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Abstract

The cumulative probability distribution used to descrimevariability of stormwater
pollutant concentrations has been a matter of interestent years. Many predictive
models attempt to estimate appropriate stormwater iaoerst concentrations based on
land use and the amount of impervious area. The most tampatudy that characterized
stormwater was the Nationwide Urban Runoff ProgramRRYU(EPA 1983). NURP was
conducted throughout the U.S. and included about 2300 eventd &o8rthru 1982. One
of the conclusions of the final NURP report was thatevent mean concentrations
(EMCs) of stormwater constituents were described bydagal distributions. This
finding has been re-evaluated recently, with the cammiuthat not all stormwater
constituents were adequately described by lognormal distrnitsufvVan Buren, 1997;
Beherra, 2000).

Stormwater managers have generally accepted the assnmopkignormality of
stormwater constituent concentrations between thardd5th percentiles. Based on this
assumption, it is common to use the log-transformed E®@es to evaluate differences
between landuse categories and other characteristatstiSal inference methods, like
estimation and test of hypothesis, and analysis ofva@i@ANOVA) require statistical
information about the distribution of the EMC to exatke these differences. The use of
the log-transformed data usually includes the location eale parameter, but a lower
bound parameter is usually neglected. In this paper, adatgbase, the National
Stormwater Quality Database v.1.1 (NSQD) (Pitt, e2@D3), will be used to evaluate a
three-parameter lognormal distribution for stormwatenrstituent concentrations for
different landuses. The NSQD is a compilation ofghase 1 data from the stormwater
permit program. This paper will also evaluate this natidata for the presence of
unusual elevated values and their effect on the goodndis$onfthe three parameter
lognormal distribution.

1.0Introduction

The National Stormwater Quality Database v. 1.1 (NSQDjains water quality
characteristics from the monitoring required by the NBBbase 1 stormwater permit
applications and subsequent permits, during the period of 1992 to 2032database
contains about 3770 events from 256 sites in 66 communitiestim@ughout the U.S.
For each site, much additional data, including the pé&agernof each land use in the
catchment, the total area, the percentage of impervioyshesgeographical location and
the season, has been included in the database. Infonraaibait the characteristics of
each event is also included. Total precipitation, pretipn intensity, total runoff and
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antecedent dry period are also included, if collected.dBkte&base only contains data
collected at the outfall, in-stream samples weremmtided in the database. Water
quality characteristics where divided in four main grougsn@on parameters, nutrients,
metals and others (ie. pesticides and organic compoultig)h time and effort was
spent in reviewing this data for QA/QC problems and comg¢he information.

The Nationwide Urban Runoff Program (NURP) evaluatedctiaracteristics of
stormwater discharges at 81 outfalls in 28 communitiesigimout the U.S. (EPA, 1983).
One of the conclusions of NURP was that stormwatestttment concentrations could be
described using a lognormal distribution. Recently, VareB({t997) found that
stormwater concentrations were described using a logralistribution for almost all
constituents, with the exception of dissolved constisudrat were better described with
a normal distribution. Beherra (2000) also found that sstovenwater constituent
concentrations were better described using a lognormabdison, while others were
better described with gamma or exponential distributidhs. constituents that were best
described with a gamma distribution were: total solidsy t¢jeldahl nitrogen (TKN),

total phosphorous, chemical oxygen demand (COD), baright@pper. The constituents
that were best described with an exponential distribwtiere: suspended solids, nitrates
and aluminum. In both of these studies, fewer than 50Isar(ypllected at the same site)
were available for evaluation.

During the research reported in this paper, statistisalitere used to evaluate the log-
normality of a selection of the constituents in N&QD database. Statistical descriptions
were obtained of each set of data including box and pratyglldts for each land use
category and for the pooled dataset. It was found in alalbsases that the log-
transformed data followed a straight line between tharfsl 98' percentile, as illustrated
in Figure 1 for total dissolved solids (TDS) in residaingireas.
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Figure 1. Probability plot of total dissolved solids isidential land uses.
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For many statistical tests focusing on the centraléray (such as for determining the
average concentration that is used for mass balanndat&ns), this may be a suitable
fit. As an example, WinSLAMM, the Source Loading and Mgamaent Model (Pitt

1986; Pitt and Voorhees 1995), uses a Monte Carlo componerddiabeethe likely
variability of stormwater source flow pollutant congatibns using either lognormal or
normal probability distributions for each constitudtbwever, if the extreme values are
of importance (such as when dealing with the influenamanfy non-detectable values on
the predicted concentrations, or determining the frequenclysaireations exceeding a
numerical standard), a better description of the exresmues may be important.

