,
1997; DeWitt et al., 1992; Giesy et al., 1988; Hickey and Clements, 1998; Maltby
and Crane, 1994; Swartz et al., 1985, 1994; Wentsel et al., 1977a-b, 1978).
However, as discussed above, WET tests have been shown to be both predictive
and nonpredictive of benthic effects.

It is also important to be aware of the uncertainties of sediment toxicity testing
(Day et al., 1997; Ingersoll et al., 1997; Solomon et al., 1997). Sublethal effects or
subtle interactions that are not measured in traditional short-term sediment or
standardized water toxicity tests may occur even if toxicity is not detected (Luoma,
1995; Schindler, 1987). But sublethal “biomarker” responses have a substantial
degree of uncertainty when it comes to predicting significant ecological impacts
(Benson and Di Giulio, 1992; Luoma, 1995; Schindler, 1987). Sample collection
and manipulation may produce artifacts that either increase or decrease toxicity,
thereby leading to false positive- or -negative results (Burton, 1991). The principal
sampling and testing artifacts that may decrease the accuracy of the results include:
oxidation of sediments altering metal availability; desorption of contaminants
increasing availability; initial increase in ammonia concentrations; mixing of
vertical gradients altering contaminant exposure; nonequilibrium conditions; re-
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moval of large organic material via sieving thereby altering exposure; increased
predation; and/or alteration of exposure due to overlying water renewal rates. In
addition, these sediment toxicity assays have some of the same limitations as
identified above for WET testing and others, including laboratory extrapolation to
population/community effects; exposure conditions; unknown toxicokinetics and
influence of natural factors (e.g., organic matter, grain size, salinity) and stressors
(e.g., food availability, predators, flow, temperature, UV), spatial heterogeneity
(patchiness), errors in exposure and contaminant fate and transport models; and
inability to evaluate indirect effects (e.g., Burton, 1991; Burton et al., 1996; Day
et al., 1997; Hulbert, 1975; Solomon et al., 1997).

While there are many uncertainties, their impact can and has been minimized
allowing for effective use of toxicity testing to evaluate both sediments and
stormwaters. Ingersoll et al., (1997) weighted the uncertainty associated with the
various measurement endpoints and test phases of sediment toxicity tests and are
discussed in detail in other reviews (Burton, 1991).

VII. UNIQUE SEDIMENT ISSUES AND METHOD MODIFICATIONS

WET testing has been widely used and proven to be an effective environmental
regulatory tool for protecting water quality. A very simplistic modification of the
standardized WET test (adding a few milliliters of sediment to the test beaker)
results in a very sensitive assay for sediment contamination, as evidenced by
numerous studies using C. dubia, D. magna, and P. promelas (ASTM, 1995a;
Burton, 1991; Burton and Stemmer, 1988; Burton et al., 1987ab; Burton et al.,
1989). A massive comparison of all peer-reviewed sediment toxicity test methods
(n = 24) at three “Areas of Concern” in the Great Lakes showed “water-column”
toxicity test organisms (C. dubia, D. magna, and P. promelas 7-day short-term
chronic toxicity tests) to be among the most sensitive to sediment contamination
(Burton et al., 1996) . A test battery consisting of representative species from four
different response pattern groups were recommended to best detect sediment
toxicity. The primary species from these groups included C. dubia, D. magna, P.
promelas, H. azteca, C. riparius, C. tentans, Hexagenia bileneata, Diporeia,
Hydrilla verticillata, or Lemna minor. So it is rather surprising that this simple
method modification has not been utilized by the USEPA at sites where WET
testing is already being used.

