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Because of historic difficulties in the measurement of sewage-
borne pathogens, the microbiological quality of stormwater runoff 
is often characterized on the basis of bacterial indicator species. 
These species are assumed to derive from a common (sewage) 
source with pathogens of interest, and to arrive in, survive in, and 
move through watershed environments in numbers that correlate 
with health risk from those pathogens.  Commonly used indicator 
species (especially E.coli and Enterococcus spp.), however, may 
derive from sources other than sewage, and survive in the (non-
enteric) environment at rates divergent from those of the pathogens 
they are presumed to indicate (National Research Council, 2004).  

In an ongoing effort to model background (i.e., of non-sewage 
origin) discharges of indicator species from stormwater source are-
as in the Tuscaloosa, AL area, a model for the environmentally 
relevant survival of indicator species (E. coli and Enterococci) on 
impervious environmental surfaces is presented.  
 
X.1 Methods 
 
X.1.1 Bacterial Cultivation and Enumeration 

 
A full-factorial study (23, Temperature/Moisture/UV-B exposure) 
of the indicator-species' environmental survival factors was per-



Leave header as is so vertical dimension of page remains correct 

 
Leave footer as is  
so vertical dimension  
of page remains correct 

formed for each taxon (Enterococci and E. coli). Pet-feces slurries 
(1 mL) were applied to salt-passivated paving blocks and incubat-
ed in controlled environmental chambers (freezerless refrigerators 
fitted with BOD-controllers/heaters for temperature control, desic-
cant or humidifiers for moisture control, and UV-B enhanced 
fluorescents with Lexan panels to split the chambers into UV-
exposed and UV-shielded regions) at conditions encompassing 
those likely to be found in Tuscaloosa, AL. Active control of tem-
perature (40 and 90 degrees F, Cool or Warm) held the parameter 
steady (+/- 2 degrees) over the study period. Relative humidity 
(25% and 80%, Dry or Wet) varied over about +/- 4%. UV expo-
sure was treated as present/absent (UV or Dark). 
 

Over an extended period (about two weeks), duplicate inoculat-
ed paving blocks were subjected to mechanical biofilm disruption 
by consistently applied and timed toothbrush abrasion, washing the 
slurry debris to sample bottles and diluted to 100 mL. The most 
probable numbers (MPN) of surviving E. coli and Enterococci col-
ony forming units (CFU) per 100 mL were measured using IDEXX 
methods and normalized to inoculation-date (Day 0) MPN (also 
acquired from brush-off samples from blocks inoculated and 
brushed in the same way). IDEXX methods (Colilert, Enterolert, 
Quantitray 2000) provide for selective incubation of the taxons of 
interest, and colorimetric/fluorometric indicators of viable colonies 
within 24 hours. MPN measurement values with three orders of 
magnitude ranges (1 to 2,420 CFU/100 ml) are directly available 
with the Quantitray 2000 units. Additional dilutions of each sample 
were incubated to assure that all samples were quantified over even 
wider ranges. 
 
X.1.2 Breakpoint Analysis 

 
There is considerable reason to expect that the growth or decline 
(change in MPN over time) of bacterial populations is a first order 
(log-linear) relationship and of the form: 
 

log(MPN/initial MPN)=k*t (X.1) 
where:  

k is the net growth constant (slope of the function), 
and 

t = time (hours). 



Leave header as is so vertical dimension of page remains correct 

 
Leave footer as is  
so vertical dimension  
of page remains correct 

 
Changes in the slope of log(CFU) versus time are likely caused by 
a change in environmental conditions or a change in the makeup of 
the subject population.  