The NSQD underwent an extensive data evaluation praneksjing multiple
comparisons of the all data values in the databasegio@rdocuments. In some cases,
data was available from the local agency in electramnf These spreadsheets were
reformatted to be consistent to the NSQD format. H@wneat was found that all of the
submitted electronic data needed to be verified against orggtalsheets and reports.
When reviewing the NSQD, it was assumed that somesad\tants in the upper and
lower tails of the distributions were caused by errostrikkely due to faulty
transcription of the data (such as mislabeling the unithéavy metals or nutrients as
mg/L instead ofig/L, for example). Unusual values were verified wité driginal
reports and datasets. While some values (less than 3% obimplete dataset) were
found to be in error and were corrected, most of thpesiied values were found to be
stormwater observations. Besides the targeted extvalmes, all reported values were
also examined in relationship to other related constit&®D vs. BOD; total metal
concentrations vs. dissolved metal concentrationdy V& NHs; TDS vs. specific
conductivity; SS vs. turbidity; etc) and unusual behavior faeker checked and
corrected, as necessary. In some cases, unusual galudsot be verified and were
therefore eliminated from the dataset, although thisweasunusual.

After the extensive QA/QC activities and correctiorssevmade to the NSQD, the next
step was to conduct a sensitivity analysis to deterrhmeffects of the remaining
unusual high and low values on the probability distribuparameters.

2.0The Effects of Unusual High and Low Values on Probagtistribution Parameters

For this evaluation, 10,000 sets of 200 samples each welemngenerated following
a lognormal distribution (1, 1), but having differing amaeuot extreme values in each
data set. For each set, the mean, variance andaeseffof variation were calculated.
Two main factors were analyzed using this data: the extvaine factor and percentage
of extreme values in each sample. The following peags# of extreme values were
selected for evaluation: 0.5, 1, 5, 10, 25 and 50%. For eactnpage of extreme values,
the following factors were analyzed: 0.001, 0.01, 0.1, 10, 100, ,1100000, 100,000
and 1,000,000. For example (5%, 100) indicates that in egdivegercent of the data
were increased by a factor of 100. The coefficient aatian was then calculated for



Effective Modeling of Urban Water Systems Conference Proceedings, Monograph 13.
(edited by W. James, K.N. Irvine, E.A. McBean, and RIE). CHI. Guelph, Ontario,
pp. 247 — 274. 2005.
each set of data. The medians of the coefficient&oétion for the 10,000 runs are
shown in Figure 2 for each level of extreme values.
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Figure 2. Effect of unusual values on the coefficientasfation

For a lognormal distribution (1,1) the coefficient ofiaéion is one. Figure 2 shows how
this original value is changed for different amounts t¢feswe values in the data sets, and
for different factors in these extreme values. Thezbatal axis represents the factor
used in the extreme values. As an example, many afi¢berect extreme values
observed in the NSQD for heavy metals were becauaaiteewere originally

incorrectly reported as mg/L in the submitted informatwhile the correct units were
actuallypg/L. This would be an extreme value factor of 1,000. Extreahge factors of

10 were also fairly common and were associated witplsimisplacements of decimal
points in the data.

This figure shows that for small error factors (0.1, GBAd 0.001) there is not a large
effect in the coefficient of variation for percentagenaller than 10%. For larger
percentages the effect in the coefficient of varrai®important. When 50% of the data
is affected by an error factor of 0.01, the coefficientariation was increased by almost
three times.

High extreme value factors can have an important effiet¢he coefficient of variation.
When 10 percent of the data was increased by a facld), te coefficient of variation
was increased almost three times. Notice that afigdid percent of the data by a factor
of 10 has almost the same effect as affecting 50% afdteby a factor of a hundredth.
This effect is reduced when the percentage of elevatedsvaltlee dataset is smaller
than 10%.
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For factors larger than a hundred, the effect on dleéficient of variation is much

greater. Very low percentages of elevated values cagaserthe coefficient of variation
by up to 15 times. For example, when only 0.5% of the saimpléected by a factor of a
thousand, the coefficient of variation increases alrh@stmes more than the correct
value. As noted earlier this is important becausenbtsunusual to find reported values
affected by a factor larger than a hundred (See Figu®@oh)e of these values can be due
to incorrect reporting units, but in many cases they wensidered as valid observations
because they were supported by similarly high values of otbsely related

constituents. For factors greater thaf th@ multiplying value of the coefficient of
variation remains stable at the maximum value obtained.

