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ABSTRACT 
Stormwater bacteria data are challenging to analyze for several reasons: 

• highly variable observation levels (more so than for any other commonly monitored 
stormwater constituent) 
• frequent right-censored data (very high levels can exceed the upper limit of the method 
being used) 
• non-conservative behavior can cause unusual observations and storage problems during 
sample collection 
• sensitive to environmental conditions (especially temperature)  
• most analytical methods have a limited range in bacteria levels that can be quantified 

 
In addition, traditional bacteria data reporting is usually expressed as a geometric mean in order 
to moderate the effects of periodic very high observed bacteria levels (most bacteria standards or 
criteria are expressed using geometric means, for example), which hinder statistical analyses of 
existing information. These issues therefore hinder the types of statistical analyses that can be 
conducted using most stormwater bacteria data. However, many of these problems can be 
overcome by careful sampling and proper selection of the analytical method, as noted below.  
 
Sampling plans must consider the sampling locations appropriate for the project objectives. 
Bacteria sources vary greatly in urban areas, but high levels can be observed in many locations. 
Roof runoff water can have very high levels during summer and spring months if heavily 
covered by trees, due to the increased numbers of birds and squirrels that can reside above the 
roof surfaces. During colder months, many of these animals may migrate, hibernate, or become 
inactive, resulting in significantly decreased bacteria levels in the roof runoff. Soil bacteria levels 
can remain high in areas where urban wildlife or pets defecate, with runoff bacteria levels 
dependent on the amount of erosion occurring. Bacteria levels in runoff from paved areas can 
also be high in areas where pets are “walked.” Residential areas and park pathways usually have 
larger bacteria levels than industrial areas, for example. Outfall stormwater samples are affected 
by the relative contributions of flows from the different areas which vary mostly according to 
rain characteristics. Therefore, an experimental design for bacteria sampling must consider these 
varying sources and seasonal conditions, requiring many samples over an extended period.  
 
 
 
 



INTRODUCTION 
Analytical methods used for bacteria analyses usually have a limited range of quantification. 
Initial samples are likely to have many “right-censored” observations, with “too numerous to 
count” or other over-range indications instead of actual values. Most stormwater managers are 
familiar with “left-censored” data where the observations are below the detection limits. In cases 
with significant numbers of right-censored data, more appropriate and more sensitive methods 
can be used for future analyses, and several data substitution methods can be applied to the non-
detected values. However, data substitutions are generally not available for the excessively high 
observations. The best approach is to expand the range of detectable levels by using a wider 
range of sample dilutions in the bacteria tests. This is done differently for different methods, but 
will result in additional analyses, and therefore higher analytical costs (assuming that the lower 
limit is to be preserved, and not shifted higher). As an example, using the IDEXX methods and 
Quanti-Tray/2000 chambers, a standard analytical range of <1 to 2420 MPN/100 mL is 
available.  Most analysts using this method do not dilute the sample, with many stormwater 
bacteria observations exceeding this range. However, this can be supplemented with a second 
tray (at twice the analytical cost) with a sample diluted 10 to 1 to extend the range to 24,200 
MPN/100 mL, a level that is only periodically exceeded. Further dilutions can even be used, but 
great care needs to be made, with the recommended use of replicate trays to reduce problems 
associated with sample dilution and non-discrete bacteria groups, further increasing the 
analytical costs. In most cases, having the complete data with minimum uncertainties is worth 
the extra costs associated with the expanded analytical method, especially if the data is to be 
used to calibrate a stormwater model, to identify bacteria sources, or to quantify the bacterial 
removal benefits of a stormwater control practice. For compliance purposes, it may only be 
necessary to know that the permit limit was exceeded; however, the actual value is needed to 
quantify the geometric mean value required by many regulatory agencies.  
 
The following discussion summarizes some of the issues and solutions that can be applied when 
statistically analyzing stormwater bacteria data. Much of this discussion is summarized from the 
stormwater sampling book by Burton and Pitt (2002), supplemented with various examples from 
past and on-going research on stormwater bacterial sources, transport, and fate being conducted 
by researchers at the University of Alabama. 
 