Introduction of a viable bacterial inoculant to a new (habitable) 
medium (batch-style) typically results in up to four distinct phases 
of population behavior: Lag, Exponential-growth, Stationary, and 
Exponential-death (Madigan, et al, 2002, pp. 144-145):  

 
• The Lag phase is characterized as a period of adaptation to the 

new environment, in which little or no population growth occurs, 
and its length is dependent on differences between the environ-
mental history of the inoculant and the environmental conditions of 
the new medium. Inoculants transferred to environments similar to 
their historical conditions may exhibit little or no lag time; for 
transfers to a very different environment, lags may be considera-
ble. Of course, if new conditions are so foreign to members of the 
inoculant population as to render it uninhabitable, individual cell 
death may occur until remnants of the inoculant population are vi-
able (Madigan, et al, 2002, pp. 144-145).  

• In the Growth phase, the adapted (or naturally selected) popu-
lation grows exponentially; population at any given time is 
dependent on the number of actively dividing members of the pop-
ulation present at previous times. Rate of growth is dependent on 
environmental conditions and genetic (metabolic mechanisms 
available) make-up of the population (Madigan, et al, 2002, pp. 
144-145).  

• The Stationary phase (in which the population is static) repre-
sents conditions in which available nutrients (either from the 
original inoculant or from release by lysis of dying cells) is bal-
anced by buildup of refractory (and often inhibitory – waste) 
products (Madigan, et al, 2002, pp. 144-145). 

• The Death phase (dominated by waste buildup) is exponential.  
 
Any or all of these phases may occur (or, of course, may be 

missed by insufficient time-density of sampling) and both envi-
ronmental conditions and the genetic makeup of the population are 
relevant (Madigan, et al, 2002, pp. 144-145). The four main envi-
ronmental factors influencing bacterial growth are temperature, 
pH, and the availability of water and oxygen (Madigan, et al, 2002, 
p.151). For impervious, terrestrial environmental surfaces, neither 
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pH nor oxygen is likely to be a factor. An important factor in cell 
death, however, is that of UVB exposure (Madigan, et al, 2002, pp. 
272-273), which is bacteriocidal during cell division. 

Because we cultivated our samples at constant conditions, a 
change in slope of log(CFU) versus time must be viewed as a pop-
ulation change, either through induction of new enzymes in 
individual cells, or through natural selection in the overall popula-
tion. 

Each combination (23 = 8 combinations of temperature, humidi-
ty, and UV exposure) of environmental conditions (treatments, 
combinations of environmental factors) was treated as a log-linear 
(first-order) segmented (with unknown break points) model of 
normalized MPN with respect to time, and with continuity between 
the segments imposed (as shown later in Figure X.3, for example). 
Statistical analysis of such models is not straightforward. Hudson 
(1966) provides a graphic algorithm (for minimization of overall 
sum of squares of error, SSE in the segmented model) and shows 
that it generally provides the maximum-likelihood estimate (MLE) 
of the abscissa of an unknown breakpoint (tBP); he provides no 
information as to how likely that estimate may be (rendering infer-
ences impossible). Feder (1975a and 1975b) proves that, provided 
that the model is identified (i.e., includes no more hypothesized 
breakpoints than are present in the real population), and that no 
hypothesized tBP coincides with an abscissa of observation in the 
sample, minimization of SSE (the MLE function) converges as-
ymptotically to the true population BP. In the unidentified case 
(i.e., too many BPs assumed), the MLE function becomes indeter-
minate (“estimates are not asymptotically normal”). Lerman’s 
second condition arises because a discontinuity exists in the SSE 
function at each observation point, rendering it non-differentiable 
there, allowing for a possible true BP existing between the MLE 
tBP and an adjacent sample observation point (i.e., the MLE func-
tion becomes unstationary). For the unstationary case, he proves 
that, as the number of sample observations increases, minimization 
of SSE of a pseudocase (in which the observation point coinciding 
with the tBP is removed from the dataset), still converges (at a 
known rate) to the true BP. Lerman (1980) adapts Feder’s work 
into a grid-search algorithm (again only for the identified case, and 
incorporating the pseudocase approach when necessary) in which 
proposed tBPs are mapped across the range of the observations and 
the SSE at each is determined. Progressive refinement (finer grain) 
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of the grid provides the tBP (minimization of the SSE versus pro-
posed-tBP function) and also an estimate of the variance of that 
tBP estimate, corresponding to the range (which need not be con-
tinuous or symmetrical) of proposed-tBPs for which SSE is less 
than the minimum SSE plus its associated mean square of error 
(minSSE+MSE). Finally, Bai & Perron (1998) derive a log-
likelihood ratio by which it can be determined whether addition of 
a new breakpoint to an identified model results in a new model 
which is also identified, and publish critical values for that ratio. 
 