The above analyses indicate that in lognormal distobstithe presence of just a few
unusual elevated values is important and can dramatadfédigt the reported coefficient
of variation for the distribution of concentratidrhis observation is critical in the
relatively common case were one or a very few olasems are affected by a factor
larger than a hundred. In the other extreme, factoadlesnthan one do not have a large
impact on the reported coefficient of variation, gto@hen the percentage of extreme
values is greater than 50% (obviously, there are many ptbblems with that data set
too).

The effect of extreme values on the mean and standaratidevvas also analyzed.
Figure 3 shows the effect of the extreme values onleaidd standard deviation.
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Figure 3. Effect of unusual values on the standard deviation

For large extreme value factors (larger than one)tdredard deviation increases as the
percentage of extreme values increases. For smalhextralue factors, percentages
smaller than 25% do not have an important effect ostdredard deviation. For a
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specific extreme value factor, changing the extremgevpércentages from 0.5% to 50%

increases the standard deviation close to 10 times.

The effect of the presence of extreme value on @teilalition mean is shown in Figure
4. For small extreme value factors, the mean is reddossa80 percent when the
extreme value percentage is close to 50%. This is expleetadise in a lognormal (1,1)
most of the values are located in the lower taihefdistribution. For extreme value
occurrences less than 25%, the mean value is reducessiiyén 20%.

Large extreme values factor have much larger effecteeodistribution means. As the
extreme value percentage increases, the calculated misanscrease. If 0.5% of the
values are affected by a factor of a hundred, the malae \s doubled. If 50% of the
values are affected by the same factor, the mean valeescreased by almost 50 times.
For factors larger than a thousand, increasing the gegeshof extreme values from
0.5% to 50% increases the mean values by up to two ordeoitode.
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Figure 4. Effect of unusual values on the mean

These evaluations are important because it points dubtha lognormal distribution,

the effects of few elevated values in the upper taihauch greater effects on common
statistics than unusual values in the lower tail. Mstoymwater researchers have focused
on the lower tail, especially when determining howaadie the detection limits and
unreported data. Stormwater constituents usually have unweduas in both tails of the
probability distribution. It is a common to delete a®d values from the observations
assuming they are expendable “outliers”. This practicetisatommended unless is

there sufficient evidence that the observed valuea arstake. Actual elevated values
can have a large effect on the calculated distribyg@mameters. If these are arbitrary
removed, the data analyses will likely be flawed.
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3.0Analysis of Lognormality of Stormwater Constituents

The goodness of fitness of twenty nine stormwater constifurebability distributions
was evaluated using the Kolmogorov-Smirnov test. Figur@@sihow the test accepts
or rejects the null hypothesis that the empirical #nedestimated distributions are the
same. If the null hypothesis is valid, then the ctunstit can be adequately represented
by the lognormal distribution. The observations aréesband a probability is assigned
by its rank. The distribution generated by this ranking isnknas the empirical
distribution. The estimated distribution function iscatompared on the same plot. The
estimated distribution function is calculated with thean and standard deviation of the
original data. If the distance between the empiaeal the estimated distributions is
higher than a critical value,@r Dyax the hypothesis of lognormality is rejected. Notice
in Figure 5 that the horizontal axis has a logarithmadesc

Goodness of Fit Test
Kolmogorov - Smimov

1 — =

Cumulative Probability

Distribution
Errpirical
————— Egtimated

a IIIIIII| T IIIIIII| IIIIIII|

1 10 100 1000
Copper Total (ugfl) - Residential Land use

Figure 5. Cumulative and empirical probability distributiefisotal copper for
residential land use data.

There are many options to assign the probability basekeoranks. Most methods assign
the probability as a percentage of the total range. Tdigapility of the observation is
calculated as its rank divided by the number of obsematidottegoda (1998) suggested
that for extreme events analysis the plotting pasitian be calculated as:
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Where p is the cumulative probability of the obsensati is the rank of the observation
and n is the total number of observations. We useglbiisng position for these
analyses because it does not restrict the probabilityeofargest observation to be one.

In the Kolmogorov-Smirnov test, the null hypothesithet the observed data follow a
lognormal distribution. If the sample size is smaltid the distance between the empirical
and the observed distributions is smaller than theakivalue Dnay the test is interpreted
as “there is not enough evidence to reject the hypothesishte distribution is

lognormal.” In most cases, the NSQD contains enougipkess to be able to accept or
reject the null hypothesis with acceptable levels ofidence and power.