 
ANALYTICAL METHODS FOR BACTERIA DATA ANALYSIS 
The analysis of data requires at least three elements: 1) quality control/quality assurance of the 
reported data, 2) an evaluation of the sampling effort and methods (and associated expected 
errors), and finally, 3) the statistical analysis of the information. Quality control and quality 
assurance basically involves the identification and proper handling of questionable data. When 
reviewing previously collected data, it is common to find obvious errors that are associated with 
improper units or sampling locations. Other potential errors are more difficult to identify and 
correct. In some cases, the identification and rejection of “outliers” may result in the dismissal of 
rare data observations. 
 
Selection of Statistical Procedures  
Most of the objectives of receiving water studies can be examined through the use of relatively 
few statistical evaluation tools. The following briefly outlines some simple experimental 



objectives and a selected number of statistical tests (and their data requirements) that can be used 
for data evaluation (Burton and Pitt 2001).  
 
Basic Characterizations 
One of the first tasks usually conducted with monitoring data is to prepare basic characterization 
statistics. For most of the examples in this memo, the follow data will be used (from Sumandeep 
Shergill’s MS thesis at the University of Alabama, 2004). These were collected during a six 
month period in 2002 from the campus of the University of Alabama and from surrounding areas 
in Tuscaloosa, AL. The data are presented with three different options: the first set of columns 
reflect the native limited range of the analytical method (<1 to 2,419.2), the second set of 
columns includes the results of the additional ten-fold dilutions that were also evaluated, and the 
third set of columns has data substitutions or 0.5 in place of the <1 low detection limit. Also 
shown on the table are the statistical summaries for each set of data. 
 
Roof Runoff E. coli Observations (MPN/100 mL)  

Without dilution With 10X dilution With 10X dilution and 
substitution for <1  

birds no birds birds no birds birds no birds 

29-Aug-02 145.5 <1 145.5 <1 145.5 0.5 

21-Sep-02 461.1 30.5 461.1 30.5 461.1 30.5 

25-Sep-02 18.7 2 18.7 2 18.7 2 

25-Sep-02 1,413.6 5.2 1,413.6 5.2 1,413.6 5.2 

10-Oct-02 410.6 344.8 410.6 344.8 410.6 344.8 

27-Oct-02 >2,419.2 161.6 17,329 161.6 17,329 161.6 

5-Nov-02 >2,419.2 29.2 12,033 29.2 12,033 29.2 

29-Jan-03 2 <1 2 <1 2 0.5 

6-Feb-03 <1 >2,419.2 <1 5,298 0.5 5,298 

Minimum <1 <1 <1 <1 0.5 0.5 

Maximum >2,419 >2,419 17,329 5,298 17,329 5,298 

Median 411 29 411 29 411 29 

Analyses based on 
quantifiable data: 

      

Number of useful 
observations 

6 6 8 7 9 9 

Average (mean) 409 95.6 3,977 839 3,535 652 

Geometric mean 106 28.3 363 59.8 175 20.7 

Standard deviation 529 136 6,772 1,970 2,157 582 

COV 1.3 1.4 1.7 2.3 1.8 2.7 

Significantly different from 
normal distribution? 

Yes (<0.001) Yes (<0.001) Yes (<0.001) Yes (<0.001) Yes (<0.001) Yes (<0.001) 

 
 
These are paired observations obtained from two different residential roofs; one roof had an 
extensive canopy of trees covering the building, while the other did not. The building with the 
canopy had a significant amount of observed bird and squirrel activity during the spring and 
summer months, while few were observed at the uncovered roof. As noted, three of the samples 
had no response during the test and therefore had <1 MPN/100 mL, while three were over-range. 
These samples were also analyzed using a ten-fold dilution to extend the upper range of the test 



to 24,192 MPN/100 mL, resulting in numeric results for the over-range values if no additional 
dilution was used.  
 