We found the grid-search method amenable to spreadsheet im-
plementation. We first modeled each treatment by simple linear 
regression, resulting in a one-segment (R=1, no breakpoints) mod-
el. We then hypothesized a breakpoint, and searched for it by 
Lerman’s grid method. If the resulting MLE did not coincide with 
an observation point, we accepted the tBP and associated uncer-
tainty indicated by the search (e.g., see Figure X.1). We found 
grid-search of the (asymptotically converging) pseudocase, how-
ever, problematic for the limited number of data points we had for 
each treatment (typically about 35). In one case, analysis of the 
pseudocase resulted in the tBP jumping about 100 hours (and 
across multiple observation points, an impossible situation) be-
cause of the slower convergence of the smaller, highly variable 
dataset. In these cases we retained the grid-derived tBP and ac-
cepted the greater uncertainty inherent; we conducted a one-sided 
grid-search solution around the tBP to establish one side of the var-
iance range and took the adjacent observation point as the other 
(e.g., see Figure X.2). Note that since we generated our grid search 
left-to-right (increasing t), the segment containing the discontinuity 
occurred between our tBP and the immediately preceding (adja-
cently left) observation. In both situations, the new model was 
tested against Bai and Perron’s criteria for identification and, if it 
was identified, repeated the sequence. For the final model of each 
treatment, we numbered  each tBP and intervening segments left-
to-right (e.g. see Figure X.3). 
 



Leave header as is so vertical dimension of page remains correct 

 
Leave footer as is  
so vertical dimension  
of page remains correct 

 
Figure X.1 Example graphic derivation of estimated tBP variance, nor-

mal case. 
 

 
Figure X.2 Example right-sided graphic derivation of tBP variance,  dis-

continuity on the left. 
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Figure 3 Example of a 3-segment (R=3) treatment model with segment 
and breakpoint designations  

 
 

X.1.3 Environmental Factors 

 
Each taxon (E. coli and Enterococci) was subjected to traditional 
(pooled variance) factorial analysis to rank the importance of the 
environmental factors (Temperature, Humidity, and UV exposure 
coded as 1=Shaded/0=Exposed, plus their interactions) to the ab-
scissa of each breakpoint and to the slope (k) of each intervening 
segment. tBPs, their associated uncertainties, and the k of each 
segment were derived directly from the breakpoint analysis above. 
Variance of each k was determined from log(MPN/initial 
MPN)/t=k for each nonzero t in the segment. 

This exercise was rendered problematic by the fact that different 
treatments (even within a taxon) differed in the number of tBPs 
revealed, from R=1 (one segment with no BP), to R=3 (three seg-
ments with two BPs). Orthogonality of the contrasts was achieved 
by generation of artificial BPs within segments without break-
points but for which tBPs were revealed in corresponding 
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segments of other treatments. Transparency of the artificial points 
to the factorial analysis was achieved by assigning to them abscis-
sae equal to the weighted average of revealed tBPs, and by 
assigning them zero variance. The k values of the new segments 
(on each side of the artificial BP) generated by this action were 
held to be equal, but the number of observation points (n) and the 
variance associated with those points were distributed (n-weighted) 
between the new segments. 