The NSQD contains many factors for each sampled ekantikely affect the observed
concentrations. These include such factors as seagwwraphical zones, rain
intensities, etc. These factors may affect the sbépee probability distribution. As
more data become available, the critical valug«» reduced in the test. There will
always be a specific number of samples that will leagjection of the null hypothesis
because the maximum distance between the empiridadsirmated probability
distributions became larger than the critical valyg.DTl' he only way to evaluate the
required number of samples in each category is using therpd the test. Power is the
probability that the test statistic will lead to a otien of the null hypothesis (Gibbons
and Chakraborti, 2003).

Masey (1950) states that the power of the Kolmogorouwrs®m Test can be written as:

~d,t0Vn  _{S00)-FRO)Wn_ d,x4dn

power =1-P
{J FOo)A-F(%)) VR(6)A-F(%)  JF()A-F(%))

where:

do=Dmax critical distance at the level of significanzéconfidence of the test)

Sy Cumulative empirical probability distribution

F1: Cumulative alternative probability distribution

A: maximum absolute difference between the cumulativenattd probability

distribution and the alternative cumulative probabiitstribution

Massey also found that for large sample sizes, the pcavebe never be smaller than

2(d, +An) 1 2
power >1- j ——e 2dt

2(-d,+Ayn) V 2m

This reduced expression can be used to calculate the nofrdsnples required to reject
the null hypothesis with a desired power. Figure 6 shoa/polver of the d test for 1%
and 5 % levels of confidence of the test (Massey, 1951 )exXxamnple, assume that the



Effective Modeling of Urban Water Systems Conference Proceedings, Monograph 13.
(edited by W. James, K.N. Irvine, E.A. McBean, and RIE). CHI. Guelph, Ontario,
pp. 247 — 274. 2005.

maximum distance between the alternative cumulatngethe estimated cumulative
probability distributions is 0.2, and we want an 80% poweuret the alternative at a 5

percent level of confidence. To calculate the numbee@iired samples, we read that
AN°? s 1.8 for a power of 0.8 and 5% level of confidence. 8ghior N = (1.8/0.2)2 =
81 samples. If we want to calculate the number of sasnphen the difference between
the alternative cumulative and the estimated cum@gebability function is 0.05, with
the same power and level of confidence, then 1,296 sampléd be required. When the
lines are very close together, it is obviously very diffi to statistically show that they

are different.
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Figure 6. Lower bounds for the power of the d testfe®.01 andx=0.05. Massey
(1951).

In the NSQD, most of the data were from residergiadiluses. The Kolmogorov-
Smirnov test was used to indicate if the cumulativeigoal probability distribution of
the residential stormwater constituents can be adeguaf@kesented with a lognormal

distribution. Table 1 shows the resulting power of #s forA=0.05 andA=0.1, when

applied to selected constituents that had very high le¥elstection in residential land

uses.

Table 1. Power of the test when applied to selecteditger#s in residential land uses

Percentage | AN%® Power AN®® Power
CONSTITUENT N Detected | (A=0.05) | (A=0.05a=5%) | (A=0.1) | (A=0.1a=5%)
TDS (mg/L) 861 99.2 1.46 0.60 2.92
TSS (mg/L) 991 98.6 1.56 0.65 3.12
BOD (mg/L) 941 97.6 1.52 0.6b 3.04
COD (mg/L) 796 98.9 1.40 0.56 2.80
NO2+NO3 (mg/L) 927 97.4 1.50 0.60 3.00
TKN (mg/L) 957 96.8 1.52 0.65 3.04
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TP (mg/L) 963 96.9 1.53 0.65 3.06 1
Total Copperfg/L) | 799 83.6 1.29 0.50 2.58 1
Total Lead pg/L) 788 71.3 1.19 040 2.38 1
Total Zinc {ug/L) 810 96.4 1.40 0.5% 2.80 1

Table 1 shows that the number of collected samplasfiigient to detect if the empirical
distribution is located inside an interval of width Obibee and below the estimated
cumulative probability distribution. If the interval ieduced to 0.05, the power varies
between 40 and 65%. To estimate the interval width, 10 letinei distributions of 1,000
random data points, having a lognormal (1, 1) distributiomgwempared with the
estimated cumulative distribution for normal, gamma exponential distributions. The
maximum distance between the cumulative lognormaithe cumulative normal
distributions was 0.25. The maximum distance with cutivelagamma (the same for
exponential in this case) was 0.28. An interval widtB.4fwas considered appropriate
for the analysis.