Because of the typically wide range of bacteria values typically observed during a monitoring 
period, managers are uncomfortable with the extra effects that the very large values have on 
resulting calculated average values. The median values are therefore commonly used when 
describing this type of data as the extremes and uncertain values have little effects on its value 
(unless the uncertain events number more than 50% of the data set!).  Unfortunately, medians are 
not very useful when comparing to standards written using geometric mean values, or when 
calculating loads. If a data set was symmetrical (not necessarily normally distributed), then the 
medians and the means would have the same value, but as the distribution skewness increases, 
the means and medians can vary greatly, as in this example. Methods to moderate the effects of 
these very large values are typically used for reporting purposes. The median and geometric 
mean values are shown in this example to be significantly smaller than the averaged values, with 
the geometric means being 20+ times smaller than the averages. If geometric means are used in 
“mass” calculations, it is obvious that the results would cause large errors. Similarly, if 
geometric mean summaries of past observations are all that are available, the statistical tests that 
can be applied are limited.  
 
This table also shows the results of the Shapiro-Wilk test (SigmaPlot version 11) used to test 
normality of the data. In this example, the test failed for all of the data sets. According to 
SigmaPlot, “a test that fails indicates that the data varies significantly from the pattern expected 
if the data was drawn from a population with a normal distribution.” Therefore, statistical tests 
that require normally distributed data should not be used with these data. This result is common 
for most stormwater observations (Maestre, et al. 2005, and many others), especially for bacteria 
data. The relatively large coefficient of variation (the standard deviation divided by the mean) 
values (1.8 and 2.7 for the final data set with substitutions) also indicate likely non-normal 
behavior.  
 
Comparison Tests 
Probably the most common experimental objective is to compare data collected from different 
locations, or seasons. Comparison of data with reference sites, of influent with effluent, of 
upstream to downstream locations, for different seasons of sample collection, of different 
methods of sample collection, can all be made with comparison tests. If only two groups are to 
be compared (above/below; in/out; test/reference), then the two group tests can be effectively 
used, such as the simple Student’s t-test or nonparametric equivalent. If the data are collected in 
“pairs,” such as for concurrent influent and effluent samples, or for concurrent above and below 
samples, then the more powerful and preferred paired tests can be used. If the samples cannot be 
collected to represent similar conditions (such as large physical separations exist in sampling 
location, or different time frames), then the independent tests must be used. 
 
If multiple groupings are used, such as from numerous locations along a stream, but with several 
observations from each location; or at one location; or from one location, but for each season, 
then a one-way ANOVA is needed. If one has seasonal data from each of the several stream 
locations for multiple seasons, then a two-way ANOVA test can be used to investigate the effects 
of location, season, and the interaction of location and season together. Three-way ANOVA tests 



can be used to investigate another dimension of the data (such as contrasting sampling methods 
or weather for the different seasons at each of the sampling locations), but that would obviously 
require substantially more data to represent each condition.  
 
There are various data characteristics that influence which specific statistical test can be used for 
comparison evaluations. The parametric tests require the data to be normally distributed and that 
the different data groupings have the same variance, or standard deviation (checked with 
probability plots and appropriate test statistics for normality, such as the Shapiro-Wilk, the 
Kolmogorov-Smirnov one-sample test, the chi-square goodness of fit test, or the Lilliefors test). 
If the data do not meet the requirements for the parametric tests, the data may be transformed to 
better meet the test conditions (such as taking the log10 of each observation and conducting the 
normality test on the transformed values). The non-parametric tests are less restrictive, but are 
not free of certain requirements. Even though the parametric tests have more statistical power 
than the associated non-parametric tests, they lose any advantage if inappropriately applied. If 
uncertain, then non-parametric tests should be used. 
 
Many statistical analysis tools may not be applicable to stormwater bacteria data. The large data 
variations hinder sufficient data to verify many of the required data characteristics (generally 
restricting available methods to some of the non-parametric procedures), and there are typically 
many missing data in the observed data sets (especially problematic are the over-range 
observations). In addition, historical bacteria data is usually reported as geometric means that do 
not reflect the flow-weighted values that are needed for load analyses. Therefore, the most 
obvious methods that can be used to evaluate stormwater bacteria data may be restricted to the 
following: 
 
Basic Data Summaries: 
- central tendency measures appropriate for the project objectives (geometric means for 
compliance with water quality standards; means for calculating flow-weighted discharges and 
TMDL compliance and for model calibrations) 
- measures of variation (tests for data normality, standard deviations, COVs, and limitations due 
to sample numbers)  
 