Recent assessments of contaminated sediments demonstrated why both labo-
ratory and field toxicty exposures were essential to adequately identify key stres-
sors and characterize exposure dynamics (Ireland et al., 1996; Sasson-Brickson
and Burton, 1991; Stemmer et al., 1990; Burton et al., 1999; Burton et al., 2000;
Greenberg et al., 2000). Sediment-associated toxicity increased in the laboratory
exposure of P. promelas, C. dubia, D. magna, and H. azteca when compared with
in situ exposures, whereas toxicity decreased in overlying waters. Photoinduced
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toxicity from PAH and UV interactions and sampling-induced artifacts accounted
for these laboratory to field differences. Toxicity was also reduced significantly in
the presence of UV when the organic fraction of the stormwater was removed.
Photo-induced toxicity occurred frequently during low flow conditions, but was
reduced during high turbidity associated with high flow conditions. Toxicity was
also higher in sediment or overlying waters near the contaminated sediment surface
as opposed to waters several centimeters above the sediment-water interface.

An elevation in temperature of Des Plaines River water accentuated the
toxicity of the water and of sediments using both water column and benthic species
(Brooker and Burton, 1998; Burton and Rowland, 1999; Lavoie and Burton, 1998).
Responses were replicated in laboratory, in situ, and artificial, side-stream expo-
sures. The laboratory exposures helped define exact threshold temperatures, criti-
cal exposure times, and interactions with ammonia. Field exposures, on the other
hand, better defined fluctuating exposures and interactions with other stressors
such as suspended solids and fluctuating temperatures. Conclusions based on
laboratory exposures would have underestimated stream effects.

An urban site receiving large loadings of residential, commercial, and indus-
trial storm runoff was assessed using an integrated low and high flow assessment
(Moore and Burton, 1999). A survey of sediment quality during base flow condi-
tions found one depositional area where sediments were acutely toxic and con-
tained elevated levels of contaminants. An in situ toxicity assessment found that
low flow water was not toxic, but high flows were toxic and suspended solids and
flow contributed significantly to overall stress. However, indigenous communities
appeared to be affected more strongly by contaminated sediments than high flow
conditions.

A TIE of pore water from a stormwater detention pond using C. dubia 48 h
exposures showed ammonia to be the primary toxicant with some effects from
metals (Zn, Fe, and Cu). The high level of ammonia may have obscured the metal
toxicity (Wenholz and Crunkilton, 1995).

WET testing is particularly useful in dose-response (spiking) studies of sedi-
ments and pore waters. These have included objectives such as PAH criteria
development (Swartz, 1999), equilibrium partitioning criteria development (Di
Toro et al., 1991), partitioning dynamics and bioavailability (Landrum and Burton,
1999; Stemmer et al., 1990), and determination of field effect thresholds (Ankley
et al., 1992; Giesy and Hoke, 1989; Swartz, 1999; Swartz and Di Toro, 1997).

Several studies have used WET testing to identify dominant sediment contami-
nants in TIE type approaches (Ankley and Schubauer-Berigan, 1995; Schubauer-
Berigan and Ankley, 1991; Swartz and Di Toro, 1997; USEPA, 1989b, 1991b,
1993b). The TIE methods commonly used were originally designed for effluents
(USEPA, 1989b, 1991b, 1993b) and were easily adapted for pore water testing
using the same WET test species (Boucher and Watzin, 1999). Through fraction-
ation procedures, various classes of common sediment contaminants (such as
cationic metals, nonionic organics, ionics, volatiles, and pH-dependent [e.g., am-
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monia] compounds) are separated followed by toxicity testing. However, in some
cases the WET test methods are not sensitive enough and toxicity is lost through
the fractionation process. Artifacts produced or contaminant interactions preclude
confirmation of any toxicant. Newer TIE methods include whole sediment manipu-
lations, exposure to UV (Kosian et al., 1998), or in situ exposures with various
stressor partitioning methods and substrates (Burton et al., 1998; Greenberg et al.,
1998; Burton and Moore, 1999) and may reduce the likelihood of artifacts.