Environmental-factor effects on tBP or k values were deemed 
important if their standard errors (SE) led to conclusions of at least 
90% confidence (reasonable, considering the small sample sets) 
that the effects were not zero, although confidence in the im-
portance of effects was much higher (and noted) in some cases. 
Conclusions that effects were not zero were reached when the cal-
culated confidence interval (CI) was smaller than the calculated 
effect: 
 

CI=SE*t(a)  (X.2) 
where  
  t(a) is the Student’s t-table return for the appro-

priate degrees of freedom and  
  (a) corresponds to the p-value resulting in the 

reported confidence level (i.e., alpha). 
 
X.1.4 Model Construction  

 
The important environmental effects (main effects and interac-
tions) on k and tBP values, derived above, were used to model 
those parameters as a function of environmental factors: 

Model Parameter = Mean(Parameter)  
+ Sum of (Effects of Environmental Factors) (X.3) 

where 
Parameter is the treatment k or BP (artificial or not) 

entered into the tables of contrast for the factorial anal-
yses, 

Mean(Parameter) is the treatment-weighted mean 
for that parameter, and 

Effects of Environmental Factors (EEF) are the ad-
justments to Mean(Parameter) attributable to each 
important environmental-factor. For 2-level factorial, 
effects are of the form: 
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EEF = [Product(EF-MEF)*(1/2 environmental ef-

fect)]/Product(REF)  
where 
EF is the value of that environmental factor for an 

observation point 
MEF is the mean of that environmental factor 

amongst observation points 
REF is the range (High value - Low value) of an 

environmental factor amongst observation points 
 
X.2 Results and Discussion 
 

 
X.2.1 E. coli 

 
Results from breakpoint analysis of the E. coli dataset (Figure 4) 
are complex. One treatment (Warm/Wet/Dark) showed no signifi-
cant tBP (not even a lag), and also exhibited the smallest initial 
decline. Two treatments (Warm/Dry/UV and Warm/Wet/UV) 
showed two tBPs each, with an initial decline, a rebound of 
growth, and a subsequent second decline. Cool treatments were 
nearly indistinguishable from each other, and resulted in more rap-
id declines than Warm/Shade treatments. All treatments exhibiting 
BPs showed slower declines later in the study period than in the 
initial die-off. 

Warm conditions in general, and Warm/Wet/Dark in particular, 
most closely match the primary habitat (gut of warm-blooded ani-
mals) of our enteric bacteria, and would likely impose the least 
stringent adaptation requirements. The fact that only Warm/UV 
treatments elicit regrowth and three-phase behavior suggests an 
interaction. While UVB is not strictly ionizing radiation, it is of 
sufficiently high frequency to rearrange bonds in complex biomol-
ecules. In particular, UVB causes dimerization of adjacent thymine 
units within the E. coli genome (and other bacteria, as well - repair 
mechanisms are species specific). UVB does not kill a quiescent 
cell; it interrupts the cell-division process by preventing replication 
of the genome. UVB only kills cells that are otherwise capable (by 
warm conditions) of, and are in the act of reproducing (Wulff & 
Rupert, 1962). 
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Figure X.4 – E. coli BP models 

 
The factorial-analysis results (Table X.1) are likewise complex, 

especially in terms of the timing of the breakpoints. Such complex-
ity should not be unexpected considering that even the number of 
breakpoints is treatment specific. The fact that only k1 shows any 
significant evidence of influence by environmental factors may 
imply adaptation (either at cellular or population level) for later 
segments. 

Our model for E. coli survival is therefore: 
log(MPN/initial MPN) = k1*t for times <= tBP1 (X.4) 

where 
k1 = -0.108 + (H - 52.5)*0.000551  
+ (T-65)*(H-52.5)*0.0000203 
T is degrees F 
H is %relative humidity, and  
tBP1(hours) = 21.6 + (T-65)*0.0209 + (H-52.5)*0.0293  
- (S-0.5)*1.95 + (T-65)*(H-52.5)*0.00229  
- (T-65)*(S-0.5)*0.0503  
- (H-52.5)*(S-0.5)*0.0560 