Exploratory Data Analyses: 
- probability plots (with truncated distributions reflecting missing data) 
- box and whisker plots (possibly only using reported values) 
- trend plots showing bacteria level changes with time 
- line plots contrasting paired data sets 
 
Comparison Tests: 
- Sign test for paired observations 
- Wilcoxon signed-rank test for paired observations with few missing data 
- Mann-Whitney rank sum test for independent observations in two sample sets 
- Kurskal-Wallis ANOVA on ranks to detect significant subsets of the data 
 
Correlation Tests: 
- Spearman Rank order test for simple correlations of non-normal data 



- Cluster and principal component advanced analyses to identify complex relationships of data; 
requires substantial information and few missing data 
 
Trend Analyses and Model Building: 
- Graphical analyses, usually based on time series of observations over long periods of time 
- Nonparametric trend tests, depending on available data and their characteristics 
- Factorial analyses to identify significant factors affecting observations, if sufficient data are 
available 
 
A few of the more basic options are described in the following paragraphs: 
 
Exploratory Data Analyses 
Exploratory data analyses (EDA) is an important tool to quickly review available data before a 
specific data collection effort is initiated. It is also an important first step in summarizing 
collected data to supplement the specific data analyses associated with the selected experimental 
designs. A summary of the data’s variation is most important and can be presented using several 
simple graphical tools. Another important reference for basic analyses is Exploratory Data 
Analysis (Tukey 1977) which is the classic book on this subject and presents many simple ways 
to examine data to find patterns and relationships. Besides plotting of the data, exploratory data 
analyses should always include corresponding statistical test results, if available.  
 
Probability Plots 
The most basic and important exploratory data analysis method is to prepare a probability plot of 
the available data. The plots indicate the possible range of the values expected, their likely 
probability distribution type, and the data variation. The values and corresponding probability 
positions are plotted using normal-probability scales. These have a y-axis whose values are 
spread out for the extreme small and large probability values. When plotted using these scales, 
the values form a straight line if they are normally distributed (Gaussian). If the points do not 
form an acceptably straight line, they can then be plotted using a log scale for the observed 
values to indicate if they are log-normally distributed.  
 
The following two figures are probability plots of the above presented bacteria data for the roof 
runoff from the two sampling locations, with the bird and on bird data shown on the same plots 
for comparison. These are truncated plots not showing information for the non-detected left-
censored or right-censored observations. The second plot is for the data set that includes the 
diluted samples with an extended range and no right-censored observations. These are accurate 
plots in that they do not include any assumed or substituted data, and reflect the actual 
observations. They are both log-normal plots and indicate reasonably straight line relationships, 
indicating that data transformations would possibly be advantageous and allow extended 
parametric statistical analyses. The lower limits of these plots are truncated and do not show the 
<1 MPN/100 mL non-detected values that were at about 11 and 22% of the datasets. The upper 
limits are truncated at the right-censored values. For the first plot not having the extended range 
associated with the extra sample dilutions, the data are truncated at about 70 and 80%. For the 
extended range plot, the upper limits are only truncated at the maximum values obtained. The 
plotted median values are seen to shift between the two sets of data, especially for the site having 
birds. 



 

 
 
 

 
 
 
Generally, water quality observations do not form a straight line on normal probability plots, but 
do (at least from about the 10 to 90 percentile points) on log-normal probability plots, as shown 
above. This indicates that the samples generally have a log-normal distribution and many 
parametric statistical tests can probably be used, but only after the data is log-transformed. These 
plots indicate the central tendency (median) of the data, along with their possible distribution 
type and variance (the steeper the plot, the smaller the COV and the flatter the slope of the plot, 
the larger the COV for the data). 
 