VIII. INTEGRATED APPROACHES FOR SEDIMENTS AND
STORMWATERS

The extent of sediment or stormwater pollution and its source(s) cannot be
reliably determined in most areas without characterizing toxicity (laboratory and
field) and indigenous communities while considering the role of low and high flow
conditions. In order to best identify and understand these impacts, it is necessary
to include biological monitoring, using a variety of techniques, and sediment
quality analyses, in a monitoring program. Water column testing alone has been
shown to be very misleading

Field surveys rarely can be used to verify simple single parameter laboratory
experiments (Johnson et al., 1996). Watershed approaches integrating numerous
databases in conjunction with in situ biological observations help examine the
effects of many possible causative factors. Significant hydraulic disturbance of
aquatic life may occur in watersheds with greater than 2 to 5% impervious areas
(Burton and Pitt, 2000). The relative importance of short-term and delayed impacts
depended on local conditions and was primarily related to unionized ammonia,
oxygen depletion, and shear stress (Borchardt and Statzner, 1990). Recent studies
(discussed above) have combined chemical-physical characterizations of water
and sediment, with biosurveys and laboratory and in situ toxicity surveys (low and
high flow) effectively characterized major water column and sediment stressors
and their interactions (Burton and Rowland, 1999; Burton et al., 1998, 1999, 2000;
Burton and Moore, 1999). Suspended solids, ammonia, sediments, temperature,
fluorene, sediment, and/or stormwater runoff were each observed to be primary
stressors in these test systems. These primary stressors could not have been
identified without low and high flow and sediment quality assessments both in the
laboratory and field. It is apparent that in order to determine the role of chemicals
as stressors in the receiving waters, the role of other stressors (both natural and
anthropogenic) must be assessed under varying stream conditions.

Johnson et al., (1996) and Herricks, et al., (1996, 1997) describe a structured
tier testing protocol to assess both short-term and long-term wet weather discharge
toxicity. The protocol recognizes that the test systems must be appropriate to the
time-scale of exposure during the discharge. Therefore, three time-scale protocols
were developed, for intraevent, event, and long-term exposures.
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As discussed above, there is now a wealth of literature that documents there
is ecologically significant exposure to stressors occurring for short time periods
during high flow conditions. Some studies have even shown a diurnal to seasonal
flux of metals from sediments during base flow conditions (Brick and Moore,
1996; Von Gunten et al., 1994). This should not be surprising given the role of
temperature and light on benthic activity. Given these fluctuations, in situ testing
using caged organisms provides greater environmental realism than laboratory
exposures (Barbour et al., 1996; Burton et al., 1996; Clements and Kiffney, 1996;
Dickson et al., 1996; Waller et al., 1995). However, the predictive capability of
laboratory-based standard toxicity tests could be improved with well-designed
studies that better characterize stressor exposures and benthic community spatial-
temporal dynamics, use common (lab vs. field) assessment endpoints, or employ
demographic/individual-based models for infering population-level effects (e.g.,
Burton et al., 1996; Day et al., 1997)

There is a natural tendency in the popular “weight-of-evidence” or “sediment
quality triad”- type approaches to look for “validation” of one assessment tool with
another. For example, matching a toxic reponse in a WET test with that of an
impaired community gives a greater weight of evidence. This does not, however,
necessarily “validate” the results (or invalidate if there are differences) (Chapman,
1995b). Natural temporal changes in aquatic populations at different sites within
a study system need not be the same (Power et al., 1988; Resh et al., 1988;
Underwood, 1993); therefore, predictions of effect or no-effect from WET testing
of reference sites may be in error. Each monitoring tool (i.e., chemical, physical
and indigenous biota characterizations, laboratory and field toxicity, and
bioaccumulation) provides unique and often essential information (Burton, 1995b;
Chapman et al., 1992). If responses of each of the biological tools disagree, it is
likely due to species differences or a differing stressor exposure dynamics/interac-
tions. These critical exposures issues can be characterized through a systematic
process of separating stressors and their respective dynamics into low and high
flow and sediment compartments using both laboratory and field exposures. Then
a more efficient and focused assessment can identify critical stressors and deter-
mine their ecological significance with less uncertainty than the more commonly
used approaches. The chronic degradation potential of complex ecosystems receiv-
ing multiple stressors cannot be adequately evaluated without a comprehensive
assessment that characterizes water, sediment, and biological dynamics and their
interactions.
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