     - (T-65)*(H-52.5)*(S-0.5)*0.000506 
where  

S is a Shade Code (1 = Shade, 0 = Exposed) 
 

for times > tBP1 and <= tBP2, 
log(MPN/initial MPN) = k1*tBP1 + 0.002214*(t-tBP1) 



Leave header as is so vertical dimension of page remains correct 

 
Leave footer as is  
so vertical dimension  
of page remains correct 

where 
tBP2 = 80.71 - (T-65)*0.0924 + (H-52.5)*0.163  
+ (T-65)*(H-52.5)*0.00326 - (H-52.5)*(S-0.5)*0.163  
- (T-65)*(H-52.5)*(S-0.5)*0.00326 

and for times >tBP2 
log(MPN/initial MPN) = k1*tBP1 + 0.00221*(tBP2) 
 - (0.00501)*(t-tBP2) 

 
Table X.1 Important (alpha, (a), <=0.1. 

 
E. coli k1     

Main Effects Effects SE(Effect) t(a) CI(effect df=17 

Humidity 0.061 0.00055 2.6 0.060 (a)=0.01 

Interactions      

TempHumid 0.11 0.024 2.9 0.070 (a)=0.01 

E. coli BP1     

Main Effects Effects SE(Effect) t(a) CI(effect df=224 

Temperature 2.1 0.33 2.6 0.87 (a)=.005 

Humidity 3.2 0.33 2.6 0.87 (a)=.005 

ShadeCode -3.9 0.33 2.6 0.87 (a)=.005 

Interactions      

TempHumid 12.6 0.33 2.6 0.87 (a)=.005 

TempShade -5.0 0.33 2.6 0.87 (a)=.005 

HumidShade -6.2 0.33 2.6 0.87 (a)=.005 

TmpHumShd -2.8 0.33 2.6 0.87 (a)=.005 

E. coli BP2     

Main Effects Effects SE(Effect) t(a) CI(effect df=37 

Temperature -9.2 1.05 2.8 2.9 (a)=.005 

Humidity 17.9 0.80 2.8 2.2 (a)=.005 

Interactions      

TempHumid 17.9 0.80 2.8 2.25 (a)=.005 

HumidShade 17.9 0.80 2.8 2.2 (a)=.005 

TmpHumShd 17.9 0.80 2.8 2.2 (a)=.005 
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The model presented does not fully account for variability in the 
observations (R2 is only 0.42, and see Figure X.5) of the full E. 
coli dataset. It does, however, offer improved correlations with, 
and better balance between, under-predictions and over-predictions 
than would be provided by a simple linear regression of the same 
dataset (compare Figures X.6 and X.7). Residuals of the model are 
reasonably well behaved, providing some comfort in the pooled-
variance methods used here (Figure X.8).  

The model-derived parameters applied to our experimental con-
ditions are presented in Table X.2. All treatments exhibit an initial 
lag/die off, the rate of which depends on the temperature and hu-
midity. Notably, the Warm/Wet conditions (those most like the 
enteric habitat, and exerting the least pressure for adaptation) show 
the lowest initial rate (k1) of decline, but all inoculants had de-
clined 2-3 orders of magnitude within a day or so. The duration of 
the decline appears quite variable (19 to 27 hours), but should be 
interpreted with caution. Recall that the BP analysis resulted in 
several tBPs that coincided with the first (earliest) observation 
point. Though the values listed in the table represent the best esti-
mates for predictive purposes, they must be viewed 
mechanistically as the latest likely time for the change. The true 
BP1 may have occurred before the first observation. The insensi-
tivity of k2 and k3 to environmental factors imply that all adaptive 
mechanisms available to the inoculant population had been imple-
mented prior to the (and caused the) first breakpoint. The two 
phase behavior subsequent to BP1 could be attributed to waste 
buildup in these batch systems or to accumulation of UV-generated 
Thymine dimers (and review of the warm-treatment behaviors in 
the original BP analysis, Figure X.4, suggests that both factors are 
involved). 
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Figure X.5  Overlay of model predictions on observations, all treatments 

combined 
 
 