Another factor that must be considered is the impoetafcelatively small errors in the
selected distribution and the problems of a false negdétermination. It may not be
practical to collect as many data observations as neduakeal tive distributions are close
(such as when the width interval is 0.05). Therefons,iportant to understand what
types of further statistical and analysis problems neagdused by having fewer samples
than optimal. For example, Figure 7 (Total phosphorussidential area) shows that
most of the data fall along the straight line (indiegita lognormal fit), with fewer than

10 observations (out of 933) in the tails being outsiddé@bbvious path of the line.

Normal Probability Plot for Residential Land Use

ML Estimates

ML Estimates
Mean -0.521815
StDev  0.349862
N 933

w o
[= N3]
1

Goodness of Fit

KS 0.049
P-value 0.022

Probability

-2 1 0

Total Phosphorus in Log10 units (mg/L)

Figure 7. Normality test for Total Phosphorus in residéfand uses using the NSQD
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The calculated p-value for the Kolmogorov-Smirnov te€t.022, indicating that the null

hypothesis could be rejected and that there is not ensigignee that the empirical
distribution is adequately represented by a lognormailolision. Notice that the
departures of any observations on the tails are snthder0.049. However, the tails are
not responsible for the rejection of the null hypothé¢Siee Figure 8).
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Figure 8. Bhaxwas located in the middle of the distribution

In this case, Raxis located close to a total phosphorus concentrati@2ag/L (-0.7 in
log scale). As in this case, the hypothesized distribsi@ma usually rejected because of
the departures in the middle of the distribution, nahetails. However, as previously
pointed out, a small number of observations in the uppeatachange the shape of the
estimated cumulative probability distribution by affagtthe mean and standard
deviation of the data.

The methods used previously by Van Buren and Beherra evélirgt@robability
distributions only using two parameters, the median andtdmelard deviation. They
suggested the gamma and exponential distribution as aitesh#o the lognormal for
some stormwater constituents. Table 2 shows the cosopafior the goodness of fit
using the 2-parameter gamma, exponential and lognormiabdigns using the method
of moments.
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Effective Modeling of Urban Water Systems Conference Proceedings, Monograph 13.
(edited by W. James, K.N. Irvine, E.A. McBean, and RIE). CHI. Guelph, Ontario,
pp. 247 — 274. 2005.

Table 2 shows that for residential, commercial andstrédd land uses, the lognormal
distribution better fits the empirical data, exceptdelenium and silver in commercial
land uses. In open space land uses, about 50% of the wentstitvere adequately fitted
by the lognormal distribution, 30% by the gamma distribuéind the remaining by the
exponential distribution. In freeway areas, lognordistributions better fit most of the
constituents, except that fecal streptococcus, totah@&rand total chromium were better
fitted by the gamma distribution and ammonia was bettedfby the exponential
distribution. Also note in Table 2 that residential, coencial and industrial land uses
had larger sample sizes than the other two land uss=erits that for small sample sizes,
gamma and exponential distributions better represenalagtormwater constituent
distributions, but once the number of samples increfisedognormal distribution is
best. The few cases were the gamma distribution veaster fit was for N@+NOs in
industrial land uses, and chromium in freeway areaseXpenential distribution better
represents total ammonia in freeway areas (with arount{&@ted samples) than the
other two distribution types.

Other transformations were also tested, such asonre root, and other power
functions, but the results were not improved. It viesdfore decided to investigate if a
three-parameter lognormal distribution function cam$ed to improve the overall
goodness of fit for stormwater constituent probabilityrdistions. As shown in the
following section, this third parameter, in some casdlows a much better fit of the
cumulative empirical and estimated probability distriog.

4.0Three Parameter Lognormal Calculations.

Goodness of fit was evaluated using three-parameter loghprobability distribution.
The probability distributions were created for resiggntommercial, industrial, open
space, and freeways land uses. The distribution paraawe¢ee calculated using the
maximum likelihood and the L-moments methods. The maxinikethood method
requires that it be solved iteratively using three @qos. The initial parameters were
obtained using the method of moments. The results veenpared with the two
parameter standard model and the actual data. The mobeheismaller maximum
distance between the empirical and the estimated &matas selected as the best model.
All the calculations were made using only the detected salllee percentage of non-
detected values was also calculated for each dataset.