Probability plots should be supplemented with standard statistical tests that determine if the data 
are normally distributed. These tests, include the Kolmogorov-Smirnov one-sample test, the chi-
square goodness of fit test, and the Lilliefors variation of the Kolmogorov-Smironov test. They 



basically are paired tests comparing data points from the best-fitted normal curve to the observed 
data. The statistical tests may be visualized by imagining the best-fitted normal curve data and 
the observed data plotted on normal probability graphs. If the observed data crosses the fitted 
curve data numerous times, it is much likely to be normally distributed than if it only crossed the 
fitted curve a few times. As indicated previously, these roof runoff bacteria data are not normally 
distributed for statistical test purposes, but may be log-normally distributed. 
 
Time-Series Plots 
Berthouex and Brown (1994) point out that since the best way to display data is with a plot, it 
makes little sense to present the data only in a table. A basic time series plot indicates any 
obvious data trends with time. The following figure shows the E. coli observations for the roof 
runoff from the building having birds vs. no birds above the roof. It is obvious that the presence 
of the birds (in the absence of any other factor) affected the observed values during much of the 
study period. However, these effects notably decreased in the late fall. 
 
 

 
E. coli observations in roof runoff. 
 
 
Line Plots  
Line plots are a type of scatterplot that contrasts paired observations. The following figure is a 
line plot for the roof runoff data contrasting the roofs affected by birds and those not affected by 
birds. This plot indicates that almost all of the data pairs were higher for the roof having birds 
than for the roof without birds, with one exception.  
 
 

0.1

1

10

100

1000

10000

100000

E.
 c

o
li 

o
b

se
rv

at
io

n
s 

(M
P

N
/1

0
0

 m
L)

birds

no birds



 
 
 
The following line plots illustrate the removal of stormwater bacteria during filter tests (Clark 
1996). The common downward trending lines indicate consistent and significant removals of the 
bacteria, along with a much reduced range of discharged bacterial levels compared to influent 
bacteria levels. 
 

 
 
 
 
Grouped Box and Whisker Plots 
Another primary exploratory data analysis tool, especially when differences between sample 
groups are of interest, is the use of grouped box and whisker plots. Examples of their use include 
examining different sampling locations (such as above and below a discharge), influent and 
effluent of a treatment process, different seasons, etc.  
 
The following grouped box and whisker plot (Shergill 2004) contrasts the roof runoff samples 
collected from buildings affected by birds vs. those without birds. These are all of the data, 
without regard to season and indicate large variations and overlapping data sets. For small data 
sets, the median line in one box (the “central” line in the box) needs to be above or below the 
corresponding 25th or 75th percentile box ends in the adjacent box for a statistically significant 
difference. The whiskers indicate the 5th and 95th percentile observations of the data sets. In this 
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example, the “with bird” median value is barely larger than the “no bird” 75th percentile, but he 
“no bird” median is not lower than the “with birds” 25th percentile value. Because of the large 
variations in these data, the level of confidence in the differences may be marginal at best. With 
larger data sets, the amount of allowable overlap for significantly different data sets can be larger 
(large variations require larger sample numbers).  
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In contrast, the following plot only examines the warm weather source area E. coli values from 
areas likely affected by urban pets and wildlife compared to other areas. The differences for the 
roof data are most obvious, but the other areas (streets, parking lots, and open space) also show 
large decreases (although the large variations and greater overlapping of the boxes indicate that 
they may not have differences that are statistically significant. 
 
 



 
 
 
 
 
SUMMARY OF STORMWATER BACTERIA STATISTICAL ANALYSES 
Stormwater bacteria data are characterized by large variations and missing data. This can be 
overcome by carefully designing the monitoring program to focus on the most critical elements 
to monitor so sufficient data can be obtained. In addition, appropriate laboratory methods need to 
be used to enable the wide range of bacteria levels to be quantified, such as expanding the 
dilution series.  
 
Data summaries and statistical analyses, as always, must be chosen to correspond to the 
objectives of the research effort. Geometric mean values are commonly used for bacteria 
standards, but they are misleading when applied to statistical analyses and model building. Flow-
weighted average values are most suitable for these analyses. In most cases, nonparametric 
statistical analyses are needed for analyzing stormwater bacteria data. There are many tools that 
can be used, but data requirements must be verified before their use, especially related to right-
censored values. Also, because of the large variability in the data, it may be most suitable to 
accept somewhat less demanding data quality objectives, especially for initial exploratory 
investigations. 
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