 
Figure X.6 Observations vs. Model. Line is Observation = Model Predic-

tion 
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Figure X.7 Observations vs. predictions of linear regression without en-

vironmental factorial 
 

 
Figure X.8 Residuals vs. time for the presented E coli model 
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Table X.2 E coli modeled parameters, applied to experimental condi-

tions 
 

 k1 (1/hours) BP1 (hours) k2 (1/hours) BP2 (hours) k3 (1/hours) 

CoolDryUV -0.109 21.6 0.00221 76.8 -0.00501 

CoolDryDark -0.109 22.1 0.00221 79.0 -0.00501 

CoolWetUV -0.107 21.3 0.00221 83.5 -0.00501 

CoolWetDark -0.107 19.4 0.00221 81.2 -0.00501 

WarmDryUV -0.137 20.4 0.00221 71.0 -0.00501 

WarmDryDark -0.137 19.1 0.00221 77.8 -0.00501 

WarmWetUV -0.0787 27.1 0.00221 91.2 -0.00501 

WarmWetDark -0.0787 22.0 0.00221 84.5 -0.00501 

 
X.2.2 Enterococci 

 
Treatment analyses of the breakpoints is less complex for Entero-
cocci than for E. coli (see Figure X.9), although some disparity as 
to number and tBP values per treatment appears here as well. The 
Warm/Wet/Dark treatment shows no evidence of a breakpoint 
(even a lag). It also displays a slope statistically indistinguishable 
from zero. The clear trend of greater net survival in Warm treat-
ments seen in the E. coli analysis is not evident here, and the 
timing of breakpoints in treatments (where they occur) is less var-
ied than occurred for E. coli. Our assay in this case is sensitive to 
metabolic signals for an entire genus rather than a single species. 
One is tempted to argue that the greater genetic diversity of the 
larger taxon provides an overall greater range of adaptive capacity 
(natural selection favoring different species/strains at different 
conditions) and greater likelihood of genes for UVB-repair mecha-
nisms within the initial inoculant. Remarkably, when regrowth 
phases are recognized, none of the treatments show a net decline of 
more than about one order of magnitude over a two-week period. It 
also should be noted that no population is in decline at the end of 
the study period. 
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Figure X.9 Enterococci BP models 

 
Factorial analyses (Table X.3) for Enterococci were also sim-

pler than for E. coli, but again showing greater complexity for tBP 
values than for intervening segments. As for the E. coli analyses, k 
values become insensitive to environmental factors subsequent to 
the tBP, implying capacity for adaptation to the secondary (non-
enteric) habitat. 
 
 

Table X.3 Important factors per Enterocci factorial analysis 
 
 

Enterococci k1     

Main Effects Effects SE (Effect) t(a) CI(effect) df=56 

Humidity 0.015 0.011 1.3 0.014 (a)=0.1 

ShadeCode 0.015 0.11 0.010  (a)=0.1 

Interactions      

TempHumid 0.020 0.011 1.7 0.019 (a)=0.05 

TempShade -0.077 0.011 2.7 0.030 (a)=0.005 

Enterococci BP     

Main Effects Effects SE (Effect) t(a) CI(effect) df=233 
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Temperature -8.8 0.31 2.7 0.84 (a)=0.005 

Humidity -5.3 0.32 2.7 0.84 (a)=0.005 

ShadeCode 11.2 0.31 2.7 -0.84 (a)=0.005 

Interactions      

TempHumid 8.7 0.31 2.7 0.84 (a)=0.005 

TempShade 1.2 0.32 2.7 0.85 (a)=0.005 

HumidShade -5.3 0.32 2.7 0.84 (a)=0.005 

TmpHumShd -4.3 0.32 2.7 0.85 (a)=0.005 
 
 