In general, the L-moments method provided a better fithemupper tail of the

distribution whereas the maximum likelihood method provaéetter fit for the lower
tail. Figure 9 shows the three estimated models forim@®lustrial land uses.
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Figure 9. Estimated models for TSS in commercial land. uses

In this graph it is observed that the empirical disttion has higher values in the upper
tail compared with any of the three models. In theelotail, the maximum likelihood
method using the three parameters better fit the obdesalues best. In this case the
maximum likelihood method was better than the otherrwdels, although none of the
methods adequately represented the extreme high values.

The L-moments method generally betters fits the up@edisaribution, but typically
trims or overestimate the lower tail. Figure 10 shadwesresults for TDS in industrial
land uses. The L-moments better fits the empiricgttiution in the upper tail, but it
trims any observation smaller than 35 mg/L (almost 20gmr@f the total dataset) in the
lower tail. The 2 parameter lognormal and the maximigiihood method provide
better results although both were worse in the matieadrupper tail region.
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Figure 10. Estimated models for TDS in industrial land uses.

Table 3 presents the results for 15 constituents indivduses. For each of the three
methods, the p-value was calculated. The higher the ;uvdle better is the fit between
the empirical and the estimated function. Some optlialues in the table are larger than
one. When the number of samples is large, the p-vakeddslated as a chi square
distribution with 2 degrees of freedom. This probabilitgatculated only with one tail of
the chi square distribution. The p-value is two timesghidbability. The maximum p-
value is one, but for effects of comparison this presewd times the probability
calculated from a one tail chi square distribution.

The maximum likelihood method with 3 parameters, anddagedrmal 2-parameter
distribution, produced the best descriptions for mosh@ftbnstituents. For almost all
constituents the function estimated by the L-momemthaod failed the lognormal
assumption. Low p-values were obtained because the farve#ie truncated and does not
estimate the lower tail of the distribution.

It seems that when the numbers of samples incrdasé;moments method tends to
truncate the function. The maximum likelihood methoehseto improve the fit of the
distribution, but when the number of samples is latfge cumulative estimated
probability distribution is far from the cumulative pimcal probability distribution, or no
convergence is possible during the iteration process.
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In commercial, industrial and freeways land uses, timebeus of samples available were
between 100 and 500 samples. According to the prior disaii$kie number of samples
will result in an analysis having a power close or alia®e In these cases, most of the
better fits were obtained using the L-moments methodoihmmercial and industrial land

uses, more than half of the constituents also habigfrest p-values when the L-
moments method was used.

In open space areas, there were not many samplesbésailae small number of
samples results in a low power. In this case, the higtvalues results were observed
when the two parameter lognormal distribution was ugkd.use of the third parameter
in constituents having small numbers of sample obsenstl@ not improve the fit of
the estimated cumulative probability distribution. he attached Appendix, the p-values
for each land use and constituent are shown for tiee tinethods.

5.0 CONCLUSIONS

Most of the stormwater constituents can be assumgdda a lognormal distribution
with little error. The use of the third parameterha estimated lognormal distribution is
recommended, depending on the number of samples. Whearttiger of samples is
large per category (approximately more than 400 sampleshaximum likelihood and
the 2-parameter lognormal distribution better fit thgp®ical distribution. For large
sample sizes, the L-moments method usually unacceptablyates the distribution in
the lower tail. However, when the sample size isenmoderate per category
(approximately between 100 and 400 samples), the 3-paransaterreal method,
estimated by L-moments, better fits the empiricalribstion. When the sample size is
small (<100 samples), the use of the third parameterrdaesprove the fit with the
empirical distribution and the 2 parameter lognormatitistion produces a better fit
than the other two methods.

Some constituents (such as TKN, TP, COD and Cu) shancegase in the p-value
when the number of samples is acceptable and the 3-gardagnormal probability
distribution is used. The use of the lognormal distrdyutilso has an advantage over the
other distributions because it can be easily transfotime@ normal distribution.

The few cases were gamma distribution seems to btex Imodel was for N&NOs in
industrial land uses, and chromium in freeway areaseXpenential distribution better
fit total ammonia in freeway areas. The remaining dtuesits were well represented by
the lognormal distribution.

Future studies will involve the development of multivagiahd general linear models.
Some of the requirements of these models are thaesiduals have the same variance
and that they are normally distributed. The use of logabtransformations will
facilitate the development of the predictive models.
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APPENDIX
Figure 11 shows the p-values obtained for each constitudribarach method. The
labels are organized by the following groups: common comestlis, nutrients and metals.
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