Our model for Enterococci survival is therefore: 
log(MPN/initial MPN) = k1*t for t<=tBP (X.5) 

where 
k1 = -0.0356 + (H-52.5)*0.000137  
+ (S-0.5)*0.00727  
+ (T-65)*(H-52.5)*0.00000372  
- (T-65)*(S-0.5)*0.00771 

and 
tBP = 68.74 - (T-65)*0.881 - (H-52.5)*0.0483  
+ (S-0.5)*5.59 + ((T-65)*(H-52.5)*0.00158  
+ (T-65)*(S-0.5)*0.0119 - (H-52.5)*(S-0.5)*0.0483 
- (T-65)*(H-52.5)*(S-0.5)*0.000784 

 
and for t>tBP, 

log(MPN/initial MPN) = k1*tBP + 0.00652*(t-tBP) 
 
Comparison of the model with observations (Figure X.10) 

makes it apparent that there are other sources of variability than the 
environmental factors analyzed here (and R2 is only 0.59). Howev-
er, the model again provides closer (and more balanced) agreement 
with the data than does a simple regression (Figures X.11 and 
X.12). Residual behavior provides no reasons for concerns as to 
methods (Figure X.13).  

The model-derived parameters applied to our experimental con-
ditions are presented at Table X.4. All treatments, again, exhibit an 
initial decline, with all three environmental factors (Temperature, 
Humidity, and UV Exposure) contributing (either as main effects 
or within interactions). The rates of decline, however, are only 
about half of those suffered by E. coli. None of the BPs for these 
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populations coincided with initial observations, and the adaptation 
phase of these inoculants lasted about three days. Even with the 
slower rates of decline, most inoculants had been reduced 2-3 or-
ders of magnitude in the initial period. The insensitivity of k2 to 
environmental effects, and the fact that it is positive (indicating net 
growth) implies that these organisms adapt to impervious envi-
ronmental surfaces quite well. By the end of the study period 
(about two weeks) all inoculants had rebounded to about 10% of 
their original populations. 
 

 
Figure X.10 Enterococci, Observations vs Model comparison. 
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Figure X.11 Model Predictions vs Observations. Line shows Observa-

tion=Prediction 
 

 

 
 

Figure X.12 Paired Observations vs predictions from a simple linear re-
gression. Line displays Observation=Prediction 
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Figure X.13 Residuals, over time, of the proposed model 

 
Table X.4 Enterococci modeled parameters, applied to experimental 

conditions 
 

 k1 (1/hours) BP (hours) k2 (1/hours) 

CoolDryUV -0.0501 70.0 0.00652 

CoolDryDark -0.0235 76.7 0.00652 

CoolWetUV -0.0477 66.5 0.00652 

CoolWetDark -0.0211 70.5 0.00652 

WarmDryUV -0.0359 63.2 0.00652 

WarmDryDark -0.0479 70.4 0.00652 

WarmWetUV -0.0233 64.0 0.00652 

WarmWetDark -0.0353 68.6 0.00652 

 
 
 
X.3 Conclusions 
 
We developed the models presented here in support of an ongoing 
effort to model source-area processes contributing to background 
(i.e., of non-sewage origin) presence of fecal indicators in storm-
water. Together with a planned similar study of survival on 
pervious surfaces (soils), they should contribute to a mass-balance 
link between fecal deposition on the landscape and biological 
stormwater quality. 

Others, however, may find the work of interest. The studied in-
dicator organisms (especially Enterococci) were found to be quite 
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persistent (especially under environmental conditions that most 
closely approximate enteric conditions) on impervious surfaces 
under the extreme Tuscaloosa, AL, environmental conditions. 
Moreover, under most conditions studied, the rate of disappearance 
of these organisms from the landscape slowed (or even reversed), 
rendering short-term studies of their survival (or even simple re-
gression of long-term studies) unreliable in predicting their 
environmental fate.  

We hope that risk analysis of stormwater exposures, and effi-
cient search for sources of indicators species in runoff will be 
better informed by this work.  
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